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The recent advancements in rapid and affordable DNA sequencing technologies have

revolutionized diagnostic microbiology and microbial surveillance. The availability of

bioinformatics tools and online accessible databases has been a prerequisite for this. We

conducted a scientific literature review and here we present a description of examples of

available tools and databases for antimicrobial resistance (AMR) detection and provide

future perspectives and recommendations. At least 47 freely accessible bioinformatics

resources for detection of AMR determinants in DNA or amino acid sequence data have

been developed to date. These include, among others but not limited to, ARG-ANNOT,

CARD, SRST2, MEGARes, Genefinder, ARIBA, KmerResistance, AMRFinder, and

ResFinder. Bioinformatics resources differ for several parameters including type of

accepted input data, presence/absence of software for search within a database of

AMR determinants that can be specific to a tool or cloned from other resources, and

for the search approach employed, which can be based on mapping or on alignment.

As a consequence, each tool has strengths and limitations in sensitivity and specificity

of detection of AMR determinants and in application, which for some of the tools have

been highlighted in benchmarking exercises and scientific articles. The identified tools

are either available at public genome data centers, from GitHub or can be run locally.

NCBI and European Nucleotide Archive (ENA) provide possibilities for online submission

of both sequencing and accompanying phenotypic antimicrobial susceptibility data,

allowing for other researchers to further analyze data, and develop and test new tools.

The advancement in whole genome sequencing and the application of online tools for

real-time detection of AMR determinants are essential to identify control and prevention

strategies to combat the increasing threat of AMR. Accessible tools and DNA sequence

data are expanding, which will allow establishing global pathogen surveillance and AMR

tracking based on genomics. There is however, a need for standardization of pipelines

and databases as well as phenotypic predictions based on the data.
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INTRODUCTION

The science of infectious disease, along with other medical
and biological specialties, is undergoing rapid change brought
on by the advent of affordable whole genomic sequencing
(WGS) technologies (1–3). These technologies are rapidly
gaining acceptance as routine methods, and in the process, are
transforming laboratory procedures.

The amount of bacterial genomic data being generated
is immense. As of this writing, for example, over 190,000
Salmonella genomes alone are in the public domain with
hundreds being added weekly. A complete genomic DNA
sequence represents the highest practicable level of structural
detail on the individuating traits of an organism or population.
As such, it can be used to provide more reliable microbial
identification, definitive phylogenetic relationships, and a
comprehensive catalog of traits relevant for epidemiological
investigations. This is having a major impact on outbreak
investigations and the diagnosis and treatment of infectious
diseases, as well as the practice of microbiology and epidemiology
(4). Furthermore, DNA sequences are a universal dataset from
which, theoretically, any biological feature can be inferred.
In clinical applications, this includes the ability to detect
antimicrobial resistance (AMR), and to track the evolution and
spread of AMR bacteria in a hospital or the community.

AMR is a global health problem that contributes to tens
of thousands of deaths per year [Chaired by Jim O’Neill,
(5)]. Historically, AMR has been detected as a measurement
of the growth inhibitory effects of a chemotherapeutic agent
on a bacterial population cultured under specific laboratory
conditions. Despite some ancillary enhancements, clinical
laboratories to this day rely mainly on diffusion and dilution
methods to guide clinical therapy and to monitor AMR over
time. Accumulating data show that AMR can be accurately
predicted from the genomic sequence for many bacteria. The
sequence-based approach to AMR detection requires robust
bioinformatics tools to analyze and visualize the genomic
structure of the microbial “resistome,” defined by AMR genes
and their precursors (6). This review summarizes the state of the
science in using single isolate WGS to track global AMR.

THE ADVANTAGES OF WHOLE GENOME
SEQUENCING

A major advancement enabling resistome surveillance is the
demonstrated power to predict AMR from genomic data alone.
Several studies including those focused on foodborne pathogens
and Enterobacteriaceae have shown a high concordance (>96%)
between the presence of known AMR genes or mutations
and Minimum Inhibitory Concentration (MIC) of several
antimicrobials at or above the epidemiological cut-off value or
clinical breakpoint for resistance. High sensitivity of >87%,
defined by the ability to correctly identify AMR determinants
associated with an antimicrobial resistance phenotype (true
positive rate) and high specificity of >98%, defined by the
ability to correctly identify the absence of AMR determinants

in an antimicrobial susceptible phenotype (true negative rate),
have been observed depending on the bacterial species analyzed
(Table 1) (7–18). Furthermore, a growing body of data shows
that it is possible to predict AMR, and perhaps the MIC of an
antimicrobial, applying machine or deep learning to genome
sequence data (19–21). The comparison between phenotype and
genotype as well as the application of machine or deep learning
are however still in their infancy and additional data on bacterial
species beyond the foodborne pathogen domain are needed.

The most obvious advantage of WGS for microbial typing
and AMR surveillance is the unprecedented level of detail
in one assay that can be used to describe current trends
and distinguish emerging tendencies (22). AMR bacteria can
be typed and traced by specific allele profiles, rather than
just according to phenotypic patterns by drug class. This is
exemplified by a study of emerging aminoglycoside-resistant
Campylobacter in the USA, where WGS revealed that the rising
trend was driven by nine different resistance alleles, six of
which had never been detected in Campylobacter previously
and would not have been found easily using PCR (10).
Similarly, in one of the first large-scale applications of WGS
to investigate a drug-resistant foodborne outbreak in the US in
2011, inconsistent resistance patterns among indistinguishable
PFGE types of Salmonella serovar Heidelberg were revealed by
sequence analysis to be a polymicrobic contamination event,
involving various combinations of plasmids and strain types (23).

DNA sequence-based surveillance makes it possible also to
define multidrug-resistance (MDR) with much greater precision
compared to phenotypic tests (22). It has long been a common
practice to defineMDR as resistance to compounds from three or
more drug classes (24), a definition with limited practical value.
Bioinformatic analysis can reveal the co-carriage of specific genes
underlying different MDR patterns, allelic trends over time, their
genetic context including the potential for horizontal transfer,
and their distribution by source. In addition, the presence of
co-resistances not assayed on standard drug panels is revealed,
such as disinfectant and heavy metal resistance. This level of
“deep surveillance” can uncover other potential drivers of AMR
persistence and evolution, and the opportunity for a more refined
microbial risk analysis based on the association of resistance traits
with specific sources.

