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Respiratory viruses, including coronaviruses, are known to have a high incidence of

infection during winter, especially in temperate regions. Dry and cold conditions during

winter are the major drivers for increased respiratory tract infections as they increase virus

stability and transmission and weaken the host immune system. The novel severe acute

respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in China in December 2020

and swiftly spread across the globe causing substantial health and economic burdens.

Several countries are battling with the second wave of the virus after a devastating first

wave of spread, while some are still in the midst of their first wave. It remains unclear

whether SARS-CoV-2 will eventually become seasonal or will continue to circulate

year-round. In an attempt to address this question, we review the current knowledge

regarding the seasonality of respiratory viruses including coronaviruses and the viral and

host factors that govern their seasonal pattern. Moreover, we discuss the properties of

SARS-CoV-2 and the potential impact of meteorological factors on its spread.

Keywords: coronaviruses, COVID-19, severe acute respiratory syndrome coronavirus-2, respiratory viruses,

seasonality, temperature, humidity

INTRODUCTION

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third zoonotic and
highly pathogenic coronavirus (CoV) to emerge in the twenty-first century (1). The earliest cases
of SARS-CoV-2 infections were reported in December 2019 in Wuhan, Hubei Province, China, the
epicenter of the outbreak (1). Since then, the virus has been rapidly spreading across the globe (2).

CoVs are a large group of positive-stranded RNA viruses that commonly infect birds and
mammals, causing a wide range of pathological conditions (3). These viruses undergo frequent
mutations and recombinations, yielding new variants that can cross the species barrier (3).
Since 1960, seven coronaviruses (CoVs) have been identified to cause infections among humans
(4). Human coronaviruses (HCoV) 229E, OC43, HKU1, and NL63 are common in the human
population and are responsible for about 15–30% of the annual respiratory tract infections (5). They
are commonly associated with mild and self-limiting symptoms. Still, severe illnesses, accompanied
by lower respiratory tract infection, might also occur, especially in elderly, neonates, and patients
with underlying health conditions and risk factors (5).

In the current millennium, three highly pathogenic CoVs, SARS-CoV-1 (6), the Middle
East respiratory syndrome CoV (MERS-CoV) (7), and the recently emerged SARS-CoV-2 (1),
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have crossed the species barrier and resulted in human infections.
SARS-CoV-1 was first detected in Guangdong Province, China,
in November 2002 and then rapidly spread to Hong Kong and
29 other countries, resulting in more than 8000 confirmed cases,
including 774 deaths (6, 8). By July 2003, the virus died out
throughout the world. MERS-CoV was first detected in Saudi
Arabia in 2012, with the camels being the source for human
infections (9). The virus caused a total of 2,519 laboratory-
confirmed cases, including 866 associated deaths as of the end
of January 2020 (7). The majority of cases were detected in
the Kingdom of Saudi Arabia (KSA), in addition to one major
outbreak in South Korea (10).

SARS-CoV-2 is a highly contagious virus that is associated
with severe pneumonia cases (11). On January 30, 2020, the
World Health Organization (WHO) announced COVID-19
(coronavirus infectious disease) as Public Health Emergency of
International Concern after it affected 7,818 people with 170
deaths in 19 countries, including China (12). Since late February,
the number of reported COVID-19 cases along with the number
of affected countries had sharply increased within a short period,
which led the WHO to declare the global COVID-19 outbreak
a pandemic (13). Since then, the number of globally confirmed
COVID-19 cases has been increasing exponentially, resulting
in nearly more than 21 million confirmed cases and 761,000
fatalities as of August 16, 2020 (14).

Different approaches and interventions have been adopted
to contain and control the disease spread including travel
restrictions (global), partial or complete lockdowns (e.g., China
and Singapore) (15, 16) and/or massive testing and isolation
of confirmed cases and their contacts (South Korea) (17). The
reluctance and delayed implementation of multilayered public
health measures in some countries (e.g., Italy, Iran, the UK,
Brazil, and the US) resulted in dire outcomes. Despite all the
efforts and measures to contain the virus, it is still spreading
globally, traversing all climate and environmental settings (2).

Nearly every acute viral disease has a particular seasonal
window of occurrence, which differs according to the geographic
location and environmental conditions (18). The incidence of
respiratory viral infections is highly affected by seasonal changes,
especially in temperate climates (19). Extensive research has been
done to better understand the seasonality of respiratory viruses.
Yet, our knowledge about this phenomenon remains limited.
Here we attempt to address the possible impact of weather
on SARS-CoV-2 spread, taking into consideration the current
knowledge regarding its stability and transmission patterns, and
the behavior of other respiratory viruses.

