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Background: Observational studies showed that educational attainment (EA) is

associated with cardiometabolic diseases, but the long interval between exposure and

outcome makes it difficult to infer causality. We herein used Mendelian randomization

(MR) to examine the causal effects of EA on adiposity, type 2 diabetes (T2D), and coronary

artery disease (CAD).

Methods: A two-sample MR analysis was conducted using genome-wide association

study (GWAS) summary statistics. Seventy-four instrumental variables (IVs) were used to

determine the causal effect of EA on cardiometabolic diseases. Sensitivity analyses were

also performed to detect the pleiotropy of the IVs.

Results: Using the MR approach, we found that each additional year in EA is associated

with a reduction in the body mass index (BMI) (β −0.17 [95% CI −0.23, −0.10],

P = 8.85 × 10−7), a 39% reduction in the odds of having T2D (OR 0.61 [95% CI 0.50,

0.75], P = 1.16 × 10−6), and a 36% reduction in the odds of having CAD (OR 0.64 [95%

CI 0.55, 0.75], P = 2.38 × 10−8) at the Bonferroni-adjusted level of significance.

Conclusion: Our findings suggest a causal role of EA on the cardiometabolic diseases

including adiposity, T2D, and CAD.

Keywords: Mendelian randomization, educational attainment, adiposity, type 2 diabetes, coronary artery disease

INTRODUCTION

Observational studies have consistently showed that socioeconomic status such as low
education is associated with an increased risk of cardiovascular disease (CVD) and
mortality (1–4), but disentangling causality is challenging due to the long interval between
exposure and outcome. Mendelian randomization (MR) analysis may help to clarify
the relationship (5), which utilizes genetic variants as the unconfounded proxies for
an exposure of interest and leverages the random assortment of alleles at the time
of conception to overcome limitations inherent in observational studies, thus improving
causal inferences. The MR method has been widely used in a range of biological and
behavioral exposures, but very few in socioeconomic exposure. Two MR analyses revealed
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the causal role of educational attainment (EA) on myopia (6)
and obesity (7), but both using relatively small sample size.
A recent MR study indicated a causal association between
low EA and increased risk of smoking, which might explain
the observational associations between EA and adverse health
outcomes such as coronary artery disease (CAD) (8). Relatedly,
a well-designed MR study found that additional education was
causally associated with a decreased risk of CAD, and proposed
that smoking, body mass index (BMI), and blood lipids might
be the potential mechanisms, but no causal effect was found on
type 2 diabetes (T2D) (9). The recent findings in an MR study
suggested that a large part of the protective effect of education on
CVDwasmediated by BMI, systolic blood pressure, and smoking
behavior (10).

In this study, in order to determine the causal effect of EA on
adiposity, T2D, and CAD, we used a two-sample MR approach
obtaining publicly available summary statistics from genome-
wide association studies (GWAS) of EA (11) and the outcomes
(12–14). We also tested the robustness of our findings across a
range of MR methods as sensitivity analyses.

METHODS

Study Design
We performed two-sample MR studies based on the publicly
available summary-level data from GWASs to determine the
causal relationship between EA and BMI, T2D, and CAD. The
genetic instrumental variables (IVs) applied in the MR analysis
must satisfy the following three assumptions (15): (1) the genetic
variants used as IVs must be associated with EA, (2) the genetic
variants must not be associated with any confounders, and (3)
the genetic variants must influence BMI, T2D, and CAD only
through EA but not through any direct or alternative pathways.

IV Selection and Data Sources
Summary statistics of EA associated single nucleotide
polymorphisms (SNPs) were extracted from a GWAS
incorporating 293,723 individuals of European descent, and a
replication cohort of 111,349 individuals from the UK Biobank
(11). Throughout all analyses, we defined education in the same
way as in the original GWAS analysis, in which data from 65
studies were harmonized against the International Standard
Classification of Education 1997 classification system (11). A
total of 74 SNPs were reported as being associated with EA at the
genome-wide significance level (P < 5 × 10−8) (11). To ensure
that all the IVs are not in linkage disequilibrium (LD) with each
other, we assessed correlation LD between all the selected SNPs
in the European subset of 1,000 Genomes (phase 3) via LDlink
(16). When the correlation coefficient between SNPs was high
(r2 > 0.05), we discarded the SNP with the larger P value (17). A
total of six SNPs (rs13402908, rs4500960, rs4851251, rs2245901,
rs148734725, and rs324886) were removed after LD assessment
and 68 SNPs were left as IVs for further analysis.