ONLINE RESOURCES FOR IN SILICO

ANTIMICROBIAL RESISTANCE
DETECTION

The high level of agreement between phenotype and genotype
coincides with the development of new and updated versions
of bioinformatics tools to predict AMR, and the maturation
of well-curated AMR gene databases. In principle, in silico
AMR detection is performed by using a search algorithm to
query input DNA or amino acid sequence data for the presence
of a pre-determined set of AMR determinants contained in
AMR reference databases (Figure 1). This can be performed
using proprietary systems offered by commercial companies or
open-access systems requiring different levels of user expertise.
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TABLE 1 | Concordance between phenotypic susceptibility testing and WGS based predicted antimicrobial resistance.

Pathogen No. of

pathogens

AST

method

No. of

antimicrobials

Bioinformatic tool Sequencing data Concordance Sensitivity Specificity Comment References

2013 S. Typhimurium 49 MIC 17 ResFinder Assembled, Velvet 99.74% Disagreement: 7 isolates

including 6 E. coli resistent to

Spec

(7)

E. coli 48

E. faecalis 50 14

E. faecium 50

2013 E. coli (ESBL) 74 DD 7 BLASTn, selected panel Assembled, Velvet 96% 97% VM rate: 1.2%/M rate: 2.1% (8)

K. pneumonia

(ESBL)

69

2014 S. aureus 501 DD/MIC

(Vitek)

12 BLASTn, selected panel Assembled, Velvet 97% 99% VM rate: 0.5%/M rate: 0.7% (9)

2016 C. jejuni 32 MIC 9 BLASTx Assembled,

CLC-bio

99.2% Lower concordance to (10)

C. coli 82 Gen, Azi, Clin, Tel

2016 S. enterica 104 MIC 14 ResFinder/

ARG-ANNOT/

CARD/BLAST

Assembled,

CLC-bio

99.0% 99.2% 99.3% Lower concordance to (11)

536 97.6% 98.0% aminoglycosides/β-lactams

2017 E. coli 31 MIC 4 Custom DB based on

ARDB/CARD/β-

lactamase

allelles

87% 98% Neg. predictive value: 97% (12)

K. pneumonia 24 Pos. Predictive value: 91%

P. aeruginosa 22

E. cloacae 13

2017 S. enterica 50 MIC 4 ResFinder/

PointFinder

Assembled, SPAdes 98.4% Disagreement:

2/2C.jejuni to FQ/ERY

(13)

E. coli 50 6

C. jejuni 50 4 5 E. coli to COL (pmrB)

2018 E. faecalis 97 MIC 11 ResFinder/NCBI

Pathogen DB/BLAST

Assembled,

CLC-bio

96.5% (14)

E. faecium 100

2018 S. aureus 501 DD/MIC 12 GeneFinder/

Mykrobe/

Typewriter

FASTQ/assembled,

BLAST

98.3% Disagreements:

0.7% predicted resistant

(15)

491

397 MIC 0.6% predicted susceptible

2018 M. tuberculosis 10,209 MGIT

960

4 Cortex Assembled 89.5% 97.1%/99.0% predicted R/S (16)

4 97.5%/98.8% predicted R/S

4 94.6%/93.6% predicted R/S

4 91.3%/96.8% predicted R/S

2019 H. pylori 140 MIC

(E-test)

5 ARIBA FASTQ 99% Phenotype issues to

metronidazole

(17)

1) ESBL: Extended Spectrum Beta-Lactamase, 2) MIC: Minimum Inhibitory Concentration, 3) DD: Disk diffusion, 4) VM: Very Major, 5) M: Major, 6) R/S: Resistant/Susceptible, 7) SPEC: Spectinomycin, 8) GEN: Gentamicin, 9) AZI:

Azithromycin, 10) CLIN: Clindamycin, 11) TEL: Telithromycin, 12) FQ: Fluoroquinolone, 13) ERY: Erythromycin, 14) COL: colistin.
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FIGURE 1 | The principle of in silico AMR determinant detection using a search algorithm to query input DNA.

Open-access systems are available at public genome data centers
such as the Center for Genomic Epidemiology (CGE) http://
www.genomicepidemiology.org/ online or downloadable for
local install from github (https://github.com/), bitbucket (https://
bitbucket.org/account/user/genomicepidemiology/projects/DB)
and similar.

The various bioinformatics software can process sequence
data either as reads or as assemblies (25). Generally, available
resources do not include quality control of input sequence
data thus it is the users’ responsibility to ensure the quality
of submitted sequences or assemblies. When using assembly-
based methods, differences among assemblers may compromise
comparability of the outcome (15, 26). Following assembly, the
most common approaches to compare the input data with the
AMR reference databases rely on BLAST and Hidden Markov
Model searches, among others. BLAST-based tools can give
different outputs based on default settings for gene length and
percentage of similarity. This can negatively affect specificity
if the settings are too low or too high. Moreover, assembly-
based methods are computationally demanding. Despite these
caveats, assembly-based methods may have an added value
in an AMR surveillance context as they allow analysis
of the genetic context of the AMR genes such as their
presence on mobilizable potential. Read-based methods may
use different tools to align reads to AMR databases, including
Bowtie2, BWA, and KMA (25). Recently, the KMA (k-
mer alignment) has been develop to map raw reads directly
against redundant AMR databases (27). The KMA tool was
developed specifically for rapid and accurate bacterial genome
analyses in contrast to other mapping methods such as BWA
that were developed for large reference genome, such as
the human genome and subsequently applied empirically to
microbiology (27). KMA uses k-mer seeding to speed-up
mapping and the Needleman-Wunsch algorithm to accurately
align extensions from k-mer seeds. Multi-mapping reads are
resolved using a novel sorting scheme (ConClave scheme) to
ensure an accurate selection of templates (27). Read-based
methods allow identification of AMR genes present in low

abundance which might be overlooked where assemblies are
incomplete (25).

Independent of the bioinformatics approach chosen, the
performance of in silico AMR prediction is critically dependent
on the availability of accurate AMR databases. AMR reference
databases can be subdivided into solutions specialized for
detection of resistance to specific antimicrobials and/or in
specific bacterial species or in solutions allowing detection of
virtually any possible AMR determinant in any DNA/amino acid
sequence. Besides their focus area, AMR reference databases
have important differences which users need to acknowledge
for choosing the optimal fit-for-purpose database. First, AMR
reference databases differ for criteria of inclusion of entries. For
example, entries in CARD must have been published in scientific
literature. In ResFinder, publication is not a strict requirement.
Genes must have a GenBank number and expert review of the
GenBank entries. Also, the types of entries differ across databases,
with most databases including AMR genes and only a few
databases including mutations of chromosomal genes mediating
AMR. Finally, the available AMR databases differ regarding the
format of the entries (fasta, json, etc.), the possibility of download,
and the availability and frequency of curation (Table 2).

