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Although the world has been fighting HIV disease in unity and patients are getting

antiretroviral therapy treatment, HIV disease continues to be a serious health issue for

some parts of the world. A large number of AIDS-related deaths and co-morbidities are

registered every year in resource-limited countries like Ethiopia. Most studies that have

assessed the progression of the disease have used models that required a continuous

response. The main objective of this study was to make use of appropriate statistical

models to analyze routinely collected HIV data and identify risk factors associated

with the progression of the CD4+ cell count of patients under ART treatment in

Debre Markos Referral Hospital, Ethiopia. In this longitudinal retrospective study, routine

data of 445 HIV patients registered for ART treatment in the Hospital were used.

As overdispersion was detected in the data, and Poisson-Gamma, Poisson-Normal,

and Poisson-Gamma-Normal models were applied to account for overdispersion and

correlation in the data. The Poisson-Gamma-Normal model with a random intercept was

selected as the best model to fit the data. The findings of the study revealed the time

on treatment, sex of patients, baseline WHO stage, and baseline CD4+ cell count as

significant factors for the progression of the CD4+ cell count.

Keywords: HIV/AIDS, CD4 count, longitudinal data, Poisson-Normal model, Poisson-Gamma-Normal model,

antiretroviral therapy (ART), Ethiopia, Debre Markos

1. INTRODUCTION

HIV disease continues to be a serious health issue for resource-limited countries like Ethiopia.
According to the UNAIDS (2016) fact sheet, there were about 2.1 million new cases of HIV in
2015 globally (1). About 36.7 million people were living with HIV around the world, and, as of June
2016, 18.2 million people living with HIVwere receivingmedicine to treat HIV, called antiretroviral
therapy (ART). An estimated 1.1 million people died from AIDS-related illnesses in 2015, and 35
million people have died from AIDS-related illnesses since the start of the epidemic. CD4+ cell
counts are the primary targets of HIV. The relentless destruction of CD4+ cell counts by HIV, either
directly or indirectly, results in the loss of HIV-specific immune responses and, finally, non-specific
immune response in the AIDS stage. The estimation of peripheral CD4+ cell counts has been
used as a tool for monitoring disease progression and the effectiveness of antiretroviral treatment
(ART) (2). The changes in the CD4+ cell counts are important indicators of the response to ART.
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Initial CD4+ cell count, age, gender, smoking, unemployment,
WHO stage, hospital, opportunistic infections, body mass index,
changing doctors during outpatient follow up, use of alcohol and
drugs, and duration of treatment (in months) are some of the
significant determinants that affect CD4+ cell count progression
of patients on ART (3–5).

Most studies conducted in the area fitted statistical models
that require (multivariate) Normal distribution by considering
CD4+ cell counts as continuous variable. When this assumption
is violated, even after transformation, considering Poisson-
related models is a natural choice. One of the common problems
one can be faced with in analyzing count data like the CD4+

cell count is overdispersion. A Negative Binomial model can be
considered to overcome this problem. Trindade et al. applied
Poisson and Negative Binomial models using the multilevel (ML)
approach and the generalized estimations equations (GEE) to
model CD4+ cell counts of 587 HIV seropositive patients, and
they stated that the best marginal model to fit the data was
the Negative Binomial (NB) with an exchangeable correlation
structure (6). Tekle et al. also employed different count data
analysis methods starting from the ordinary Poisson regression
model to study CD4+ cell counts of 222 HIV positive patients,
and they found that Poisson-Normal-Gamma is the best model
to fit their data (7). In this study, we applied various count data
models to study the progression of the CD4+ cell count of HIV
patients and identified risk factors for progression of patients’
CD4+ cell count in Debre Markos Referral Hospital, Ethiopia.

2. MATERIALS AND METHODS

In practice, it is common to have response variables of a count
type-like number of the CD4+ cell count in a cubic milliliter
of blood. Some data analysts treat the CD4+ cell count as a
continuous measure and apply the linear mixed effects model.
But that practice ignores two facts: the data are really discrete, and
the distributions of count variables are usually skewed. For these
reasons, the use of models that assume (multivariate) normality
might not be efficient (8). Even if the data is transformed
and these models are applied, the interpretation might not
be straightforward. In scenarios like this, it is better to apply
statistical models that account for the nature of the data.

Our data includes 445 HIV-positive patients who started
ART treatment between December 2005 and July 2014 in Debre
Markos Referral Hospital, Ethiopia. The minimum number of
measurements was two and the maximum was seven. Patients

TABLE 1 | Multivariate normality test.

Test Value P-value Result

Henze-Zirkler’s test 1.099 <0.0001 Data are not multivariate normal

Mardia’s test Data are not multivariate normal

Skewness (22.51) 138.842 0.0002

Kurtosis (71.24) 2.231 0.0257

Royston’s test 25.294 0.0002 Data are not multivariate normal

with less than two measurements and age of <15 years were
excluded from the study.