Summary-level data were extracted from the Genetic
Investigation of ANthropometric Traits (GIANT) consortium
(n = 322,154) for the BMI (12), from the Diabetes Genetics
Replication and Meta-analysis (DIAGRAM) consortium

(n= 159,208) for T2D (13), and from the Coronary Artery
Disease Genome-wide Replication and Meta-analysis
(CARDIoGRAM) plus the Coronary Artery Disease (C4D)
Genetics (CARDIoGRAMplusC4D) consortium (n = 184,305)
for CAD (14). The BMI (measured or self-reported weight in
kilogram per height in meters squared), a measure commonly
used to assess adiposity, was adjusted for age, age squared, and
any necessary study-specific covariates in a linear regression
model (12). Case subjects with T2D were diagnosed according
to the 1999 World Health Organization criteria of fasting
plasma glucose concentration ≥ 7.0 mmol/L or 2-h plasma
glucose concentration ≥ 11.1 mmol/L, by a report of diabetes
medication use, or based on medical record review (18). CAD
was determined with a broad definition including myocardial
infarction, acute coronary syndrome, chronic stable angina,
or coronary artery stenosis > 50% (14). When target SNPs
were not available in the outcome study, we used proxy SNPs
that were in high LD (r2 > 0.8) with the SNPs of interest.
Two variants (rs1871109 and rs1606974) were discarded in
the analyses for T2D and CAD as no suitable proxy SNP was
found (Supplementary Table 1), and another 10 (rs10061788,
rs112634398, rs12646808, rs12772375, rs165633, rs17824247,
rs2610986, rs35761247, rs62259535, and rs8005528) were
removed in the analysis for adiposity (Supplementary Table 2).

Ethical review and informed consent had been obtained in all
of the original studies.

Statistical Analysis
The estimates of the causal effect of EA on the outcomes were
analyzed using the inverse variance–weighted (IVW) method,
median-based method, and MR-Egger for multiple genetic
variants. The IVW method was used to provide a combined
estimate of the causal estimate from each SNP (19). Median-
based methods, including the simple median-based method and
the weighted median-based method, have greater robustness
to individual genetics with strongly outlying causal estimates
compared with IVW and MR-Egger methods, which give a
consistent estimate of the causal effect when at least 50% of the
genetic variants are valid IVs (20). The MR-Egger regression test
was used to evaluate the directional pleiotropy and investigate the
null causal hypothesis under the InSIDE (Instrument Strength
Independent of Direct Effect) assumption (15). In this study, the
MR-Egger regression (15) and the Cochran’sQ test (21) were used
as sensitivity analyses to investigate the presence of pleiotropy.
All statistical analyses were performed using R v3.5.3 (the R
Foundation) and the related package (Mendelian Randomization)
(22). The Bonferroni-adjusted level of statistical significance for
the BMI, T2D, and CAD was P < 0.017 (0.05/3 = 0.017) to
account for three tests.

RESULTS

Education and BMI
A total of 56 IVs were used in the MR analysis after LD
assessment and data availability check. Standard IVW MR
analysis showed that 1 year longer education was associated with
a reduction in the BMI (β −0.17 [95% CI −0.23, −0.10], P =
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8.85× 10−7) at the Bonferroni adjusted level of significance (P <

0.017; Table 1). The intercept term estimated for the BMI from
MR-Egger regression did not differ from 0 (intercept estimate
−0.003, 95% CI −0.001 to 0.004, P = 0.34), suggesting that
individual SNP heterogeneity was largely balanced (Table 1).

Furthermore, the simple median–based method and the
weighted median–based method were also used to estimate the
causal effect of EA on the BMI and further proved the significant
effects on adiposity, supporting the robustness of our findings
(Table 1).

Education and T2D
The IVW method using the 66 IVs demonstrated a causal
effect of EA on T2D, with 1-year increase in EA causing a
39% reduction in the odds of having T2D (OR 0.61 [95% CI
0.50, 0.75], P = 1.16 × 10−6) (Figure 1). There was moderate
evidence of heterogeneity to suggest the presence of horizontal
pleiotropy, with a Cochran’s Q test P-value of 3.92 × 10−7. MR-
Egger regression analysis did not provide evidence of directional
horizontal pleiotropy (intercept estimate−0.014, 95% CI−0.032
to 0.003, P = 0.11) (Table 1). The sensitivity analyses using the
simple median–based method and the weighted median–based
method also demonstrated similar causal effects, with additional
EA associated with the reduction in the odds of having T2D (β
−0.76 [95%CI−1.08,−0.44], P= 2.89× 10−6 and β−0.67 [95%
CI−0.99,−0.36], P = 2.99× 10−5, respectively) (Table 1).