SEASONALITY OF CORONAVIRUSES AND

OTHER RESPIRATORY VIRUSES

Most viral respiratory infections tend to follow seasonal patterns
with high incidence during winter in temperate regions and
during the rainy season in tropical regions (20). Influenza virus
and respiratory syncytial virus (RSV) have a single annual
seasonal peak during winter in the Northern and Southern
temperate regions (21). These viruses peak from December to

March in the Northern hemisphere, and between June and
August in the Southern hemisphere (21). Parainfluenza viruses
have a seasonal peak from April to June in the Northern
temperate sites and during September in the Southern temperate
areas (21). In most of the tropical regions, these viruses occur
year-round with increased incidence in rainy seasons (21, 22).
Rhinoviruses and adenoviruses, two non-enveloped respiratory
viruses, are known to circulate throughout the year in all
climatic regions with occasional peaks in autumn and winter
for rhinoviruses and in winter and early spring for adenoviruses
(23, 24).

Epidemiologic studies of common cold HCoVs suggest that
they exhibit a seasonal pattern. In a temperate climate, HCoV
infections are primarily detected in winter and spring, with low-
level circulation throughout the year (3). The early known types,
HCoV-OC43 and HCoV-229E, predominantly circulate during
the winter season in temperate climate countries (25, 26). An
eight-year study of HCoV-OC43 and HCoV-229E among young
adults in the US reported an equal number of infections with
these two types during the winter (December through February)
and spring season (March through May) (27). In Belgium,
HCoV-OC43 and HCoV-229E were only detected in winter and
early spring (28). Several other studies from the United States,
Belgium, France, Canada, Japan, Jordan, Italy, and Germany
consistently reported winter circulation of the other two HCoVs:
NL63 and HKU1 (28–36).

On the other hand, tropical/subtropical regions display year-
round circulation of HCoVs but with increased activity during
certain months. A study conducted in China during 2008–
2009 reported that HCoV-NL63 and HCoV-HKU1 infections, in
hospitalized children with acute respiratory infections, showed
increased activity during summer, fall, and winter (37). In
another 7-year epidemiologic study between 2009 and 2016
in China, HCoVs circulated year-round but with the highest
incidence during the spring and autumn (38). A study by
Chiu et al., in Hong Kong, showed that HCoV-NL63 infections
were notable during the spring and summer months of 2002,
whereas HCoV-OC43 infections mainly occurred during the fall
and winter of 2001 (39). Additionally, a study from Thailand
confirmed the previous findings and reported the peak of
HCoV-OC43 activity in winter, whereas HCoV-NL63 frequently
occurred in autumn (40). In Australia, HCoV-NL63 peaks in
mid-winter but was also detected between late-autumn and early-
spring (41). Studies from some African countries (South Africa
and Ghana) also reported a year-round circulation of HCoVs
(42, 43).

Despite its rapid spread to about 30 countries, the SARS-
CoV-1 was quickly contained. Thus, it was not possible to assess
its seasonality. In the case of MERS-CoV, seven years have
passed since its emergence and is still causing intermittent and
sporadic infections without obvious seasonality (10). In fact,
MERS-CoV has demonstrated low ability to transmit between
humans, and most of the outbreaks have occurred mainly in
healthcare settings. In camels, the virus seems to peak between
late-winter and early-summer (44). This coincides with a spike
in zoonotic transmission between April and July (45). A 5-
year epidemiologic study, conducted between 2012 and 2017,
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demonstrated that MERS-CoV has the highest global seasonal
occurrence during June with some observed seasonal variations
(46). A case-cross-over analysis of the associations between
primary human MERS cases and weather conditions found that
the primary MERS infections are more likely to occur in cold and
dry conditions (47).

In summary, most respiratory viruses follow a seasonal
pattern. However, some factors might increase the incidence
of these infections, even in seasons with low circulation. For
instance, an increased incidence of respiratory infections occurs
among pilgrims during the Hajj Season (48). The mass crowding
in a limited space, in addition to the close contact between
pilgrims, increases the risk of viral importation and transmission,
particularly the respiratory ones (49) Rhinovirus, influenza virus,
and the common cold HCoVs (mainly HCoV-229E) are usually
the most commonly detected viruses during the Hajj (48).