For our data, the assumption of multivariate normality
failed, and this suggested that use of a linear mixed model
was not appropriate (Table 1). The Poisson regression model
with normal random effects and models that account for
both correlation between repeated measures and overdispersion
simultaneously were thus considered in line with Booth et al. (9)
and Molenberghs et al. (10, 11).

2.1. Variables in the Study
2.1.1. Dependent Variable

The dependent variable of this study was the CD4+ cell count per
cubic millimeter of blood of HIV-infected patients who are under
ART treatment.

2.1.2. Independent Variables

The independent variables considered in this study were selected
based on related literature (5, 7). These include the sex of patients,
age of patients (age at the initiation of the treatment), baseline
CD4+ cell count (the CD4+ cell count of the patients at the start
of the treatment), WHO clinical stage at baseline (stage I, stage II,
stage III, and stage IV), marital status at baseline, baseline weight,
level of education at baseline, functional status at baseline, TB
status at baseline, and time in months. Functional status was
defined as WHO categories: Ambulatory and Working. Patients
who are able to perform activities of daily living but not able to
work or play are classified as ambulatory and the who are able
to perform usual work in or out of the house, harvest, go to
school or for children, normal activities, or playing were classified
as working.

2.2. Poisson Model
Let Yi be the ith CD4+ cell count and is Poisson distributed with
mean λi. The density function of Yi can then be written as

f (Yi = yi|λi) =
e−λiλ

yi
i

yi!
= exp{yi ln λi − λi − ln yi!}, (1)

The Poisson distribution belongs to the exponential family, with
natural parameter θi equal to ln λi, scale parameter φ = 1, and
variance function v(λi) = λi (12). The logarithm is the natural
link function, leading to the classical Poisson regression model
Yi ∼ Poisson(λi), with log(λi) = XT

i β .

2.3. Poisson-Gamma Model
The standard Poisson distribution requires the mean and
variance to be equal. When this assumption fails, the Poisson-
Gammamodel should be used to fit the data. Assume that Yi|θi ∼

Poi(θiλi), where θi denotes an independent and identically
distributed (iid) sample of unit mean Gamma random variables
with shape parameter α (9). Conditional on θi, the CD4 count
of the ith patient follows a Poisson distribution with mean θiλi.
The counts are then marginally independent Poisson-Gamma
random variables [Yi ∼NB(α, λi)] with mean λi and variance
λi + λ2i /α. Hence, the parameter α quantifies the amount of
overdispersion with α = ∞ corresponding to no overdispersion
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TABLE 2 | Summary of CD4+ cell count at different time points.

Time 0 6 12 18 24 30 36

n 445 372 320 283 271 279 261

Median 145 260 302 323 342 357 371

IQR (Q1, Q3) 107 (85, 192) 206.25 (177, 383.25) 201.5 (204.5, 406) 258.5 (216.5, 475) 274 (234.5, 508.5) 220.5 (261, 481.5) 209 (272, 481)

TABLE 3 | Summary of CD4+ cell count progression for some categorical covariates.

Time (in months)

Covariates Categories 0 6 12 18 24 30 36

Sex

Male n 165 131 117 100 97 106 106

Median 130.0 235.0 250.0 295.5 297.0 312.0 318.0

IQR

(Q1, Q3)

112

(62, 174)

177

(165, 342)

187

(172, 359)

255.25

(170, 425.25)

270

(181, 451)

209.5

(210.25, 419.75)

188.75

(238, 426.75)

Female n 280 241 203 183 174 173 155

Median 155.5 275.0 324.0 331.0 376.5 377.0 418.0

IQR

(Q1, Q3)

110

(92, 202)

204

(191, 395)

216

(227.5, 443.5)

258.5

(236, 494.5)

293.5

(257, 550.5)

226

(289, 515)

250.5

(301.5, 552)

WHO stage

Stage I n 59 51 41 36 38 35 36

Median 187.0 300.0 349.0 444.5 446.0 317.0 396.0

IQR

(Q1, Q3)

145.5

(131, 276.5)

283

(216.5, 499.5)

308

(243, 551)

288.25

(326.5, 614.75)

333.75

(257, 590.75)

209

(285, 494)

290.5

(323.5, 614)

Stage II n 77 65 54 52 47 48 42

Median 130.0 229.0 267.5 261.5 297.0 351.5 332.0

IQR

(Q1, Q3)

96

(83, 179)

187

(156, 343)

160.75

(189.5, 350.25)

214.25

(158.75, 373)

229.5

(175, 404.5)

193.25

(251.5, 444.75)

164.75

(245, 409.75)

Stage III n 282 235 208 175 171 173 165

Median 143.0 258.0 314.0 322.5 342.0 363.0 381.0

IQR

(Q1, Q3)