At present, at least 47 online available resources for in silico
AMR prediction are published in the scientific literature (13,
26, 28–63) (Table 2). They range from basic AMR reference
databases that can be embedded in the user’s own bioinformatics
pipeline, to systems having a well-curated database with
integrated search tools. These bioinformatics resources have
interfaces of different complexity that require different skills in
bioinformatics and microbiology for performing the sequence
analyses and interpreting the results (Table 2). As the features
of these systems differ widely, the outputs obtained by different
tools may not be fully comparable. Moreover, employing the
same tool for different input formats of the same data (e.g., raw
reads vs. assembled sequences, trimmed vs. non-trimmed reads;
assemblies obtained by different software, etc.) can produce
different results (64). A reliable genomic approach to assaying
AMR gene content requires accurate curated reference databases
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TABLE 2 | Open-access resources for in silico antimicrobial resistance detection in bacteria.

Name Target Software Database Input

sequence

Link Year of

development

Curation

(last update)

References

Type Downloadablea Source Downloadable Type Format

ABRES Finder General AMR Profile HMM No Own No Amino acid FASTA http://scbt.sastra.edu/

ABRES/index.php

2017 Not specified Unpublished

ABRICATE General AMR BLAST Yes ResFinder,

CARD,

ARG-ANNOT,

NCBI

AMRFinder,

EcOH,

PlasmidFinder,

Ecoli_VF and

VFDB

Yes Nucleotide FASTA https://github.com/

tseemann/abricate

2016 2019 Unpublished

ARDB General AMR BLAST Yes Own Yes Nucleotide FASTA https://ardb.cbcb.umd.

edu/

2009 2009 (28)

ARG-ANNOT General AMR – – Own Yes – – Discontinued 2014 2018 (29)

ARIBA General AMR (single

isolate sequences)

Minimap,

Bowtie2

Yes Derived from

ARG-ANNOT,

CARD,

PlasmidFinder,

ResFinder,

VFDBb;

customizable

No Nucleotide FASTQ https://github.com/

sanger-pathogens/

ariba

2017 2019 (30)

CARD General AMR BLAST, RGI Yes Own Yes Nucleotide,

amino acid

FASTA https://card.mcmaster.

ca/home

2013 2019 (31)

IRIDA plugin

AMR detection

General AMR RGI, staramr Yes CARD,

PointFinder,

PlasmidFinder

and ResFinder

Yes Nucleotide FASTQ https://github.com/

phac-nml/irida-plugin-

amr-detection

2019 2019 Unpublished

Kmer resistance General AMR KMA Yes ResFinder Yes Nucleotide FASTA, FASTQ https://cge.cbs.dtu.dk/

services/

KmerResistance-2.2/

2016 2019 (26)

MEGARes

(AMRplusplus)

General AMR BWA Yes Derived from

ARG-ANNOT,

CARD, NCBI

Lahey Clinic

beta-lactamase

archive,

ResFinderb

Yes Nucleotide FASTQ https://megares.

meglab.org/

2016 2016 (32)

(Continued)
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TABLE 2 | Continued

Name Target Software Database Input

sequence

Link Year of

development

Curation

(last update)

References

Type Downloadablea Source Downloadable Type Format

NCBI

AMRFinder

General AMR BLAST, HMMER Yes Own Yes Nucleotide,

amino acid

FASTA, GFF https://www.ncbi.nlm.

nih.gov/pathogens/

antimicrobial-

resistance/AMRFinder/

2017 2019 (33)

Noradab General AMR BLAST No Derived from

ARDB and

CARDb

Yes Nucleotide,

amino acid

FASTA http://noradab.bi.up.

ac.za/

2018 Not specified (34)

Patric General AMR BLAST Yes Own Yes Nucleotide,

amino acid

FASTA https://www.patricbrc.

org/

2004 2019 (35)

ResFinder General AMR BLAST, KMA Yes Own Yes Nucleotide FASTA, FASTQ https://cge.cbs.dtu.dk/

services/ResFinder/

2012 2019 (36)

SRST2 General AMR BOWTIE2 Yes Derived from

ARG-ANNOTb
Yes Nucleotide FASTA, FASTQ

and any other

format readable

by BOWTIE2

https://github.com/

katholt/srst2

2014 2019 (37)

SSTAR General AMR BLAST Yes Derived from

ARG-ANNOT

and Resfinderb

Yes Nucleotide FASTA https://github.com/

tomdeman-bio/

Sequence-Search-

Tool-for-Antimicrobial-

Resistance-SSTAR-

2015 2018 (38)

INTEGRALL AMR genes and

associated integrons

BLAST No Own Yes Nucleotide FASTA http://integrall.bio.ua.

pt/?

2008 2019 (39)

MvirDB AMR genes, protein

toxins and virulence

factors for bio-defense

applications

BLAST No Derived from

Tox-Prot,

SCORPION, the

PRINTS

virulence factors,

VFDB, TVFac,

Islander, ARGO

and a subset of

VIDAb

Yes Nucleotide,

amino acid

FASTA Discontinued (http://

mvirdb.llnl.gov/)

2007 Not specified (40)

BacMet Biocide and metal

resistance

BLAST No Own Yes Nucleotide,

amino acid

FASTA http://bacmet.

biomedicine.gu.se/

2013 2018 (41)

ResCap Antibiotic, heavy metal

and biocide resistance

BLAST, Bowtie2 Yes Derived from

ARG-ANNOT,

CARD, RED-DB,

ResFinder,

Bacmetb

Yes Nucleotide FASTA, FASTQ https://github.com/

valflanza/ResCap

2017 2017 (42)

(Continued)

F
ro
n
tie
rs

in
P
u
b
lic

H
e
a
lth

|w
w
w
.fro

n
tie
rsin

.o
rg

6
S
e
p
te
m
b
e
r
2
0
1
9
|V

o
lu
m
e
7
|
A
rtic

le
2
4
2

https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/
http://noradab.bi.up.ac.za/
http://noradab.bi.up.ac.za/
https://www.patricbrc.org/
https://www.patricbrc.org/
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
https://github.com/katholt/srst2
https://github.com/katholt/srst2
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-
http://integrall.bio.ua.pt/?
http://integrall.bio.ua.pt/?
http://mvirdb.llnl.gov/
http://mvirdb.llnl.gov/
http://bacmet.biomedicine.gu.se/
http://bacmet.biomedicine.gu.se/
https://github.com/valflanza/ResCap
https://github.com/valflanza/ResCap
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


H
e
n
d
rikse

n
e
t
a
l.

