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To better estimate the travel time to the most proximate health care facility (HCF) and

determine differences across heterogeneous land coverage types, this study explored

the use of a novel cloud-based geospatial modeling approach. Geospatial data of

145,134 cities and villages and 8,067 HCF were gathered with land coverage types,

roads and river networks, and digital elevation data to produce high-resolution (30m)

estimates of travel time to HCFs across Peru. This study estimated important variations

in travel time to HCFs between urban and rural settings and major land coverage types

in Peru. The median travel time to primary, secondary, and tertiary HCFs was 1.9-,

2.3-, and 2.2-fold higher in rural than urban settings, respectively. This study provides

a new methodology to estimate the travel time to HCFs as a tool to enhance the

understanding and characterization of the profiles of accessibility to HCFs in low- and

middle-income countries.

Keywords: travel time, geographic accessibility, health care accesibility, spatial analysis, inequality, healthcare

delivery

INTRODUCTION

Despite growing consensus to combat inequalities in accessibility to health care around the world,
large disparities in health care accessibility remain a problem in countries with an ongoing
rural-to-urban transition. According to the “Tracking Universal Health Coverage: 2017 Global
Monitoring Report,” half of the worldwide population lacks essential health services (1). To
overcome the disadvantage of marginalized populations, the international community through the
United Nations (UN) has stated 17 Sustainable Development Goals (SDG) that are being targeted
by 2030 (2). From these goals, the interface between goal 3— “Good health and well-being” and
goal 10— “Reduced inequalities” plays an important role to foster and couple endeavors toward
ensured access to health care services.

Health care access focuses on multiple domains such as the provision of health care facilities,
supply chain, quality and effective services, human resources, and on the demand side, health-
seeking behaviors (3–5). All these characteristics point to the ability of a population to receive
appropriate, affordable, and quality medical care when needed (6). In accordance with Tudor’s
inverse health care law (7), the most common factors that prevent access to health care in rural
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and high poverty areas are geographical accessibility, availability
of the right type of care, financial accessibility, and acceptability
of service (4, 8). This study focuses on the travel time to health
facilities as an important component of the geographical (or
physical) accessibility to health care.

Several studies in developing countries report that
geographical accessibility is the main factor that prevents
the use of primary health care access (6, 8–12) and not only
conditions the ability of the population for health-seeking but
also the capacity of the health system to implement prevention
and control strategies with adequate coverage. However,
fewer studies have explored the heterogeneity in geographical
accessibility across areas with contrasting land coverage (13, 14),
i.e., the marked variation in the topography and environment
conditions overlapped with different transport facilities between
rural and urban areas that may influence the geographical
accessibility across these areas. The geographical accessibility
to health services and health care facilities (HCF) has a direct
impact on health outcomes since it determines the timeliness
of the response to patients that seek care, community-based
campaigns (i.e., vaccination, iron supplements to combat
anemia, etc.), or the delivery of first response to accidents or
natural disasters.

Previous studies highlighted the importance of geographical
or physical accessibility using a variety of methods (14–17). The
emergence of “Precision Public Health” driven by estimates of
a wide range of health indicators at a high spatial resolution
is defined as the use of the best available data to target more
effectively and efficiently interventions of all kinds to those
most in need (18–21). This approach may be favorable since
traditionally government reports aggregate data at administrative
units, in a way that obscures the prioritization of resources. A
recent study used a precision public health approach to estimate
the geographical accessibility to major cities (22), and recently
for estimating the geographical accessibility to health facilities in
developing countries (23).

This study sought to estimate the travel time to the most
proximate health facility in rural and urban areas across
heterogeneous land coverage types in Peru as a means to help
resource prioritization, disease surveillance, as well as prevention
and control strategies. Multiple sources of geospatial data were
fitted with a novel cloud-based geospatial modeling approach
(22), using the Google Earth Engine platform, to produce high-
resolution (30m) estimates of travel time to the most proximate
health facility across the country. These estimates were then
compared between urban and rural settings and across 16 major
land coverage types in Peru.