Education and CAD
Similarly, the IVW MR result showed that each additional year
in EA was associated with a 36% reduction in the odds of having
CAD (OR 0.64 [95% CI 0.55, 0.75], P = 2.38× 10−8) (Figure 1).
The intercept term estimated from MR-Egger regression was
centered at the origin with a CI including the null, showing that
the observed results were not influenced by pleiotropy (Table 1).
The simple median–based method and the weighted median–
based method both showed consistent results with that of the
IVWmethod (Table 1).

DISCUSSION

In the use of MR analysis, we found that longer EA was causally
associated with the decreased odds of having cardiometabolic
diseases, which is consistent with the traditional observational
studies showing that socioeconomic status was associated with
obesity, T2D, CVD, and even life expectancy (4, 23–27).

The MR method has been widely adopted to assess the
causality. In the current study, we selected the commonly used
education-associated SNPs as IVs and only kept the independent
SNPs after LD pruning. The MR-Egger regression results showed
that our findings were not being influenced by pleiotropy.
Our findings may provide additional evidence for the causal
role of EA on adiposity, T2D, and CAD since the influence
of traditional confounding factors in observational studies is
minimized. Limited evidence of MR analysis on education has
been reported, especially for cardiometabolic diseases. An MR
study showed a negative causal effect of education on the BMI
using the same IVs as in our study; however, the sample size is too T
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FIGURE 1 | MR estimated effects of EA on T2D and CAD. OR, odds ratio; 95% CI, 95% confidence interval.

small (N = 2,011) (7). The recent findings used the MR method
to demonstrate a strong inverse genetic correlation between EA
and CAD risk, as well as the BMI, smoking, and blood pressure,
but not T2D (9, 10), while our current study used the widely
accepted IVs for EA and the updated summary data from GWAS
reports to demonstrate the causal effect of EA on the BMI and
CAD, and also revealed its significant association with T2D (P
= 1.16 × 10−6). In addition, the sensitivity analyses, including
IVW the method, the simple median–based method, and the
weighted median–based method, all showed consistent causal
effects, supporting the robustness of our findings.

Even for a behavioral phenotype like EA that is mostly
environmentally determined, a well-powered GWAS
identifies replicable associated genetic variants that suggest
biologically relevant pathways. The IVs used in the study are
disproportionately found in genomic regions regulating gene
expression in the fetal brain, and the candidate genes are
preferentially expressed in neural tissue, especially during the
prenatal period, and enriched for biological pathways involved
in neural development (11). Because EA is measured in large
numbers of individuals, it will be useful as a proxy phenotype
in efforts to characterize the genetic influences of related
phenotypes, including cognition and neuropsychiatric disease.
Moreover, cognition and brain function have been reported to
be associated with cardiometabolic diseases (28–30).

Our study has several important strengths. First, the causal
effect revealed by the MR method will not be influenced by
the confounding factors, which is a major limitation of the
observational studies. Second, using the large and updated
GWAS summary data, our study could have sufficient power to
assess the potential causal effects.

There are also some limitations in our study. First, the
causal associations between EA and adiposity, T2D, and CAD
were consistent in IVW and median-based methods, but the
result from MR-Egger was less compelling, suggesting that IVW
estimates may be biased by other confounding factors. However,
we note that MR-Egger is generally considered as only one of the
sensitivity analyses used to assess the validity of MR findings (20).
Second, majority of the samples in our study were of European
origin fromhigh income countries, whichwould bring bias due to
population stratification; we still need further evidence to assess
the relationship in additional countries with different economic
status and across additional ancestral backgrounds. Third, it is

hard to reach the conclusion that simply increasing education
would help people lower their risk of cardiovascular diseases,
since little is known about the underlying mechanism of the
genetic effects.

In conclusion, our MR results demonstrated the causal
effect of longer education on the decreased odds of having
cardiometabolic diseases. However, the findings may need
further replications in other large, prospective studies.
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