B
io
in
fo
rm

a
tic
s
R
e
so

u
rc
e
s
fo
r
P
re
d
ic
tio

n
o
f
A
M
R

TABLE 2 | Continued

Name Target Software Database Input

sequence

Link Year of

development

Curation

(last update)

References

Type Downloadablea Source Downloadable Type Format

ARGO Beta-lactam and

vancomycin resistance

– – Own – – – Discontinued (http://

bioinformatics.org/

argo/beta/

antibioticresistance.

php)

2005 – (43)

RED-DB Beta-lactam,

glycopeptide,

aminoglycoside,

tetracycline,

sulphonamide,

macrolide, lincosamide,

streptogramin b,

oxazolidinone and

quinolone resistance

BLAST No Own Yes Nucleotide,

amino acid

FASTA http://www.fibim.unisi.

it/REDDB/

2007-2013 Not specified Unpublished

Tetracycline

MLS

nomenclature

Macrolide, lincosamide,

streptogramin and

tetracycline resistance

– – Own Yes – – https://faculty.

washington.edu/

marilynr/

Not specified 2019 Unpublished

β-lactamases

Database

β-lactamases – – Own Yes – – http://ifr48.timone.

univ-mrs.fr/beta-

lactamase/public/

Not specified Not specified Unpublished

BLAD β-lactamases – – Own No Nucleotide,

amino acid

FASTA http://www.blad.co.in/ 2012 Not specified Unpublished

BLDB β-lactamases BLAST No Own Yes Nucleotide,

amino acid

FASTA http://bldb.eu/ 2017 2019 (44)

CBMAR β-lactamases BLAST No Own Yes Nucleotide,

amino acid

FASTA http://

proteininformatics.org/

mkumar/lactamasedb/

2014 2014 (45)

LacED β-lactamases BLAST No Own Yes Amino acid FASTA http://www.laced.uni-

stuttgart.de/

2009 Not

specifiedc
(46)

AMRtime AMR genes in

metagenomic data

DIAMOND Yes CARD Yes Nucleotide FASTQ https://github.com/

beiko-lab/AMRtime

2017 2019 (47)

DeepARG AMR genes in

metagenomic data

BLAST,

DIAMOND

Yes Derived from

RDB, CARD,

UNIPROTb

Yes Nucleotide,

amino acid

FASTA, FASTQ https://bench.cs.vt.

edu/deeparg

2017 2019 (48)

GROOT AMR genes in

metagenomic data

LSH Forest

indexing

Yes Derived from

ARG-ANNOT,

CARD, Resfinder

Yes Nucleotide FASTQ https://github.com/will-

rowe/groot

2018 2019 (49)

SARG

(ARGs-OAP;

ARGpore)

AMR genes in

metagenomic data

BLAST,

HMMER,

UBLAST

Yes Derived from

ARDB and

CARDb

Yes Nucleotide any format is

supported

https://smile.hku.hk/

SARGs

2016 2019 (50)

SEAR AMR genes in

metagenomic data

BLAST,

BWA-MEM

Yes ARG-ANNOT Yes Nucleotide FASTQ Discontinued (https://

github.com/will-rowe/

SEAR)

2015 2018 (51)

(Continued)
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TABLE 2 | Continued

Name Target Software Database Input

sequence

Link Year of

development

Curation

(last update)

References

Type Downloadablea Source Downloadable Type Format

ShortBRED AMR genes in

metagenomic data

BLAST,

USEARCH

Yes Derived from

ARDB and

CARDb

Yes Amino acid FASTA http://huttenhower.sph.

harvard.edu/shortbred

2015 2019 (52)

Mustard AMR determinants in

the human gut

microbiota

BLAST No Derived from

Resfinder,

ARG-ANNOT,

the Lahey Clinic

(http://www.

lahey.org/

studies/),

RED-DB (http://

www.fibim.unisi.

it/REDDB/),

Marilyn Roberts’

website for

macrolides and

tetracycline

resistance

(http://faculty.

washington.edu/

marilynr/) and

different

functional

metagenomics

studiesb

Yes Nucleotide,

amino acid

FASTA http://mgps.eu/

Mustard/

2017 2017 (53)

FARMEDB AMR genes discovered

by functional

metagenomics

BLAST No Own Yes Nucleotide,

amino acid

FASTA http://staff.washington.

edu/jwallace/farme/

index.html

2016 Not

specifiedc
Unpublished

ResFams AMR genes discovered

by functional

metagenomics

– – Derived from

CARD, LacED,

Lahey

beta-lactamases

(now at NCBI)b

Yes – – http://www.dantaslab.

org/resfams

2014 2018 (54)

ResFinderFG AMR genes discovered

by functional

metagenomics

BLAST Yes Own No Nucleotide FASTA, FASTQ https://cge.cbs.dtu.dk/

services/ResFinderFG-

1.0/

2016 Not specified Unpublished

Galileo AMR

(MARA, RAC)

AMR genes in

Gram-negative bacteria

BLAST

(ATTACCA)

Yes Own Yes Nucleotide FASTA https://galileoamr.

arcbio.com/mara/

2017 Not

specified3

(55)

LREfinder Linezolid resistance in

enterococci

KMA Yes Own Yes Nucleotide FASTA, FASTQ https://cge.cbs.dtu.dk/

services/LRE-finder/

2019 2019 (56)

(Continued)
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TABLE 2 | Continued

Name Target Software Database Input

sequence

Link Year of

development

Curation

(last update)

References

Type Downloadablea Source Downloadable Type Format

MUBII-TB-DB AMR mutations in

Mycobacterium

tuberculosis

BLAST No Own No Nucleotide FASTA https://umr5558-

bibiserv.univ-lyon1.fr/

mubii/mubii-select.cgi

2013 Not specified (57)

Mykrobe AMR in Mycobacterium

tuberculosis and

Staphylococcus aureus

Own (based on

de Bruijn graph)