METHODS

Study Design
This is an ecological study using the Peruvian registry of
villages and health facilities to model the travel time required
for individuals in each village to reach the most proximate
health facility (shortest travel time) in a two-step process. First,
a friction surface was computed. Several geospatial datasets
(land coverage types, boundaries of restricted areas, roads

infrastructure, navigable river networks, and topography) were
used to construct a surface (i.e., raster or grid), as it was
constructed in previous studies (22, 24, 25), of a given spatial
resolution (i.e., 30m per pixel) where the value of each pixel
(or cell) contains the time required to travel one meter in that
given area. Secondly, this friction surface and the geolocation
of the health facilities were used to infer the travel time to
the most proximate (shortest travel time) health facility using a
cumulative cost function. The shortest travel time was computed
based on the speed at which a person can move through different
types of land cover and infrastructure, using different types of
transportation (i.e., road infrastructure uses motorized vehicles
as default and land cover types uses walking speeds as default)
(Supplementary Information 1). As a result, the travel time
estimate for the most proximate health facility was computed for
the entire country at a 500-m spatial resolution. The computed
values were summarized per district, province, or department;
by urban/rural areas; and across 16 major land coverage types
defined by the Ministry of Environment (MEnv).

Study Area
This study was conducted using nationwide data from Peru,
located on the Pacific coast of South America. Peru encompasses
an area of 1,285,216 km2 and 32,162,184 inhabitants divided in
25 departments and 1,722 districts. Major ecological areas in
the country are divided into the coast, highlands, and jungle
(Figure 1A); however, this study explores a higher granularity of
ecological areas with more than 60 unique land coverage areas
(Supplementary Information 2) that were officially classified in
Peru. This classification was based on ecological, topographic,
and climate characteristics that in turn are important for the
calculation of travel time since each land cover type requires a
different displacement effort.

Data Sources
The datasets were divided according to their use in the
construction of the friction surface and the travel time map.

Increase Indentation of Friction Surface
Construction
The land coverage types were used from MODIS MCD12Q1
Land Cover type 1 product from 2017 (26). The MODIS
collection includes 17 land coverage types including urban and
rural areas inferred by the spectral signature of the satellite
images at 500-m spatial resolution. The boundaries of the
national protected natural areas were included using vector data
provided by the MEnv from 2014. The road infrastructure in all
districts were provided in vector format by the PeruvianMinistry
of Transportation (MTrans), and the navigable river network was
derived from the HydroSHEDS Flow Accumulation dataset (27),
from the year 2000 at 15 Arc-Seconds spatial resolution (∼455m
at a latitude of−10◦). The navigable rivers were defined as rivers
that have a discharge > 125 cubic meters and were filtered in
Google Earth Engine (GEE) (28) using the function ee.Image.gt.
Permanent water bodies i.e., lakes and lagoons are included in the
land cover dataset, a full list of categories of the land cover and
the other datasets, as well as associated speed and transportation
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FIGURE 1 | Study area. (A) Land coverage and major ecological areas (Coast, Andes, and Jungle) in Peru. Solid black lines represent the 25 Departments

(administrative level 1). (B) Spatial location of primary, secondary, and tertiary health care facilities (HCF). (C) Spatial location of villages and cities. Maps were

produced using QGIS, and the base map was derived from satellite images from MODIS MCD12Q1 product.

mode can be found in the Supplementary Information 1. The
estimates of the friction surface (minutes required to travel
1m) were created using the land cover, road infrastructure,
and navigable rivers datasets and adjusted by the elevation and
slope of the terrain. This means that the travel time required to
cross an area will be proportionally dependent on the elevation
and slope of the terrain. The elevation data for each area was
derived from the SRTM Digital Elevation Data (29) produced
by NASA from 2000 at 30m spatial resolution and the slope
at each pixel was calculated from it using the ee.Terrain.slope
function in GEE. In addition, the national protected natural areas
were used to penalize the speed of the land cover datasets to
avoid the algorithm going into these areas but also addressing
the possibility of persons traveling from those areas to a health
facility, as many of them are inhabited by local populations.

Increase Indentation of Travel Time
Estimation
This analysis was conducted only for HCFs of the Ministry
of Health (MH) or Regional Governments (RG) that together
comprises the public regime of health welfare in Peru. The health
care system in Peru was described elsewhere (30); overall it is
a complex system with overlapping providers of services and
insurance. The HCF from the MH and RG provides health
services for 60% of the population; however, in rural areas, they
are the only health care providers. The geo-localization of these
HCFs was obtained from the national registry of health care
facilities (RENAES in Spanish, updated up to 2017) (Figure 1B)
and used as target locations for the cumulative cost function.
The MH organizes the HCF in three categories according to
the complexity of services they provide (from primary health
care to specialized hospitals). Primary HCF includes basic health
facilities with no laboratory, the secondary HCF includes health

facilities with laboratory (including maternities), and the tertiary
HCF includes hospitals and higher complexity services. Finally,
travel time estimates were extracted for each city and village
(Figure 1C). The most updated geo-localization of villages was
provided by the Ministry of Education (MEd) in a recent census
of cities and villages and education facilities (updated up to 2018).