DRIVERS OF SEASONALITY OF

RESPIRATORY VIRUSES

Seasonality of viral respiratory infections can be primarily
attributed to two main factors: the environmental and weather
effects on the virus and the host, as well as the host’s behavior
and physiology (20). Studies on respiratory viruses, including
influenza viruses, suggest that cold weather and low relative
humidity are highly associated with the onset of respiratory
infections in the temperate regions (50, 51). This was mainly
attributed to the effect of temperature and humidity on the
stability and transmissibility of the viral particles, in addition to
the effect on the host airway immune response (19).

Effect of Meteorological Factors on the

Stability and Transmission of Respiratory

Viruses
A study by Price et al. demonstrated that unlike the non-
enveloped viruses that circulate throughout the year, enveloped
viruses, including influenza and RSV, tend to be more seasonal,
with a clear preference for colder temperatures (20). Harper
et al. found that the optimal airborne influenza survival is at
low temperatures and the survival decreases as the temperature
increases (52). Low temperatures seem to enhance the lipid
ordering of the viral envelope and improve influenza virus
stability (53). This enhances the virus’s ability to stay protected
outside the body for a longer period of time (54). Further,
a systematic review examined the factors that affect influenza
survival on different metrics revealed that longer virus survival
is favored at lower temperatures (55).

Besides their effect on stability, low temperature and relative
humidity are also shown to enhance aerosol transmission of
respiratory viruses (52). It was proposed that influenza virus
transmission occurs mostly by aerosols in temperate regions and
by contact in tropical sites (56). Using the guinea pig model,
Lowen et al. showed that influenza virus aerosol transmission
is suppressed by high humidity and warm temperature, but
enhanced under cold and dry conditions (57). Low relative

humidity induces evaporation of water from the exhaled bio-
aerosols, leading to the formation of droplet nuclei (1–5µm
in size) (58). The extent of infectious viral particles survival in
dried aerosols is not known; however, it is speculated that these
nuclei can stay suspended in the air for prolonged periods (58).
The opposite happens at high relative humidity, whereby the
respiratory droplets increase in size by taking on water from
the surrounding and quickly settle out of the air, thus, decrease
aerosol transmission of the virus (58).

On the other hand, the transmission of influenza viruses
by contact was shown to be efficient even at high humidity
(54). High humidity enhances the indirect virus transmission
by increasing the virus particle’s stability, inside droplets, on
surfaces (54). A study by Yang et al. showed that humidity
promotes the survival of influenza A virus by controlling the
extent of evaporation in these virus-containing droplets, which
affect the solute concentrations and thus, viral stability (59). This
partially explains the year-round occurrence of viral respiratory
infections in tropical regions, particularly during rainy seasons
when humidity is high.

In addition, it is well-known that solar UV radiation (UV)
of all wavelengths effectively inactivate RNA and DNA viruses
to varying extents (60, 61). Three types of UV radiations, UVA,
UVB, and UVC, exist in nature, with UVC, having the shortest
wavelength range, being the most effective against viruses (62).
However, only UVA andUVB radiations are found at the ground-
level sunlight, and these are known to have lower efficiency
against viruses (60). The low incidence of respiratory infections
during summer in temperate regions can also be attributed
to the solar inactivation of viruses on the outdoor surfaces
contaminated with respiratory secretions, thus decreasing the
possibility of fomite transmission.

Effect of Meteorological Factors on Host’s

Susceptibility to Infection
Meteorological or environmental conditions were also shown to
have a direct effect on the host’s susceptibility to infections (63).
The role of cold weather in weakening the immune response
is controversial (63, 64). However, many studies indicated
that cold and dry environments have an immunosuppressive
effect on the host, and thereby increase the risk of acquiring
infections (65–67). Increased exposure to cold air was shown
to induce a temperature-related reduction in lung function in
patients with chronic inflammatory airway diseases, such as
chronic obstructive pulmonary disease (COPD) and asthma (68).
Seasonal changes in temperature were also shown to affect the
local immune response in the nose (66). It was shown that
the antiviral defense response against rhinovirus infection in
cultured mouse airway cells is reduced at low temperature (69).
The cooling of the nasal airway by the inhaled cold air induces
a decrease in the temperature of the respiratory epithelium, and
compromise both the mucociliary clearance (MCC) in the nose
and the local immune response in the upper airway (66).