Yes Own Yes Nucleotide FASTQ http://www.mykrobe.

com/

2015 2019 (58)

TBDReaM AMR in Mycobacterium

tuberculosis

– – Own Yes – – https://tbdreamdb.ki.

se/Info/

2009 2014 (59)

PointFinder Selected mutations in

chromosomal genes of

Escherichia coli,

Salmonella sp.,

Campylobacter sp.,

Staphylococcus

aureus, Enterococcus

sp., Mycobacterium

tuberculosis, Neisseria

gonorrhoeae

BLAST, KMA Yes Own Yes Nucleotide FASTA, FASTQ https://cge.cbs.dtu.dk/

services/ResFinder/

2017 2019 (13)

SCCmec Finder SCCmec elements in

Staphylococcus aureus

BLAST, KMA Yes Own Yes Nucleotide FASTA, FASTQ https://cge.cbs.dtu.dk/

services/

SCCmecFinder/

2016 2018 (60)

U-CARE AMR in Escherichia coli BLAST No Own Yes Amino acid FASTA http://www.e-

bioinformatics.net/

ucare/

2013 Not specified (61)

ARGDIT Toolkit for validation

and integration of AMR

gene database

– Yes – – Nucleotide,

amino acid

FASTA https://github.com/

phglab/ARGDIT

2018 2019 (62)

ARG-miner Robust and

comprehensive

curation

of AMR gene

databases

– – Derived from

ARDB,

ARG-ANNOT,

CARD,

DeepARG-DB,

MEGARes,

NDARO,

ResFinder,

SARG, UniProtb

Yes – – https://bench.cs.vt.

edu/argminer/#/home

2018 2019 (crowd-

curation)

(48)

aYes, standalone version is available (usually in Bitbucket or in GitHub) either with or without a corresponding web version; no, only web version is available.
bCuration to avoid redundancies and remove selected sequences (see respective references for details).
cActive, based on authors’ knowledge; discontinued databases may still be available for download via WayBack Machine.
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that should be synchronized and harmonized in a way to
ensure comparable outputs worldwide. Once that is achieved, the
bioinformatics method of monitoring will undeniably lead to a
paradigm shift in the way that we conduct AMR surveillance
and compare results internationally. Importantly, the currently
available tools may detect new gene variants, but they are
not presently equipped to detect new AMR genes. Identifying
novel resistance elements from genomic data is being pursued
using iterative kmer-based analytics and other machine learning
schemes but these strategies still require well-characterized
reference genomes with phenotypic data for training (11, 19–21).

BENCHMARKING OF BIOINFORMATICS
TOOLS TO DETECT ANTIMICROBIAL
RESISTANCE DETERMINANTS

Benchmarking exercises are important to assess the performance,
and reliability of the available bioinformatics tools which have
different complexity in design and function.

Designing and executing a benchmarking trial offers several
challenges. At a recent meeting (October 2017) organized by the
European Commission Joint Research Center, the challenges of
designing a benchmarking strategy for assessing bioinformatics
tools to detect AMR determinants was discussed (65). Here,
several challenges were identified, and considerations discussed
which included: (1) the origin of the dataset tested; (2) sustainable
reference datasets; (3) quality of the test genomes; (4) what
determinants to include in a dataset; (5) the, expected result;
and (6) performance thresholds. The sequence dataset could
either be real or artificially composed. In both cases, this will
have implications for accurate benchmarking. A real dataset
needs to be properly characterized and the true reference result
defined. Furthermore, a real dataset may be biased in content
for certain resistance determinants, such as mutations in the
ampC promoter of E. coli, and thereby affect some bioinformatics
tools more than others (26). In contrast, a simulated dataset
needs to be accurate and correct but also contain a variety of
different determinants or mechanisms. Ideally, a combination
could be applied designing a desired benchmarking dataset to
represent real-life scenarios aligned with the test objective (e.g.,
only focused on extended spectrum β-lactamases). The scope of
bacterial species represented can also influence the results (65).

The quality and type of sequence data are also important
factors. This also needs to mimic a real-life scenario where
genomes will differ in error rates, read lengths, and read
quality and may be raw reads or assemblies. The robustness
of bioinformatics tools will differ in performance when dealing
with low quality genomes and assemblies compared to optimal
conditions (26, 65).

Prior to executing a benchmarking exercise, the reference
AMR classes need to be determined as to whether all
known or acquired determinants will be included, or only
specific mechanisms such as certain enzymes, efflux pumps,
mutations/single nucleotide polymorphisms (SNPs), upregulated
or downregulated genes or porins. Ideally, the bioinformatics
tools should enable the detection of all known determinants if

used for surveillance or guiding clinical treatment unless the
scope is different and agreed upon (65).

Since the main objective of a benchmarking exercise is to
assess the ability of the bioinformatics tool to provide reliable
analysis of AMR gene content, it is vital that the concordance is
high between the reference result and the expected outcome (65).
The sensitivity is especially important as the misidentification
of a resistant strain is more consequential than the finding
of silent resistance genes in phenotypically susceptible isolates.
As previously mentioned, discrepancies observed between
phenotypic reference result and the expected genomic outcome
is often due to incorrect phenotypic antimicrobial susceptibility
test data.

Assessing the performance of bioinformatics tools is often
based on a comparison between the genotypic and phenotypic
results and a calculation of the specificity, sensitivity, positive
predictive (PPV) and negative predictive values (NPV),
accuracy [Simple Matching Coefficient (SMC)] and performance
[Matthew’s Correlation Coefficient (MCC)] followed by
a comparison of these parameter’s between the different
bioinformatics tools (26, 66).

Surprisingly, only a few studies have benchmarked
bioinformatics tools against each other to detect AMR
determinants. 24 used two previously published pair-end
Miseq datasets (7, 8) of 196 genomes of four species and 143
genomes from two species (five species in total), respectively.
Phenotypic susceptibility test data was used as the reference
result in predicting AMR determinants when benchmarking the
KmerResistance vers 1.0 (target only enzymes) (70% identity
and 10% depth corr (co-occurrence of K-mers), ResFinder
vers. 2.0 (target only enzymes) [98% identity and 60 coverage
(assembly/BLAST)], and SRST2 (90% identity 90% coverage)
(clustering/Bowtie2). To further challenge the sensitivity, the
datasets were down-sampled to 1% of the reads and re-analyzed.
Overall, the three bioinformatics tools performed equally well
with almost the same accuracy, SMC and performance, MCC
testing the two datasets; SMC and MCC were app. 96% and
0.90 for the Stoesser et al. collection, respectively whereas the
SMC and MCC ranged from 98 to 100% and 0.91 to 0.99
for the Zankari et al. collection, respectively with the lowest
performance by SRST2 and the highest by KmerResistance (26).
The KmerResisance tool performed significant better than the
two others when data were contaminated or down-sampled to
contain a few reads—all bioinformatics tools performed best
using raw reads input data (26).