Data Analysis
Friction Surface Construction
The estimation of travel time was conducted in Google Earth
Engine (GEE) (28). A grid surface was constructed using the
information about land coverage, road infrastructure, and river
network. All datasets were converted into aligned grids with a
30-meter resolution, raster datasets were reclassified changing
the values of the categories with the corresponding values
of speed (Supplementary Information 1) using the function
ee.Image.remap in GEE, and vector datasets were converted
into rasters using the ee.Image(0).byte().paint() function. Each
dataset contained information on the speed of movement in
each feature. All the layers were then combined in a single
ImageCollection object in GEE and reduced to an Image, with
the fastest mode of movement taking precedence (km h−1), i.e.,
using the ee.ImageCollection.max() function. The speed assigned
for each category of land cover was obtained from elsewhere
(22), and the speed for road infrastructure was obtained from
the MTrans. A data transformation was conducted, so each
pixel within the 2D grid contained the cost (time) to move
through the area encompassed in the pixel (the grid surface
previously contained speed values in km h−1), herein referred
to as “friction surface.” The elevation and slope adjustments
were carried out using the Elevation adjustment factor and the
Slope adjustment factor (based on Tobler’s Hiking Function)
(Equations 1 and 2) (31), respectively, as used in Weiss, et. al.
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[22). The speed was penalized (reduced) in urban and national
protected areas to account for vehicular traffic and restricted
displacement, respectively.

Elevation adjustment factor = 1.016e−0.0001072 x elevation (1)

Slope adjustment factor = 6e
−

3.5
tan(0.01745 x slope angle)+0.05 /5 (2)

The friction surface combines different types of land cover, road
infrastructure, and river networks; therefore, the travel speeds
(and cost time) while moving in them correspond to different
kinds of transportation (i.e., walking, motorized, boat). The travel
scenario for each of the datasets used in the friction surface are
listed and described in Supplementary Information 1 and the
GEE code for the construction of the friction surface is available
in Supplementary Information 3.

Travel Time Estimation
To calculate the travel time from the villages to the most
proximate health facility, the ee.Image.cumulativeCost
(cumulative cost) function was used in GEE to generate the
accessibility map. The cumulative cost function is a least-
cost-path algorithm; briefly, all possible paths were analyzed
iteratively and the weighted cost (in this case, weighted by time)
was then minimized. The minimum travel time to the most
proximate health facility was computed for each pixel in the
grid at a 500-m resolution (Supplementary Information 3). To
average the travel time at the district level, values were truncated
between the 5% and 95% percentile range to avoid extreme
values. Since a health facility could be located in the 30 m2

corresponding to the pixel spatial resolution of the estimates, a
baseline 10-min travel time was considered. The analysis was
carried out for each HCF category. After GEE processing, all data
outputs were imported and analyzed using R software v.4.0.2 [R
Core Team (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. URL https://www.R-project.org].

The computed travel time was then summarized per district,
province, or department; by urban/rural areas; and across 16
major land coverage types defined by the MEnv. Urban/rural
status was defined based on the MODIS land coverage
satellite images (described previously in 2.3 Data Sources).
To better detail, the large diversity of land coverage types
in Peru, a shortlist of 16 eco-regions provided by the MEnv
(Supplementary Information 2) was used to summarize the
travel time in these areas.

Socio-Economic and Epidemiological Metrics
We explored the trends of travel time to HCF in relation to four
socio-economic and epidemiological metrics at the district-level
(n = 1,874). First, the proportion of the population with at least
one unsatisfied basic needs (UBN)—a multidimensional poverty
measurement developed by the United Nation’s Economic
Commission for Latin America and the Caribbean (ECLAC).
The proportion of the population with at least one UBN was
provided by the Ministry of Economy (MEco) and was based on

the following indicators: (1) dwelling, (2) sewerage, (3) education,
and (4) income. Second, the poverty proportion was provided
by the MEco following the small-area estimation methodology
(32, 33). Third, the pneumonia fatality rate per 100 cases in
children under 5 years was provided by the MH. Finally, the
anemia prevalence in children between 6 months and 5 years
old followedWorld Health Organization (WHO) standards (34).
Trends between the aforementioned metrics and travel time
to HCF were explored using estimates and 95% confidence
intervals based on a locally estimated scatterplot smoothing
(loess) regression with a span of 0.75.

RESULTS

Travel Time to Health Facilities
For this study, we gathered geo-referenced data on 145,134
villages (Figure 1B) and 8,067 HCFs (primary HCFs: 7881,
secondary HCFs: 141, and tertiary HCFs: 34) across the 1,722
districts (Figure 1C) in the Peruvian territory. The health
facility density (number of health facilities divided by the
total population) in Peru was 2.51 per 10,000 inhabitants with
variations between major ecological areas, from 1.35 in the coast,
4.56 in the highlands, to 5.21 in the jungle.