106.75

(83.25, 190)

180.75

(179.25, 360)

199

(206, 405)

268

(202.25, 470.25)

255.5

(243.5, 499)

225

(256, 481)

211.5

(262, 473.5)

Stage IV n 27 21 17 20 15 23 18

Median 114.0 319.5 246.5 343.0 380.0 361.0 434.0

IQR

(Q1, Q3)

123

(49.5, 172.5)

276

(150.75, 426.75)

200.75

(153.75, 354.50)

263

(230, 493)

376.5

(219, 595.5)

229

(257, 486)

269

(283, 552)

Functional status

Working n 346 291 256 214 210 220 211

Median 157.0 270.0 305.5 324.0 350.5 362.0 371.0

IQR

(Q1, Q3)

105.75

(97.25, 203)

199

(186, 385)

191.25

(215.75, 407)

237.75

(236.25, 474)

258.75

(257, 515.75)

199.75

(282.75, 482.5)

196

(283.5, 479.5)

Ambulatory n 99 81 64 69 61 59 50

Median 98.0 232.0 271.5 275.0 290.0 310.0 380.0

IQR

(Q1, Q3)

96

(55, 151)

232

(128, 360)

246.25

(159.75, 406)

315

(161, 476)

302

(169, 471)

253.5

(218.5, 472)

236

(245.5, 481.5)

TB status

Negative n 368 311 268 232 231 225 213

Median 150.0 266.0 306.5 329.5 342.0 357.0 371.0

IQR

(Q1, Q3)

107

(85, 192)

205

(180, 385)

203

(212, 415)

261.25

(220.75, 482)

286.5

(236, 522.5)

209

(270, 479)

190

(281, 471)

Positive n 77 61 52 51 40 54 48

Median 132.0 241.0 253.5 297.0 348.5 367.5 404.0

IQR

(Q1, Q3)

98

(84, 182)

202

(162, 364)

207.5

(162, 369.5)

214

(176, 390)

286.25

(179.5, 465.75)

242

(240.5, 482.5)

273

(250, 523)
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with respect to the Poisson distribution. The mass function of the
Poisson-Gamma random variables is given by

Pr(Yi = y;α, λi) =
Ŵ(y+ α)

Ŵ(α)y!
(

α

λi + α
)α(

λi

λi + α
)y (2)

The Poisson-Gamma model (also known as the Negative
Binomial model) is given by log(λi) = XT

i β .

2.4. Poisson-Normal Model
For µij =E(Yij|bi) and known link function η(.), the generalized
linear mixed model can be expressed as:

η(µij) = η[E(Yij|bi)] = XT
ij β + ZT

ij bi (3)

where Yij is the CD4+ cell count of the ith patient at jth visit
(measurement). β= a p-dimensional vector of unknown fixed
regression coefficients. bi = a q-dimensional vector of unknown
random regression coefficients for the ith individual, and these
are often assumed to be drawn independently from the N(0, D),
and D is the variance-covariance matrix of the random effects.
Xij and Zij are p-dimensional and q-dimensional vectors of
known covariate values, respectively (10). The generalized mixed
Poisson model with normal random effects (Poisson-Normal
model) becomes

ln(λij) = XT
ij β + ZT

ij bi (4)

This model is referred to as the Poisson-Normal model because
it assumes Poisson distribution for the counts and normal
distribution for the random effects bi (10, 11).

2.5. Poisson-Gamma-Normal Model
According to Molenberghs et al. (10, 11), a model combining
the ideas from the Poisson-Normal and overdispersion models
for repeated Poisson data with overdispersion can be specified as
follows Yij ∼ poi(θijλij)

λij = exp(XT
ij β + ZT

ij bi) (5)

where θij capture overdispersion and denote an independent
and identically distributed (iid) sample of unit mean
gamma random variables with shape parameter α and
scale parameter β=1/α, and where bi ∼ N(0,D) and
θij ∼ Gamma(α,β). This model is called the Poisson-Gamma-
Normal (combined) model because it includes both Normal (bi)
and Gamma (θij) random effects to account for correlation and
overdispersion, respectively.

2.6. Methods of Parameter Estimation
In this study, we used glmer and glmer.nb functions
in R under packages MASS and lme4. A Laplace
approximation was used to obtain parameter estimates.
The R code used to fit the models is available in
Supplementary Material.

2.7. Model Comparison
To select the important variables, first the main effect, main effect
by time interaction, and plausible main effect by main effect
interactions were incorporated to the initial candidate models,

FIGURE 2 | The overall mean profile plot of CD4 cell count.

FIGURE 1 | The individual profile plot of CD4 count.
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the non-significant interaction effects were then removed, and
the models were refitted again and so on. The best model that can
fit the data was selected using various information criteria (AIC,
BIC, and −2loglikelihood) (Table 7). The model with smallest
values of information criteria was selected as the final model.