Another study (ENGAGE) (66) evaluated the Public Health
England’s GeneFinder tool, which targets enzymes and some
chromosomal point mutations for fluoroquinolone resistance
using two HiSeq datasets, 125 Salmonella genomes and
164 E. coli genomes of which a large proportion harbored
upregulated ampC-mediated resistance to extended spectrum
cephalosporins. ResFinder provided the highest accuracy,
SMC and performance, MCC predicting resistance in the
E. coli genomes and GeneFinder for Salmonella genomes.
The correlation to phenotypic susceptibility testing was for
Salmonella spp. Ninety percent for all bioinformatics tools but
higher for GeneFinder specifically for fluoroquinolones. The
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accuracy, SMC revealed to be lower in E. coli than testing
Salmonella for all bioinformatics tools due to the bias of the
E. coli dataset containing a high number of upregulated ampC
genotypes not predicted by any of the bioinformatics tools (66).
Hunt et al. similarly benchmarked the same bioinformatics tools
as in Clausen et al. including also the ARIBA tool (30). The
ARIBA tool contain in addition to enzymes also chromosomal
point mutations thus, outperforming both KmerResistance (26)
and SRST2 (37).

Following the benchmarking described above, both the
ResFinder and the KmerResistence bioinformatics tools have
been updated. Thus, the Resfinder tool now includes a
number of chromosomal point mutations such as those to
detect resistance to colistin, fluoroquinolones, etc. Overall, the
benchmarking exercises revealed that all bioinformatics tools
evaluated performed almost similarly good but were affected by
the type and quality of input data.

In an assessment of the accuracy of NCBI’s AMRFinder, a
2018 study by Feldgarden et al compared it with a 2017 version
of ResFinder (33). AMRFinder was evaluated first using a set of
6,242 genomes with 87,679 AST data points for 14 antimicrobial
drugs. Overall, 98.4% were consistent with predictions. When
compared with ResFinder, most gene calls were identical. While
there were 1,229 gene symbol differences, 81% were attributed to
differences in database composition. AMRFinder and ResFinder
use HMM- and BLAST-based approaches, respectively, and
are the commonly used resources for genome-based AMR
tracking. Synchronized harmonization of the databases, as is
done globally with genomic sequence databases, is needed to
minimize inconsistent outputs due to algorithmic differences.

ENSURING HIGH QUALITY GENOMIC
DATA BY PROFICIENCY TESTING

Standardization of WGS procedures from DNA preparation to
the final genome is paramount to ensure reliable prediction of
AMR determinants for surveillance and clinical purposes. To
ensure the production of reliable high quality genomic data,
laboratories routinely performing WGS should participate in
laboratory proficiency testing (PT) or external quality assurance
systems (EQAS) (67, 68). For decades, global and regional EQAS
in phenotypic AST of foodborne pathogens has been conducted
to ensure the quality of performed dilution and diffusion AST
(69–71). There is an urgent need to also establish a mechanism
to provide a global proficiency testing in the area of WGS to
establish standardization in the field (68). This goal is part of
the charter of the Global Microbial Identifier (GMI), launched
in 2011, to help establish a “global system of DNA genome
databases for microbial and infectious disease identification and
diagnostics” (https://www.globalmicrobialidentifier.org/).

In 2014, GMI launched its first pilot PT in WGS lead by the
DTU and US FDA to trial test the WGS platforms, procedures,
test material and the functionality of the assessment pipeline
(72). In 2015, a full roll-out of the pilot was delivered by
GMI to a global audience. The GMI continued to provide
proficiency testing in 2016 and 2017. Cultures and pure DNA for

library construction were provided to participating laboratories
for DNA purification, library preparation, and WGS followed
by in silico prediction of wgMLST and AMR determinants.
The genomes and analysis were submitted to DTU for quality
control assessment using closed genomes of the test strains as a
reference. The quality control assessment was facilitated by an
in-house developed PT QC pipeline measuring a large number of
parameters. These included the numbers of reads after trimming,
unmapped reads, map to the total reference DNA, reference
chromosome, reference plasmids; proportion of reads that map
to reference chromosome; coverage of the reference chromosome
and reference plasmids; depth of coverage of total DNA, reference
chromosome, and reference plasmids; Phred quality score (Q
score), total size and proportion of assembly map to the reference
DNA, number of contigs including above a length above 200 bp,
N50, and NG50. Underperformance was observed and reported
in each trial mainly caused by laboratory contamination or
poor performance.

DATA SHARING—PUBLIC/PRIVATE

An important element of genomics as a tool for AMR surveillance
and diagnostics is that, once data quality standards are met,
the data set is platform-independent, discrete and portable.
The analytical outputs and data sharing then become the most
important considerations (Figure 2). A plethora of international
and governmental position papers have stressed the need for
global cooperation and data sharing to combat infectious diseases
and worsening antimicrobial resistance (73–82). Countries have
different levels of legal restriction on the sharing of medical
information and biological material with potential commercial
value or compliance to the EU General Data Protection
Regulation. While the legal issue may be more intractable, the
public health advantages to global data sharing are obvious. In the
US, where fewer restrictions are in place,WGS data from national
surveillance systems are continuously placed in the public
domain both for public health purposes, and for exploitation by
innovators to develop and update new technologies. This permits
global access to information on commonmicrobiological threats,
something that will become more important as travel and trade
increase and as new threats arise.

ONLINE REPOSITORIES TO HOST AND
LINK GENOME AND ANTIMICROBIAL
SUSCEPTIBILITY DATA

Concurrently with the vast amount of genomic data being
produced, traditional antimicrobial susceptibility testing is being
conducted in parallel on a large scale. Up until recently, it
was only possible to submit and store DNA sequence data in
the International Nucleotide Sequence Database Collaboration
(INSDC), whereas all AST data was stored separately in closed
local or national repositories. Furthermore, not all genomic
data is submitted to the online open genomic repositories of
INSDC and shared globally due to difficulties to submit, a lack of
appreciation for its value, access to local or national repositories,
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FIGURE 2 | The sequence-based monitoring approach to track global antimicrobial resistance using bioinformatics tools.

fear of being data being published by others, or privacy of
the data (83). Nonetheless, today the NCBI and the European
Bioinformatics Institute (EMBL-EBI) can accommodate AST
data along with the WGS information, to facilitate a global
monitoring of AMR in bacteria to strengthen global public
health (84, 85).