Friction and travel time maps were reconstructed
in the Google Earth Engine using the described local
datasets at a spatial resolution of 30 meters per pixel
(Supplementary Information 3). Country-wide median
travel time from each village to the most proximate HCF varies
according to category: primary HCF = 39min (IQR = 20–93),
secondary HCF = 152min (IQR = 75–251), and tertiary HCF =

448min (IQR = 302–631). Importantly, maximum travel time
reached 7,819, 12,429, and 35,753min for primary, secondary,
and tertiary HCF, respectively (Figure 2).

Urban/Rural and Ecological Settings
High heterogeneity was observed in contrasting land coverage
areas. The median travel time was 5.3-fold higher in rural
(85min; IQR = 11–7,819) than in urban settings (16min; IQR
= 11–835) to a primary HCF; 3.2-fold higher in rural (226min;
IQR = 11–12,429) than in urban settings (70min; IQR = 11–
3,386) to a secondary HCF; and 2.4-fold higher in rural (568min;
IQR = 11–35,753) than in urban settings (235min; IQR = 11–
10,048) to a tertiary HCF. A larger variation in travel time to
primary HCF was observed in rural compared to urban areas,
and conversely, a larger variation in travel time to tertiary HCF
was observed in urban compared to rural areas (Figure 3). The
district-level stratified travel times in Figure 2 show that there
was also strong heterogeneity within major ecological regions.
The north-east part of the Amazon Region, which borders with
Colombia and Brazil, presented the largest country-wide travel
times to the most proximate health facilities. The largest travel
times to the most proximate HCF within the Highland Region
was observed in the southern areas of the Andes, and on the coast
was observed on the southern coast. Contrasting distributions of
travel time to the most proximate health facility was observed
between the 16 eco-regions defined by the MEnv (Figure 3).
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FIGURE 2 | Country-wide map of travel time to health facilities for 2018. District-level maximum travel time to each category of health care facilities (HCF). (A) Primary,

(B) Secondary, and (C) Tertiary HCF. Color scale in logarithmic scale.

Travel Time to Health Facilities Relative to
Socio-Economic and Health Metrics
In relation to the socio-economic metrics, a strong positive trend
was observed between the travel time to HCF and the proportion
of the population with at least one unsatisfied basic need
(Figure 4A). This trend was consistent for primary, secondary,
and tertiary HCF. Also, a positive yet less marked positive trend
was observed in relation to the poverty proportion at the district
level (Figure 4B).

Contrasting patterns were observed regarding the
epidemiological metrics. An increased pneumonia fatality rate in
children under 5 years was observed in districts with increased
travel time to HCF. This trend seems to be more pronounced for
increased travel times to tertiary HCF (Figure 4C). Conversely,
no relation was observed between the travel time to primary,
secondary, or tertiary HCF and the anemia prevalence in
children between 6 months and 5 years old (Figure 4D).

DISCUSSION

This study explored the use of a novel cloud-based geospatial
modeling approach fitted with detailed local geospatial data to
accurately estimate the travel time to the most proximate HCF
across a highly diverse geographical and ecological setting. Most
of the variations in travel time to HCF arose from heterogeneous
land coverage profiles and the contrast between urban and rural
areas. This is particularly important due to the fact that in
Peru and most low- and middle-income countries (LMIC), the
most detailed data are available at a coarse administrative level
that deters resource planning and health care provision in these
countries. In addition, we explored the trends of travel time to

HCF relative to socio-economics and epidemiological metrics.
These trends showed a positive relation between large travel time
estimates and underserved populations.

In settings with a scattered distribution of villages, timely
access to health facilities is a cornerstone to improve the health
status of impoverished populations and a first step to provide
high-quality care (35, 36). Although the use of big data and high-
detail datasets paves the way for a comprehensive quantification
of geographical accessibility in terms of distance and travel
time, these technologies were not previously applied to estimate
geographical accessibility to health facilities until recently (21).
Using this analytical approach, this study demonstrated that the
population in the Jungle area have less accessibility since health
care services are reachable at longer trajectories and travel time
or less geographical accessibility. The dramatic heterogeneity in
travel time to the most proximate health facility observed in this
study corresponds to the contrasting landscape composition in
the coast, highlands, and jungle regions. A dense road network
was observed in the Coast, facilitating access to multiple services
including health care as reported in other studies in India and
Africa (6, 37). Conversely, sparse road coverage was observed in
the Highlands, and only the two major cities in the Jungle region
had roads.