The nasal respiratory epithelium is made up of ciliated cells
covered with an airway surface layer comprised of a mucus
layer that catches inhaled particles and low viscosity pericilliary
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layer that moisturizes the surfaces and enable ciliary beating
(70). MCC is a key mechanism required for getting rid of
particles, including infectious agents, stuck on the surface of the
respiratory epithelium (70). Production of thin mucosal layer
and beating of cilia at a specific frequency are considered key
factors for efficient MCC (66). MCC was shown to be affected by
temperature and relative humidity. A recent study demonstrated
thatMCC and epithelial cellular repair in influenza virus-infected
cells is reduced at a low relative humidity (67). Using a climate
chamber for cell culture, a study showed that a temperature
of 25◦C and RH of 40% induced more production of mucin
compared to 37◦C and 80% RH (71). In addition, it was shown
that tracheal and nasal mucociliary beat frequency decreases as
the temperature falls below 20◦C and totally ceases at 5◦C (72).
These studies indicate that low temperature and low humidity
in the nasal airway compromise the MCC by increasing mucin
secretion and reducing mucociliary beat frequency (67, 71, 73).
Moreover, a study done on guinea pigs revealed that breathing
dry air can disrupt cilia, damage epithelial cells, and induce
local inflammation of the trachea (74). More importantly, the
phagocytic activity of macrophages, a key non-specific immune
response mechanism against viruses, was found to be reduced
both in vivo and in vitro at low temperatures (75).

It has also been postulated that shortened exposure to
sunlight during the winter affects vitamin D levels, a key
modulator for both innate and adaptive immune responses,
which increases the susceptibility to respiratory infections during
winter (76, 77). A systematic review assessing the relation
between vitamin D and respiratory tract infections found that
vitamin D supplementation reduces the incidence of respiratory
tract infections (78). The high incidence of influenza was also
correlated with the seasonal decrease in vitamin D levels (79). A
recent observational study of 212 patients from three South Asian
hospitals, found a positive association between vitamin D levels
and clinical outcomes of COVID-19 patients (80).

MODES OF SARS-CoV-2 TRANSMISSION

The respiratory transmission mode of SARS-CoV-2 is not fully
understood. However, the virus is assumed to have a transmission
pattern similar to that of the influenza virus (81). These modes
include transmission through direct or indirect contact with
infected individuals. Transmission of the virus can occur via
fomites or direct contact with an infected person or through
respiratory droplets released during sneezing, coughing, or
talking (82). Studies showed that SARS-CoV-2 can stay viable on
surfaces for hours or even days especially in healthcare facilities
where the concentration of the virus released by the patients is
relatively high (82–84). The survival of the virus on these surfaces
depends on relative humidity and temperature and on the nature
of the contaminated surfaces (85, 86).

Although airborne virus transmission has not yet been
confirmed in humans, studies suggest that the occurrence of
aerosol transmission cannot be excluded, especially in closed
venues (82, 87). Airborne transmission occurs when the aerosols
(droplet nuclei <5µm) containing infectious viral particles
spread in air over a long distance and remain suspended for a
long time (82). These aerosols are produced from evaporation

of large respiratory droplets or released from the infected
individuals by coughing, sneezing, talking, or exhaling. The
aerosols can be breathed by individuals and cause infection
if enough infectious dose of the virus is present or upon
extended exposure (82). A study by Van Dormalan et al.
found that SARS-CoV-2 virus particles remained infectious for
3 h in experimentally generated virus-containing aerosols that
mimic the human-generated ones (83). Several studies reported
detecting SARS-CoV-2 RNA in the air samples collected from
different areas inside the hospitals such as patients’ toilet areas,
medical staff areas, and public areas prone to crowding (83,
88, 89). Recently, it was shown that infectious SARS-CoV-2
can be detected in air samples collected 2–4.8m away from
hospitalized COVID-19 patients, supporting the possibility of
airborne transmission at least in confined environments (90).

The possibility of transmission via the fecal-oral or fecal-
respiratory route has been also considered for COVID-19. SARS-
CoV-2 RNA and viable virus were also found in urine and
feces of infected patients (91–95). However, no evidence on
virus transmission through feces or urine exists (91–95). Some
studies also reported the detection of SARS-CoV-2 RNA but not
infectious virus in blood samples of COVID-19 patients and
breast milk of infected mothers (91, 96, 97). The absence of viable
virus in blood and breast milk excludes the possibility of virus
transmission through these routes (91, 96, 97).