EUROPEAN NUCLEOTIDE ARCHIVE
REPOSITORY

At European Nucleotide Archive (ENA), a mechanism to host
and link submitted genomic and AST data has been developed
by the EU COMPARE partners and EMBL-EBI (85). Briefly,
the EMBL-EBI system allows submitted genomes and associated
metadata in the ENA to be stored as open access or privately
in a secured login protected repository with named data hubs
(86). The system is designed to accommodate submission of
susceptibility data from both dilution or diffusion methods.
Novel software has been developed to validate conformity of
the AST data to ensure harmonization of the data (85). The
submitted genomic and AST data could be analyzed by using
existing bioinformatics infrastructure and implemented cloud-
based bioinformatics workflows in specific an extended version
of the Bacterial Analysis Pipeline consisting of ContigAnalyzer-
1.0, KmerFinder-2.1, MLST-1.6, ResFinder-2.1, VirulenceFinder-
1.2, PlasmidFinder-1.2, pMLST-1.4 (87) with the inclusion of
also the cgMLSTFinder 1.0. The submitted data could be queried
and downloaded in multiple ways including via the Pathogen
Data Portal for surveillance, identification, and investigation
https://www.ebi.ac.uk/ena/pathogens/home. Subsequently, the
data could be visualized by using a developed Notebook tool
integrated the Pathogen Data Portal to query and display all

typing data including distribution of the phenotypic AST data
enable a potential real time monitoring of AMR (85). The
advantage of the data hub model and similar embassy cloud
system is the possibility for privacy to control own data having
restricted access to only owners or collaborators while analyzing
or publishing the data or await less political sensitivity due to
GDPR which all a major barriers in data sharing (88–90).

NATIONAL CENTER FOR
BIOTECHNOLOGY INFORMATION
REPOSITORY

The National Center for Biotechnology Information (NCBI) is
the US member of the INSDC and part of the United States
National Institutes of Health, and houses hundreds of thousands
of bacterial genomes from around the world. Sequences are
submitted from global research studies, but the majority are from
national public health surveillance programs with systematic
sampling schema. With the expansion of WGS capacity, the
number of genome submission is expected to rise soon to over
100,000 annually from US sources alone.

To help make these large datasets accessible, the NCBI
Pathogens page (https://www.ncbi.nlm.nih.gov/pathogens/) was
developed. This resource is designed for exploring the genomic
features of various bacterial pathogens. These include major
foodborne and zoonotic pathogens, such as Salmonella enterica,
Escherichia coli, and Campylobacter spp. Included in these
datasets is a variety of metadata, including strain ID, source,
date collected, geographical location, antimicrobial resistance,
and more. This page was established in collaboration with
GenomeTrakr, an international consortium of laboratories
organized by the U.S. Food and Drug Administration (FDA) that
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collect and sequence bacterial strains from a variety of food and
environmental sources (91).

A major feature of the Pathogens page is the phylogenetic
trees, as genomes are arranged into clusters based on relatedness
according to SNPs. These allow users to explore and interpret
the relatedness of bacterial strains. These have provided a robust
database of bacterial species that can be used for genomic
comparisons with isolates collected from human patients. This
information can be used to help identify foodborne disease
outbreaks and support regulatory actions by the FDA.

Another major aspect of the Pathogens page is the AMR
reference gene database mentioned above (33). The tool,
AMRFinder is automatically run on all genomes submitted
to NCBI, resulting in AMR genotype outputs that identify
resistance genes from each sequence (33). This, combined with
the phylogenetic tree outputs, allows for identification and
potential prioritization of investigations into resistant outbreaks
of pathogenic organisms.

The NCBI Pathogens web portal also contains phenotypic
information, when submitters of these data choose to include
it. Over 7,000 isolates now have phenotypic MIC data
associated with them, allowing users to interrogate the data
for various resistance phenotypes, including those conferred by
mutations not tracked presently by the genotypic outputs of
AMRFinder (33).

To help make the resistance information accessible, the
US Food and Drug Administration developed a tool called
ResistomeTracker (https://www.fda.gov/animal-veterinary/
national-antimicrobial-resistance-monitoring-system/global-
salmonella-resistome-data). This suite of data dashboards
is focused exclusively on analysis and visualization of AMR
genes extracted from the complete genomes at the NCBI.
ResistomeTracker was developed for the U.S. National
Antimicrobial Resistance Monitoring System (NARMS) to
better understand the epidemiological aspects of resistance by
making the large amounts of resistome data accessible to a broad
user audience. This includes the identification of new resistance
determinants, differences in the prevalence of resistance genes
among various food commodities, and geographical spread over
time. Additionally, continuous updates to ResistomeTracker
enable users to detect early resistance threats. ResistomeTracker
allows for user-directed queries of the data that are informative
for individual interests. Because it is linked directly to the NCBI
pathogen database, it allows the user to begin a query with a
specific resistance allele, and end with a phylogenetic analysis
of related strains. It currently is focused on foodborne bacteria,
but can be modified to exploit and genome for resistance
gene content.

USING WGS IN AMR SURVEILLANCE

In the United States, national laboratory capacity for AMR
monitoring and WGS is growing. It consists of federally
coordinated networks operated by State public health
laboratories and Universities. The Centers for Disease Control
and Prevention (CDC) coordinates the Antibiotic Resistance

Laboratory Network (ARLN) to rapidly detect emerging
resistance threats in healthcare, food and the community.
Among many activities, this comprehensive network performs
WGS for numerous pathogens, including all isolates of
Mycobacterium tuberculosis. WGS is used also as a routine
method to characterize Neisseria gonorrhoeae, and other major
pathogens, including those involved in outbreaks.

The National Antimicrobial Resistance Monitoring System
(NARMS) is a long-standing program focused on bacteria
transmitted commonly through food (92). NARMS is a
partnership of the CDC, the FDA and United States Department
of Agriculture Food Safety and Inspection Service (FSIS); it is
focused on tracking resistance in enteric bacteria from humans,
retail meats and food animals, respectively. NARMS began
systematic WGS of Salmonella in 2013 and has incorporated
WGS data for Salmonella and Campylobacter in its reports
since 2014. Online tools enable users to examine resistance
trends at the genetic level using various query filters. These
tools provide graphical visualizations of the genotypes behind
changing resistance patterns over time by source and serotype.