Consistent with previous studies (13, 14), this study suggests
heterogeneity in travel time to the most proximate health facility
across areas with contrasting land coverage types. Despite this
being widely accepted, few attempts have been made to quantify
these heterogeneities. In addition, asymmetries were identified
when the travel time to the most proximate HCF was compared
along socio-economic profiles based on the unsatisfied basic
needs proposed by the United Nations Development Programme
(UNDP), and the poverty proportion was compared at the
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FIGURE 3 | Distribution of travel time to most proximate health facility. Estimates across the 16 eco-regions land cover (x-axis) defined by the Peruvian Ministry of

environment and rural/urban settings for primary, secondary and tertiary health care facilities (HCF). Y-axis in logarithmic scale.

district level. Uneven trends of greater travel time to HCF (lower
geographical accessibility) were observed among villages with
higher rates of unmet basic needs. These results are consistent
with previous reports of negative trends in geographical access to
health care facilities in low-income populations (4, 38–40).

The implications of these results for the health care response
were shown in the trends relative to epidemiological metrics.
An important association with the pneumonia fatality rate in
children under 5 years old was shown in this study representing a
large burden of health effects due to low geographic accessibility.

These findings are in accordance with previous studies in a
variety of health outcomes (41–43). The lack of association
between travel time to HCF and anemia prevalence observed in
this study may be related to the interaction of many structural
factors as described in previous studies (44, 45).

It is important to highlight that the analysis conducted in this
study did not take into account variability due to climatic factors
that may prevent displacement to health facilities (i.e., floods
or landslides). However, Highlands and Jungle areas are more
prone to these type of natural disasters, leading to a conservative
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FIGURE 4 | Trends of district-level median travel time to primary, secondary, and tertiary health care facilities (HCF) relative to socio-economic and health metrics in

Perú. (A) Proportion of population with unsatisfied basic needs, (B) Poverty proportion, (C) Pneumonia fatality rate per 100 cases, and (D) Anemia prevalence in

children under 5 years old. X-axis in logarithmic scale, locally estimated scatterplot smoothing (loess) trend line and 95% confidence intervals in purple.
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estimation of travel time in these areas. Traffic, whichmay greatly
influence the estimates in the large cities, was not considered in
the analysis and potentially led to an underestimation of the travel
time to health facilities. In addition, seasonal variability may
greatly affect some displacement routes such as rivers; however,
only navigable rivers were considered in this approach and the
availability to displace through these rivers are less affected by
seasonality. Another important consideration of the least-cost-
path algorithm used in this analysis is that we infer the lowest
travel time boundary to reach a health facility. This consideration
relies on the assumption that the villagers opt for this route
despite the cost and danger of the route in addition to its
availability, as explained above.

In addition, the data reported here were generated at a
meso-scale, with a spatial resolution of 30m. At this scale and
resolution, some important details could be lost and affect the
travel time estimations. For instance, in some settings, the travel
time might be increased due to meandering rivers or roads that
follow the morphology of the terrain. The model assumes that
transit flows in a direct manner, meaning that zigzagging routes
may cause our approach to underestimate the real travel time to
reach a health facility. Despite these possible shortcomings, the
proposed approach provided conservative yet useful estimates of
travel times to health facilities that are important for planning
of prevention and control strategies for multiple health-related
events. This approach demonstrates that curation and alignment
of geospatial data from multiple governmental institutions
are important for national decision-making. In addition, the
use of mapping and modeling techniques and “big data” was
recognized as critical for better planning (21, 46, 47); however,
a remaining challenge is the implementation of these approaches
into routine disease prevention and control programs (46, 47).
Future studies may consider population-weighted estimates since
rural areas mostly distant to HCF are areas with low a population
density (22).

This study acknowledges the relevance of other components of
health access that may play an important role in the underlying
phenomena. The sole presence of clinic infrastructure does not
assure proper health care delivery. The supply chain, human
resources, financial accessibility, acceptability of services, and
availability of treatment are some remaining barriers once
geographical accessibility is overcome (3, 8, 48). Further studies
were suggested to get a comprehensive understanding of the
accessibility to health care in Peru and other LMICs.

CONCLUSION

This study used a novel methodology to estimate the travel
time to the most proximate health facilities to better understand
and characterize the geographical accessibility profiles in
Peru. Contrasting patterns were observed across heterogeneous
land coverage areas and urban and rural settings and in
relation to socio-economic and epidemiological metrics. These
findings are important as first steps for tailoring strategies
to deliver appropriate, affordable, and quality health care to
impoverished populations.
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