3. RESULTS AND DISCUSSION

3.1. Descriptive Analysis
In this section, CD4+ cell count data obtained from 445 HIV
patients on ART treatment in Debre Markos Referral Hospital
were summarized. The majority of the HIV patients [347
(78.0%)] started antiretroviral treatment with CD4+ cell counts
<200 cells/mm3. At the start of the treatment, the median CD4+

cell count of the patients was 145 CD4+ cells/mm3 of blood with
IQR of 107.00 CD4+ cells/mm3 of blood. The minimum and
maximum baseline CD4+ cell counts were three and 971 CD4+

cell cells/mm3 of blood, respectively.
The summary of CD4+ cell counts at different time points

is given in Table 2. As can be seen in Table 2, the median
CD4+ cell count increased over time. The IQR of CD4+ cell
counts increased at some points and then started to decrease
after the 24th month. The number of patients decreased at some
points and increased at others, which implies the presence of
intermittent missingness in the data. That means some patients

were falling out of care and then re-engaging, or they did not have
CD4+ cell counts that were spaced perfectly every 6 months.

Data on demographic and clinical characteristics of the
patients was collected at the start of antiretroviral treatment.
Among the 445 patients, 280 (62.9%) were females. The male
patients had a 134.84 mean baseline CD4+ cell count, while the
female patients had a mean baseline CD4+ cell count of 168.91.
On average, female patients started ART treatment at a relatively
higher CD4+ cell count. The difference in mean CD4+ cell count
of the two groups increases as time increases. The average CD4+

cell count of females was higher than males at all time points and
the difference increases over time.

WHO stage III had a higher number of patients [282 (63.4%)]
as compared to the other three stages. WHO stage II took second
place in number of patients [77 (17.3%)], andWHO stage IV had
the smallest number of patients [27 (6.1%)]. As expected, patients
on WHO stage I had a higher CD4+ cell count at all time points
as compared to patients of the other three stages of the disease.

Patients with a working functional status have a higher mean
CD4+ cell count at all time points than that of patients with
ambulatory functional status. Among the 445 HIV patients
included in this study, 346 (77.8%) were patients with working
functional status and 99 (22.3%) were ambulatory (Table 3).
About 27.3% of the 445HIV patients were TB positive at baseline.
TB negative patients had a higher mean CD4+ cell count at

TABLE 4 | Poisson and Poisson-Gamma models.

Poisson Poisson-Gamma

Effect Estimate s.e P-value Estimate s.e P-value

Intercept 4.6438 0.0118 <0.0001 4.5387 0.0954 <0.0001

Time 0.0201 0.0001 <0.0001 0.0248 0.0008 <0.0001

Sex (Ref. = Male)

Female 0.1418 0.0032 <0.0001 0.1069 0.0260 <0.0001

Marital status (Ref. = Divorced)

Married 0.0632 0.0031 <0.0001 0.0110 0.0255 0.6647

Never 0.1290 0.0047 <0.0001 0.0853 0.0382 0.0256

Widowed 0.0508 0.0039 <0.0001 0.0065 0.0319 0.8398

Level of education (Ref. = Secondary)

No 0.0264 0.0033 <0.0001 0.0157 0.0267 0.5577

Primary −0.0066 0.0034 0.0544 −0.0005 0.0273 0.9857

Tertiary 0.0565 0.0046 <0.0001 0.0245 0.0386 0.5257

Functional status (Ref. = Ambulatory)

Working 0.0067 0.0033 0.0457 −0.0123 0.0263 0.6397

WHO stage (Ref. = Stage II)

Stage I 0.0281 0.0046 <0.0001 0.0204 0.0377 0.5882

Stage III 0.1125 0.0035 <0.0001 0.0989 0.0279 0.0004

Stage IV 0.0257 0.0058 <0.0001 0.0061 0.0473 0.8968

TB status (Ref. = Positive)

Negative 0.0477 0.0034 <0.0001 0.0570 0.0272 0.0364

Age −0.0038 0.0001 <0.0001 −0.0033 0.0011 0.0040

Weight 0.0036 0.0002 <0.0001 0.0021 0.0013 0.1066

Base CD4 0.0024 0.0000 <0.0001 0.0034 0.0001 <0.0001

Dispersion parameter (1/α) 4.666 0.139

AIC 145,787 27,848
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all time points compared to TB positive patients, implying the
impact of the HIV-TB coinfection.