As national resistance surveillance matures to better fit the
One Health model, animal pathogens and environmental testing
are beginning. In the US, the Department of Agriculture National
Animal Health Laboratory Network (NAHLN) and the FDA
Veterinary Laboratory Investigation and Response Network
(Vet-LIRN) are starting to gather resistance information and
WGS data on pathogens from food animals and companion
animals, respectively. The US Environmental Protection
Agency (EPA) conducts periodic water surveys that includes
detection of resistance genes. While in the early stages,
national public health surveillance programs using DNA
sequence information will continue to expand and permit
new associations to be inferred from resistomic analyses of
the data.

In Europe, its mandatory by law, Directive 2003/99/EC
(https://eur-lex.europa.eu/eli/dir/2003/99/oj) for Member States
(MSs) to monitor AMR phenotypically by MIC determination
in Salmonella, Campylobacter, and E. coli obtained from
healthy food-producing animals and from food. The monitoring
also include a specific monitoring of extended-spectrum
beta-lactamase (ESBL)-, AmpC- and carbapenemase-producing
Salmonella and indicator commensal E. coli stipulated in
the Commission Implementing Decision 2013/652/EU of 12
November 2013 (http://data.europa.eu/eli/dec_impl/2013/652/
oj). The data collection on human diseases including AMR from
MSs is optimal and based on either MIC or disk diffusion
and conducted in accordance with Decision 1082/2013/EU
(http://data.europa.eu/eli/dec/2013/1082/oj).

A number ofMSs providing data for the specificmonitoring of
AmpC- and carbapenemase-producing Salmonella and indicator
commensal E. coli from healthy food-producing animals
and from food, has expressed an interest to replace the
mandatory phenotypic MIC determination with WGS due to
this already been implemented locally in the specific MSs.
Thus, in the preparatory work of updating the Commission
Implementing Decision 2013/652/EU coming into force in
2021, the preliminary draft of the technical specifications on
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harmonized monitoring of resistance in zoonotic and indicator
bacteria from food-producing animals and food from EFSA
suggested to allow replacing MIC determination with WGS
combined with using the CGE ResFinder tool till 2025 (36). From
2025, the using of WGS combined with using the CGE ResFinder
tool will be mandatory for the specific monitoring of AmpC- and
carbapenemase-producing Salmonella and indicator commensal
E. coli from healthy food-producing animals and from food
and considered to be expended replacing all phenotypic MIC
determinations as well as species identification. The resulting
AMR determinant profile will be submitted to EFSA and
used to predict the phenotype which will be reported in the
European Union summary report on antimicrobial resistance
in zoonotic and indicator bacteria from humans, animals and
food. It will be optional for the individual MSs to also submit
the DNA sequences and metadata data to ENA. It’s believed
that all MSs by 2015 have acquired WGS and conducing
bioinformatics analysis of DNA sequences of single isolates for
monitoring purposes.

AMR SURVEILLANCE USING
METAGENOMICS

Current AMR surveillance often focuses on few pathogens
mainly based on passive reporting of phenotypic laboratory
results for a few selected specific pathogens as in the
Danish monitoring system, DANMAP https://www.danmap.
org/, leading to a narrow pathogen spectrum that does not
capture all relevant AMR genes. The majority of AMR genes may
be present in the commensal bacterial flora of healthy humans
and animals or the environment.

Metagenomics techniques, using short-read next-generation
sequencing data, benefit from the ability to quantify thousands
of especially transmissible resistance genes in a single sample
without any prior selection of which genes to look for. Moreover,
it can provide additional information about the presence of
bacterial species, pathogens and virulence genes and the data can
be re-analyzed, if novel genes of interest are identified.

It was recently shown that metagenomics is superior to
conventional methods for AMR surveillance in pig herds (93),
useful for comparing AMR across livestock in Europe (94), as well
as investigations related to epidemiological data (95). The utility
for surveillance of global AMR gene dissemination through
international flights (96) and using urban sewage to determine
the local and global resistome has also been proven (97, 98).

Metagenomics will sequence all DNA present in the sample
including food and host DNA, which may result in low
sensitivity. Quantitative PCR procedures, including large
scale capture PCR methodologies have been developed,
likely providing higher sensitivity (42). However, these
methodologies have not been compared with respect to
sensitivity and specificity.

In the future the application of metagenomics directly on
samples from healthy and clinical ill individuals and animals
as well as potential reservoir might results in the ultimate
One Health surveillance of AMR allowing determination of all

resistance genes and their context in all reservoirs. However,
as for single isolates different pipelines and databases are also
used for such metagenomics studies and there is a need for
global standardization.

PERSPECTIVES

An important advantage of using WGS technologies in detecting
and tracking AMR is the opportunity to expand it to align
with a One Health surveillance framework and allowing for
exact comparisons across reservoirs. This cannot be done
using WGS only on the phenotypic antimicrobial class level,
but at the exact genetic mechanism level. This One Health
goal has so far been impeded by the high cost of testing
animal and environmental samples using classical methods
based on metabolic and biochemical characterization. As the
NGS technology becomes more affordable, it will become
more common to use metagenomics to explore the potential
role of different environments in the ecology of resistance.
Thus, One Health monitoring is now poised to evolve into
nucleotide surveillance of complex microbial ecosystems. And
to the extent that the data can be generated and reported
without delay, it appears that something analogous to a
“weather map” of infectious diseases and resistance is possible.
This was not practicable in the past, where ad hoc gene
detection was the norm and PFGE was the typing tool
of choice.

CONCLUSION

The advancement in whole genome sequencing and the
application of online tools for real-time detection of AMR
determinants is essential for control and prevention strategies to
combat the increasing threat of AMR. We identified a number of
accessible tools available in the prediction of AMR determinants
to support expanding to establish global pathogen surveillance
and AMR tracking based on genomics. In addition, we identified
a number of preceding requirements for a successful transition
such as curated AMR databases ensuring a high concordance
between pheno- and genotypes, benchmarking designs, PT
schemes, sharing options etc. There is however, a vital need for
standardization of pipelines and databases as well as phenotypic
predictions based on the genomic data.
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