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The COVID-19 outbreak was first declared an international public health, and it was later

deemed a pandemic. In most countries, the COVID-19 incidence curve rises sharply

over a short period of time, suggesting a transition from a disease-free (or low-burden

disease) equilibrium state to a sustained infected (or high-burden disease) state. Such

a transition is often known to exhibit characteristics of “critical slowing down.” Critical

slowing down can be, in general, successfully detected using many statistical measures,

such as variance, lag-1 autocorrelation, density ratio, and skewness. Here, we report an

empirical test of this phenomena on the COVID-19 datasets of nine countries, including

India, China, and the United States. For most of the datasets, increases in variance and

autocorrelation predict the onset of a critical transition. Our analysis suggests two key

features in predicting the COVID-19 incidence curve for a specific country: (a) the timing of

strict social distancing and/or lockdown interventions implemented and (b) the fraction

of a nation’s population being affected by COVID-19 at that time. Furthermore, using

satellite data of nitrogen dioxide as an indicator of lockdown efficacy, we found that

countries where lockdown was implemented early and firmly have been successful in

reducing COVID-19 spread. These results are essential for designing effective strategies

to control the spread/resurgence of infectious pandemics.

Keywords: COVID-19, critical transitions, indicators of critical slowing down, social distancing policies, non-

pharmaceutical interventions

1. INTRODUCTION

The outbreak of the COVID-19 disease caused by a novel pathogenic coronavirus (SARS-CoV-2),
which began inWuhan, China, in December 2019, is a global challenge for the healthcare, economy
and the society (1). The World Health Organization (WHO) assessed the epidemics of the disease
(COVID-19) and declared it a Public Health Emergency of International Concern (PHEIC) (2).
Since the Wuhan outbreak, nearly all the United Nations member countries have experienced a
rapid spread of the virus and have been taking preventive measures to overcome the threats posed
by the pandemic (3). Over the past years, several waves of viruses, such as influenza, cholera, and
HIV have transmitted across the world to pose a significant threat to human health. Investigations
on the interventions of these outbreaks have increased within the predictive theory of infectious
diseases. Importantly, prior understanding of the epidemic spread of COVID-19 can provide an
effective mitigation policy.
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The COVID-19 disease can spread in a population through
infected symptomatic/asymptomatic individuals who come
into contact directly or indirectly (4). Concerned with the
public health and well-being affected due to COVID-19,
various countries have thus adopted comprehensive clinical
and non-pharmaceutical strategies. The non-pharmaceutical
interventions have included social distancing, such as the closure
of schools, banning of large gatherings, isolation of symptomatic
individuals, and monitoring of travelers, particularly those
from COVID-19 hotspots (5–8). There also exists evidence
of similar non-pharmaceutical interventions used to mitigate
the 1918 influenza pandemic (9, 10). Evidence also highlights
the importance of mitigation interventions in controlling the
transmission of the SARS-CoV-2 virus (6, 11, 12). Nonetheless,
the timing of the implementation of strategies varies between
countries and can significantly influence the incidence curve of
the epidemic (13).

The COVID-19 incidence curve of total confirmed cases for
many countries initially demonstrates a gradual increase near the
start of the epidemic and is often followed by a sudden shoot or
a transition to a supercritical state (14–18), as the disease spreads
(major outbreak due to human-to-human transmission). This
sudden transition places a considerable burden on the limited
availability of the public health resources required to treat the
disease and inhibit its further spread. Most of the studies on
sudden transitions concern catastrophic shifts associated with
a saddle-node bifurcation; however, epidemic transitions are
non-catastrophic and associated with a transcritical bifurcation
(17, 19). In general, an epidemic transition occurs when the basic
reproduction number (or R0) of the disease becomes >1 and
a population moves from a subcritical to a supercritical state.
In many countries, however, major outbreaks of COVID-19 did
not initially occur, though the R0 of the disease is known to be
more than one from the very beginning (20). In fact, this may
be associated with a tipping delay where a population faces the
first major outbreak at a higher value of R0 than one (14, 21),
impending our ability to mitigate. It is thus crucial to anticipate
this precarious transition to take effective controlling measures
for the outbreak. There exists a rich history of investigations
that can predict processes that could lead to ecological outbreaks
(19, 22–24). Theory suggests applicability of a variety of leading
generic indicators, widely known as Early Warning Signals
(EWSs) (e.g., variance, autocorrelation, skewness, and kurtosis),
to identify the proximity of a system to such a critical transition
(22, 23, 25, 26). For instance, in time series data following ancient
abrupt climate shifts, EWSs could be identified before the critical
transition took place (27). Similarly, EWSs were seen in the
resurgence of malaria in Kericho, Kenya (18).