3.2. Exploratory Data Analysis
Figure 1 depicts the individual profile plot of the CD4+ cell
count of HIV-infected patients included in the study. The plot
provides some information on the between patients’ CD4+

cell count variability and illustrates the over-time change in
patients’ CD4+ cell count. Some individuals have an erratic
CD4+ cell count and others have a CD4+ cell count that slowly
increases over time. As one can see from the graph, there is
a considerably large difference in the intercepts of individual
trajectories. Similarly, some trajectories are steeper, while others
were almost horizontal, indicating the possible variability in the
slope of CD4+ cell counts. Therefore, because of the variability
in the intercept and slope of trajectories, using a mixed model
could fit the data very well. The overall mean profile plot of
the CD4+ cell count shows somehow a linear increasing pattern
of CD4+ cell count over time (Figure 2), suggesting that a
linear time effect seems reasonable. The mean CD4+ cell count

increases at a high rate from baseline till the 6th month and then
starts to increase slowly from 6 to 24th month and decreases
at month 30.

3.3. Model Results
Table 4 summarizes the parameter estimates of Poisson and
Poisson-Gamma regression models employed on the CD4+ cell
count. All parameters included in the Poisson regression model
are significant at 5% level of significance. For this study, the
data were overdispersed, as the sample variance of CD4+ cell
count at all time points was greater than its corresponding
sample means (Table 2). A likelihood ratio (LR) test was used
to test the null hypothesis that the restriction in the Poisson
model was true. The test revealed that the null hypothesis was
rejected, implying the presence of overdispersion in our data.
The Poisson-Gamma model better fits the data as compared
to the Poisson model with smallest AIC value. The Poisson-
Normal model with both random intercept and slope was found
to be the best fit since it has smaller information criteria values
compared with the only random intercept model. The parameter

TABLE 5 | Poisson-Normal model.

Random intercept only Random intercept and slope

Effects Estimate s.e P-value Estimate s.e P-value

Intercept 4.5063 0.1637 < 0.0001 4.2967 0.1514 < 0.0001

Time 0.0211 0.0001 < 0.0001 0.0243 0.0008 < 0.0001

Sex (Ref. = Male)

Female 0.1242 0.0451 0.0060 0.0767 0.0422 0.0692

Marital status (Ref. = Divorced)

Married 0.0175 0.0443 0.6921 0.0204 0.0408 0.6165

Never 0.1004 0.0656 0.1260 0.0881 0.0607 0.1464

Widowed 0.0340 0.0554 0.5393 0.0543 0.0510 0.2876

Level of education (Ref. = Secondary)

No −0.02109 0.0463 0.6487 0.0178 0.0427 0.6768

Primary −0.0255 0.0474 0.5901 0.0164 0.0437 0.7068

Tertiary −0.0282 0.0663 0.6702 0.0099 0.0611 0.8710

Functional status (Ref. = Ambulatory)

Working −0.0036 0.0449 0.9357 0.0456 0.0415 0.2721

WHO stage (Ref. = Stage II)

Stage I 0.0361 0.0651 0.5791 −0.0092 0.0600 0.8779

Stage III 0.1194 0.0479 0.0126 0.0964 0.0442 0.0292

Stage IV −0.2138 0.0631 0.0007 −0.0666 0.0622 0.2844

TB status (Ref. = Positive)

Negative 0.0730 0.0470 0.1205 0.0671 0.0434 0.1217

Age −0.0027 0.0020 0.1726 −0.0028 0.0018 0.1224

Weight 0.0022 0.0022 0.3238 0.0031 0.0020 0.1354

Base CD4 0.0033 0.0002 < 0.0001 0.0039 0.0002 < 0.0001

AIC 71,331.7 59,073.9

BIC 71,434.5 59,188.1

logLik −35,647.8 −29,516.9

Random intercept variance 0.1289 0.1203

Random slope variance 0.0003

Cov (random effects) −0.32
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estimates of this model are displayed in Table 5. Depending
on this model time, the WHO stage and initial CD4+ cell
count were found to be significant factors of patients’ CD4+ cell
count progression.

An improvement in both the Poisson-Gamma and Poisson-
Normal models as compared with the Poisson model in fitting
the data is an indication of the occurrence of both correlation
and overdispersion in the data. The Poisson-Gamma-Normal
(Negative Binomial log-linear mixed) model proposed by Booth
et al. (9) and Molenberghs et al. (10, 11) was fitted to
overcome this problem of correlated and overdispersed count
data, and the random intercept Poisson-Gamma-Normal Model
is a much better fit because of its lower AIC (27,379.9), BIC
(27,488.4), and −2loglikelihood (27,342) values as compared
to the Poisson-Normal models (Table 6). Therefore, the final
model to fit our data was the random intercept Poisson-
Gamma-Normal model. We have also tried the Poison-Gamma-
Normal model with different (random) linear slopes for a
time, but we found that the Poison-Gamma-Normal with

random intercept was better based on information criteria
(AIC and BIC).

Based on the results obtained from the Poisson-Gamma-
Normal model, time in months, sex, and baseline CD4+ cell
count were found to be significant factors of the CD4+ cell count
of a patient (Table 8). For a given patient, keeping the random
intercept and other covariates constant, one more month on
ART increased the CD4+ cell count by a multiplicative factor of
e0.0243 = 1.0246.