Controlling the transmission of respiratory viruses is very
challenging on its own, but is even more complicated in the
case of SARS-CoV-2 due to the well-demonstrated role of
asymptomatic or pre-symptomatic carriers (98–101). A meta-
analysis of nine studies from six countries (including 21,035 close
contacts of 843 COVID-19 cases) estimated the proportion of
asymptomatic COVID-19 carriers at 15% (95% CI 12–18%). The
transmission rates ranged from 0 to 2.2% for aymptomatic cases
compared to 0.8–15.4% among symptomatic ones (102). Lau
et al. estimated the presymptomatic transmission proportion to
be 44% (95% CI, 30–57%) with infectiousness peaking between
2 days before and 1 day after symptoms onset (103). While
a study carried out in Singapore found that around 6.4 % of
the secondary infections are caused by the pre-symptomatic
patients (104).

ROLE OF METEOROLOGICAL FACTORS

DURING SARS-CoV-2 TRANSMISSION

The seasonal differences between the Southern and Northern
hemispheres might have played a role in the spread of SARS-
CoV-2. Early in the pandemic, Northern hemisphere countries
with cold climates appeared to be the most vulnerable to
COVID-19 transmission, while tropical regions and those in
the Southern hemisphere seemed to be the least affected. Initial
studies suggested a potential role for meterological factors in
the spread of SARS-CoV-2. Sajadi et al. found more virus
spread in areas with an average temperature of 5–11◦C and
absolute humidity of 4–7 g/m3, suggesting a potentially seasonal
behavior (105). Another study found that around 90% of the
cases were reported in countries with temperatures maxima
below 17◦C and absolute humidity of 3–9 g/m3. The study
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suggested that the summer season might reduce the impact of
COVID-19 pandemic in those countries as the temperatures
rise (106). Another study concluded that SARS-CoV-2 transmits
more easily in countries with relatively cool conditions and that
transmission is reduced in sites with high temperatures and high
relative humidity (107). Chen et al. reported that the optimal
temperature for virus spread was found to be at 8◦C and humidity
between 60 and 90%. The authors suggested that the weather
plays a key role in the transmission of SARS-CoV-2 around
the world (108).

The association between the daily incidence of COVID-19
cases and climatic conditions in mainland China was examined
between January 20 and February 29, 2020. Using modified
susceptible-exposed-infectious-recovered (M-SEIR) model, Shi
et al. found that COVID-19 transmission rate decreased at higher
temperatures (109). However, another study conducted during
the same period in China concluded that the increase in humidity
and temperature alone would not reduce the virus spread if the
public health interventions have not been strictly implemented
(110). Similarly, a prospective cohort study done on 144 different
areas other than China, South Korea, Iran, and Italy, found that
it is the strict interventions that are strongly associated with the
decrease in virus transmission but not latitude and temperature
(111). Nonetheless, the early lockdowns in some countries and
variable public interventions taken by various countries hindered
the ability of scientists to study the association between climate
and virus transmission. The aforementioned studies are also
being challenged by the fact that many countries in the Northern
hemisphere are witnessing a second wave of COVID-19 despite
entering the summer season.

CONCLUSION: WILL COVID-19 BECOME

SEASONAL?

The basic reproduction number (R0) is the number of secondary
cases resulting from a primary case in a susceptible population

and is an important indicator to predict the spread of a virus. For
a virus to follow a seasonal pattern, and thus wane in summer,
its effective R0 should drop below 1 (112). For SARS-CoV, the
R0 is estimated between 2 and 3 (112) and in some estimates
as high as 5.7 (113). As discussed above, several factors in the
summer might reduce the effective R0 of respiratory viruses
including the effect of warm tempertures and humidity on the
stability of the virus and susceptibility of the host as well as
behavior of the population such as indoor crowding. For seasonal
influenza virus, its R0 is estimated to be 1.27 (114). Therefore,
these aforementioned factors could easily drop the effective R0
to below 1 in summer halting the virus spread and resulting in
the observed seasonal pattern of flu. The warm temperatures and
humidity of the summermight impact the host immune response
and thus its susceptibility to infection by SARS-CoV-2 similar
to its effect on influenza (66). However, other factors including:
(1) a much higher R0, (2) higher stability of SARS-CoV-2 (it can
survive for up to 72 h on hard surfaces at temperatures between
21 and 23◦C and in relative humidity of 40%) (83), and (3) a
largely immunologically naïve population against SARS-CoV-2
compared to influenza make it unlikely for the R0 to drop in
summer enough to halt the spread of SARS-CoV-2. Therefore,
without public health interventions, SARS-CoV-2 will continue
to spread in summer as witnessed in many countries around the
world. Nonetheless, as the population herd immunity is attained
through natural infections and/or vaccinations then the effective
R0 is expected to drop substantially making the virus more prone
to seasonal fluctuations.
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