EWSs are hallmarks of critical slowing down (CSD) of
a system as it approaches a catastrophic/non-catastrophic
transition. The phenomenon of CSD is caused by to the loss
of resilience in the system such that even small disturbances
can invoke an often irreversible transition to an alternative
stable state (28–31). In particular, dynamical systems are
continuously subject to shocks that may be extrinsic or intrinsic
perturbations. In epidemiological theory, intrinsic perturbations
can be determined by the pathogen’s novelty in a new host, which

may depend upon various health factors associated with the
host. Furthermore, the mode of transmission, person-to-person
contact, and number of imported cases may account for external
perturbations for disease spread. Increased perturbations may
drive a system far from its original state and can increase the time
required for fluctuations in the number of cases to dampen. The
system thus loses its resilience, as it may eventually diverge at a
transition from a low burdened to a high burdened state. The
phenomenon of CSD can be captured as a large time taken by
a system to return to its previous states due to which the rate
of return of a system decreases prior to a transition. Moreover,
it leads to an increase in the short-term memory of a system,
this feature can be identified by the changes in the correlation
structure of a time series preceding a critical transition (22, 23,
26, 32, 33).

Model based epidemiological investigations predict the
phenomenon of CSD preceded by the epidemic transitions (14,
15, 34). These studies are built on the applicability of CSD-based
EWSs to anticipate disease emergence. However, construction
of emerging disease models can be complicated partly due
to non-linearity in many natural systems. Additionally, data
availability of key epidemiological parameters, such as rate and
mode of transmission, duration of infection, and the novelty
of the pathogen in a new host, can pose a barrier toward
disease predictive theory. The key support of CSD-based EWSs
analyzes over modeling prediction is that it does not require
comprehensive data calibration and can be calculated using
observed data. Furthermore, it is studied that imperfections in
the disease data does not form a barrier in applicability of
EWSs (15).

To mitigate the epidemic, China strictly restricted public
movement and followed with measures of quarantine and
symptomatic isolation 24 days after (i.e., January 23) the arrival
of the first reported case. The total reported cases (confirmed)
at the time of the lockdown were nearly 623 (accounting for
∼ 4.4732×10−7 of the total population). The daily increase in the
number of confirmed cases in China was saturated inmid-March,
hence flattening the incidence curve of the total confirmed
cases. European countries adopted different non-pharmaceutical
measures to intervene in the disease transmission. The spread
began later in Italy compared to China; however, the strict
interventions were initiated on March 9, which marks a gap of
nearly 40 days from the first reported case with ≈ 1.22 × 10−4

proportion of the cases. Spain, which is continued to suffer
severely by the virus, reported its first infected case on February
1 and took nearly 45 days when the proportion of affected cases
was more than 9.05 × 10−5, to put the country into lockdown
(see Table S1 in Supplementary Material). India confirmed its
first case on January 30 and prompted a “Janata curfew” on
March 22 followed by a nationwide lockdown on March 25 for
complete cessation of public contacts (nearly 55 days after the
first case being reported). The proportion of cases were∼ 2.36×
10−7 of its population (COVID-19-infected cases), while this
proportion was more than 1.7 × 10−4 in the US. Therefore, it is
essential to understand how prolonged gaps between the arrival
of the epidemic and non-pharmaceutical interventions, such as
quarantining/social distancing can influence public health and
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the environment at a national as well as a global scale. Of greater
interest is outlining whether the EWSs can be useful to stifle the
spread of an epidemic.

In this work, we analyze how the timing of strict controlling
strategies influence the COVID-19 incidence curve of
the total confirmed cases in different countries. We first
use the “change in the gradient” analysis (for details see
Section 4: Detection of the Transition Phase in Supplementary