A female patient had a CD4+ cell count of 1.1215 times
that of a male patient, adjusting for other covariates and
random intercept. A unit change in baseline CD4+ cell count
increased the CD4+ cell count of a patient by a factor of
1.0034, fixing the values of the other covariates and the random
intercept constant.

The dispersion parameter (1/α) has been estimated, in the
final model, as 7.7009, and the Gamma (overdispersion) random
effects are assumed to follow a Gamma distribution with unit
mean and shape parameter α (0.130).

TABLE 6 | Poisson-Gamma-Normal model.

Random intercept only Random intercept and slope

Effects Estimate s.e P-value Estimate s.e P-value

Intercept 4.4105 0.1555 < 0.0001 4.3591 0.1078 < 0.0001

Time 0.0243 0.0007 < 0.0001 0.0239 0.0010 < 0.0001

Sex (Ref. = Male)

Female 0.1147 0.0427 0.0073 0.0743 0.0295 0.0117

Marital status (Ref. = Divorced)

Married 0.0173 0.0419 0.6790 0.0183 0.0289 0.5277

Never 0.1024 0.0623 0.1001 0.0903 0.0430 0.0358

Widowed 0.0406 0.0524 0.4390 0.0424 0.0362 0.2424

Level of education (Ref. = Secondary)

No −0.0012 0.0438 0.9787 0.0256 0.0302 0.3955

Primary −0.0052 0.0449 0.9070 0.0188 0.0312 0.5475

Tertiary 0.0039 0.0630 0.9507 0.0004 0.0432 0.9928

Functional status (Ref. = Ambulatory)

Working 0.0139 0.0427 0.7456 0.0282 0.0298 0.3448

WHO stage (Ref. = Stage II)

Stage I 0.0260 0.0616 0.6726 −0.0055 0.0424 0.8976

Stage III 0.0989 0.0455 0.0299 0.0870 0.0314 0.0056

Stage IV −0.0136 0.0773 0.8607 −0.0257 0.0544 0.6364

TB status (Ref. = Positive)

Negative 0.0661 0.0446 0.1385 0.0525 0.0310 0.0898

Age −0.0027 0.0019 0.1440 −0.0028 0.0013 0.0286

Weight 0.0023 0.0021 0.2721 0.0027 0.0014 0.0612

Base CD4 0.0034 0.0002 < 0.0001 0.0039 0.0001 < 0.0001

Dispersion parameter (1/α) 7.7009 7.7009

AIC 27,379.9 27,487.7

BIC 27,488.4 27,607.6

logLik −13,671.0 −13,722.8

Random intercept variance 0.08837 0.0000

Random slope variance 0.00025

Cov (random effects) 0
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TABLE 7 | Summary of information criteria of different models.

Models

Criteria Poisson Poisson-

Normal

Poisson-

Gamma

Poisson-Gamma-

Normal

AIC 145,787 59,073.9 27,848 27,379.9

BIC 145,884 59,188.1 27,951 27,488.4

−2logLik 145,754 59,033.8 27,812 27,342

TABLE 8 | Poisson-Gamma-Normal model.

Random intercept only

Effects Estimate s.e P-value

Intercept 4.4105 0.1555 < 0.0001

Time 0.0243 0.0007 < 0.0001

Sex (Ref. = Male)

Female 0.1147 0.0427 0.0073

Marital status (Ref. = Divorced)

Married 0.0173 0.0419 0.6790

Never 0.1024 0.0623 0.1001

Widowed 0.0406 0.0524 0.4390

Level of education (Ref. = Secondary)

No −0.0012 0.0438 0.9787

Primary −0.0052 0.0449 0.9070

Tertiary 0.0039 0.0630 0.9507

Functional status (Ref. = Ambulatory)

Working 0.0139 0.0427 0.7456

WHO stage (Ref. = Stage II)

Stage I 0.0260 0.0616 0.6726

Stage III 0.0989 0.0455 0.0297

Stage IV −0.0136 0.0773 0.8607

TB status (Ref. = Positive)

Negative 0.0661 0.0446 0.1385

Age −0.0027 0.0019 0.1440

Weight 0.0023 0.0021 0.2721

Base CD4 0.0034 0.0002 < 0.0001

Dispersion parameter (1/α) 7.7009

Random intercept variance 0.08837

3.4. Discussion
The effects of demographic and clinical factors on the progression
of CD4+ cell counts over time of HIV patients taking ART
treatment in Debre Markos Referral Hospital were assessed
using Poisson longitudinal models since the response variable of
interest CD4+ cell count is a count variable.

The results of the summary statistics revealed that the value of
IQR is high at all time points, which might be an indication for
high variation among the patients’ CD4+ cell count at baseline
as well as at different time points after the initiation of ART
treatment. This variation might have been caused by the year
at which the patients started ART treatment, as there have
been different WHO’s CD4+ cell count cut-off points to initiate
ART treatment at different times. Although most of the patients

included in our study started with lower CD4+ cell counts (<200
cells/mm3), there were patients who had higher baseline CD4+

cell counts (971 cells/mm3). Despite the continuous effort to
initiate early, some patients still presented with lower CD4+ cell
counts, which might be due to patients’ lack of willingness to
get tested (13, 14) or difficulties to provide treatments to all
patients in lower-income countries including Ethiopia. Hence,
we believe that our result could be generalizable. The final model
also indicated that initial CD4+ cell count (CD4+ cell count
at the start of the treatment) significantly affects CD4 count
progression. Therefore, based on our findings we recommend
patients to start the treatment early as of the WHO’s “treat
all” recommendation.

The sign of the parameter estimate of WHO stage III is
positive, which implies that a patient with WHO stage III has
a higher CD4+ cell count as compared with a patient of WHO
stage II. It might be because the number of patients with WHO
stage III are much higher (non-comparable) than patients with
WHO stage II. The relationship between CD4+ cell count and
WHO stage III might also be explained by the baseline CD4+

cell count. Duration of treatment also have a positive effect on
the CD4+ cell count progression of HIV patients. This means
patients with longer time on ART treatment have good recovery
of CD4+ cell count than that of patients with short duration on
the treatment.

4. CONCLUSION

An analysis of CD4+ cell count data using conventional models
like linear mixed models might be inadequate as the data were
highly skewed and may not satisfy normality (multivariate)
assumption as demonstrated in our data.

In this study, CD4+ cell count data of 445 HIV patients under
ART in Debre Markos Referral Hospital was analyzed using
different longitudinal count models, and the Poisson-Gamma-
Normal model was selected as the final model to fit the data based
on different selection criteria. The Poisson-Gamma-Normal
model handles overdispersion and correlation simultaneously.

The duration on ART treatment (time in months), sex of
patients, and baseline CD4+ cell count were all identified as
potential risk factors of CD4+ cell count progression. Having a
good CD4+ cell count at baseline had a positive impact on CD4+

cell count evolution over time.
Although good CD4+ cell count progress in response to ART

was observed, most of the patients (78.0%) were at decreased
CD4+ cell counts (<200 cells/mm3) when enrolled for ART
treatment, which might have contributed to low CD4+ count
recovery in some patients.

5. LIMITATIONS AND RECOMMENDATION

In our study, we only considered patients from one hospital.
The likelihood inference of the models considered in this study
are valid under MCAR (missing completely at random). In the
current study, we did not carry out a sensitivity analysis, and
we only considered linear slopes models, although a different
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linear slope for different time periods seems reasonable. Hence,
we recommend that researchers consider sensitivity analysis and
data obtained from different Hospitals. The age and weight of
patients might have a non-linear relationship with the CD4+

cell count. We recommend smoothing techniques like splines to
be explored for further studies. The assumption of multivariate
normality that is assumed by most statistical models used in
longitudinal data analysis should be checked before analysis.
Efficient methods like the ones used in this study could be
considered if the assumption is violated.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

Before data collection, a letter of support written by the Statistics
Department of Addis Ababa University was submitted to Debre
Markos Hospital and permission to collect anonymized data was
obtained. The data was extracted by trained data clerks in the
ART Clinic and none of the researchers had access to original
cards of patients. Written informed consent for participation

was not required for this study in accordance with the national
legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

BAn conceived the idea, performed the data cleaning and
analysis, interpreted the ensuing results, and drafted the
manuscript. BAy supervised the study, contributed to the
conception, and revised the manuscript. Both the authors read
and approved the final draft.

ACKNOWLEDGMENTS

We acknowledge the ART case unit information center of
Debre Markos Referral Hospital, Ethiopia for the data they
supplied. The manuscript was prepared on the basis of my
Masters’ thesis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpubh.
2019.00415/full#supplementary-material

R codes used to fit the models are attached as
supplemental data.

REFERENCES

1. UNAIDS. Global AIDS Update (2016). Available online at: www.unaids.

org/en/resources/documents/2016/Global-AIDS-update-2016 (accessed

December 10, 2018).

2. WHO. Laboratory Guidelines for Enumerating CD4 T Lymphocytes in the

Context of HIV/AIDS (2007). Available online at: www.who.int/hiv/amds/

LaboratoryGuideEnumeratingCD4TLymphocytes.pdf (accessed December

11, 2018).

3. Montarroyos UR, Miranda-Filho DB, César CC, Souza WV, Lacerda HR,

Albuquerque MFPM, et al. Factors related to changes in CD4+ T-cell counts

over time in patients living with HIV/AIDS: a multilevel analysis. PLoS ONE.

(2014) 9:e0084276. doi: 10.1371/journal.pone.0084276

4. Grover G, Vajala R, Swain PK. On the assessment of various factors affecting

the improvement in CD4 count of AIDS patients undergoing antiretroviral

therapy using generalized Poisson regression. J Appl Stat. (2015) 42:1291–305.

doi: 10.1080/02664763.2014.999649

5. Seyoum A, Ndlovu P, Zewotir T. Quasi-Poisson versus negative binomial

regression models in identifying factors affecting initial CD4 cell count

change due to antiretroviral therapy administered to HIV-positive adults

in North–West Ethiopia (Amhara region). AIDS Res Ther. (2016) 13:36.

doi: 10.1186/s12981-016-0119-6

6. Trindade, Ospina, Amorim. Choosing the right strategy to model longitudinal

count data in epidemiology: an application with CD4 cell counts. Epidemiol

Biostat Public Health. (2015) 12:11520. doi: 10.2427/11520

7. Tekle G, Kassahun W, Gurmessa A. Statistical analysis of CD4+ cell counts

progression of HIV-1-positive atients enrolled in antiretroviral therapy

at Hossana District Queen Elleni Mohamad Memorial Hospital, South

Ethiopia. Biometr Biostat Int J. (2016) 3:17–25. doi: 10.15406/bbij.2016.03.

00057

8. Allison PD. Fixed Effects Regression Methods for Longitudinal Data Using SAS.

Cary, NC: SAS Institute Inc. (2005).

9. Booth JG, Casella G, Friedl H, Hobert JP. Negative binomial loglinear mixed

models. Stat Modell. (2003) 3:179–91. doi: 10.1191/1471082X03st058oa

10. Molenberghs G, Verbeke G, Demétrio CGB. An extended random-effects

approach tomodeling repeated, over dispersed count data. LifetimeData Anal.

(2007) 13:513–31. doi: 10.1007/s10985-007-9064-y

11. Molenberghs G, Verbeke G, Demétrio CGB, Vieira AMC. A family of

generalized linear models for repeated measures with normal and conjugate

random effects. Stat Sci. (2010) 25:325–47. doi: 10.1214/10-STS328

12. Molenberghs G, Verbeke G.Models for Discrete Longitudinal Data. New York,

NY: Springer Science+Business Media, Inc (2005).

13. Fanta W, Worku A. Determinants for refusal of HIV testing among women

attending for antenatal care in Gambella Region, Ethiopia. Reprod Health.

(2012) 9:8. doi: 10.1186/1742-4755-9-8

14. Ahmed S, Autreya J, Katz IT, Fox MP, Rosen S, Onoyac D, et al. Why

do people living with HIV not initiate treatment? A systematic review of

qualitative evidence from low- and middle income countries. Soc Sci Med.

(2018) 213:72–84. doi: 10.1016/j.socscimed.2018.05.048

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Andualem and Ayele. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Public Health | www.frontiersin.org 9 February 2020 | Volume 7 | Article 415

https://www.frontiersin.org/articles/10.3389/fpubh.2019.00415/full#supplementary-material
www.unaids.org/en/resources/documents/2016/Global-AIDS-update-2016
www.unaids.org/en/resources/documents/2016/Global-AIDS-update-2016
www.who.int/hiv/amds/LaboratoryGuideEnumeratingCD4TLymphocytes.pdf
www.who.int/hiv/amds/LaboratoryGuideEnumeratingCD4TLymphocytes.pdf
https://doi.org/10.1371/journal.pone.0084276
https://doi.org/10.1080/02664763.2014.999649
https://doi.org/10.1186/s12981-016-0119-6
https://doi.org/10.2427/11520
https://doi.org/10.15406/bbij.2016.03.00057
https://doi.org/10.1191/1471082X03st058oa
https://doi.org/10.1007/s10985-007-9064-y
https://doi.org/10.1214/10-STS328
https://doi.org/10.1186/1742-4755-9-8
https://doi.org/10.1016/j.socscimed.2018.05.048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	Progression of HIV Disease Among Patients on ART in Ethiopia: Application of Longitudinal Count Models
	1. Introduction
	2. Materials and Methods
	2.1. Variables in the Study
	2.1.1. Dependent Variable
	2.1.2. Independent Variables

	2.2. Poisson Model
	2.3. Poisson-Gamma Model
	2.4. Poisson-Normal Model
	2.5. Poisson-Gamma-Normal Model
	2.6. Methods of Parameter Estimation
	2.7. Model Comparison

	3. Results and Discussion
	3.1. Descriptive Analysis
	3.2. Exploratory Data Analysis
	3.3. Model Results
	3.4. Discussion

	4. Conclusion
	5. Limitations and Recommendation
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