Material), to estimate the emergence of the transition phase
in incidence curves. The occurrence of CSD is then analyzed
using the data prior to the transition. We calculate the variance
and lag-1 autocorrelation function of the time series data of the
cumulative confirmed cases each in nine different countries. Our
work suggests that the dynamics of incidence curve in the initial
days (depending upon the country), since the first reported case,
can signal an upcoming sudden rise in the cumulative number
of infected cases. Preliminary intervention is thus crucial for an
effective and timely containment of the disease emergence or
resurgence. Delay in the strict surveillance and control measures
can increase the time to contain the spread, which in turn
will affect a larger proportion of the population. Furthermore,
the proportion of the affected cases on the commencement of
public health measures plays a significant role in containing the
epidemic in each country. The time gap of implementation of
interventions from the arrival of the first case is almost similar
for many countries, such as Italy, India and Germany. However,
the EWSs depict an upcoming rise in Italy and Germany
relatively earlier than in India. The relatively low proportion
of the affected cases in the case of India compared to Italy or
Germany can be a significant factor, explaining a slow rise for
India but a relatively disruptive situation in the other countries.
A combination of these two factors for India may thus restrict
the extent of COVID-19 spread in the country, as compared
to many other countries across the world. Importantly, despite
keeping control of the situation up to April 29, India, having
greater carrying capacity for the disease and several challenges
to sanitization control (35), needs strict and highly effective
interventions for continued suppression in the daily number of
cases. We conclude that model-independent forecasting systems
can be applied to clinical datasets for predictability of the disease
re-occurrence and formulate control policies.

2. RESULTS

We obtain the datasets of the cumulative number of the COVID-
19 cases from the date of reporting of the first affected person up
to April 29, 2020, for India, China, South Korea, the United States
(US), Singapore, Germany, Italy, the United Kingdom (UK), and
Spain (for the data source see Materials and Methods). Figure 1
depicts the incidence curve of the affected population in each
of these countries. Interestingly, it is noted that the incidence
curve of the confirmed cases follows a slow increment during
initial time period ranging from ≈20 to 50 days for different
countries, which can be interpreted as a time window to control
the epidemic promptly and effectively. Since human-to-human
contact is a leading transmitter of the disease, by-passing a

certain threshold of infected cases, the incidence curve thus
shows an increasing slope and finally depicts a transition in the
number of infected cases (see Figure 1) (36). It is important
to note that the growth in number of cases for China and
South Korea, countries that initiated public monitoring/social
distancing actions relatively earlier than the other countries,
saturates after nearly 3–4 weeks from the initiation of the
lockdown. The shift of the COVID-19 from a low-burden to a
high-burden state can be associated with the phenomenon of
critical transition. We thus employ statistical methods that can
monitor the onset of the transition phase and provide insights
into the incidence curve so as to suggest establishing worldwide
disease elimination campaigns.

2.1. Signals of Critical Slowing Down
To estimate statistical indicators anticipating the upcoming
shifts in each country, we consider the data of the cumulative
daily number of COVID-19 cases before a transition is
detected in the incidence curve of the epidemic (shaded
regions in Figure 1) (for most of the countries, a transition
threshold is detected by a gradient change analysis,
for details see Section 4: Detection of the Transition Phase

and Figure S5 in Supplementary Material). To examine
whether the system slows down to recover from perturbation
while approaching the transition, we calculate the variance
and autocorrelation at first lag [ACF(1)] of each extracted
data for all the nine countries (see Materials and Methods).
We have also calculated a few other generic EWSs of
CSD, like density ratio, skewness, and kurtosis (for details
see Section 1: Early Warning Indicators and Figure S1 in
Supplementary Material). CSD is reflected in systems near
a critical transition through an increase in the variance and
autocorrelation. We observe that the short-term memory
of the time series data exhibits an increasing trend in most
of the countries (Figure 2). However, there are no positive
signals of CSD exhibited by ACF(1) for the datasets of India
or Italy (Figures 2J,P). The increase in the variance forewarns
a sudden rise in the number of the COVID-19 cases for these
countries. Furthermore, the strength of the signals varies
among countries depending upon the datasets determining
the cumulative number of affected populations in individual
countries. For instance, we observe a weak increase in variance
in case of Singapore, and the trends in China and the US are
observed to be very strong, with ACF(1) approaching close to
1 (see Figures 2K,M) (32). Since the time lag of up to almost
2 weeks is expected for the detection of symptomatic cases
(37), the analyses suggest that the total cases gathered when
the phenomenon of CSD is observed must have been infected
with the disease around 2 weeks ago. Thus, early preventive and
surveillance strategies can be capable of suppressing the severity
of COVID-19 outbreak (38).

2.2. EWSs and Enforcement of
Interventions
The timing of intervention measures varies among the countries.
Notice that, apart from China and South Korea, in other
countries, EWS analyses are carried out using the data before the
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FIGURE 1 | Time series constructed as cumulative number of infected cases in nine different countries across the world from the onset of the epidemic in the

respective countries up to April 29. (A-I): Shaded regions depict the pre-transition phase for different countries from the onset and mark the data used to compute the

indicators of critical slowing down. The double-sided arrow marks the size of the moving window (up to the vertical dashed line). In the subfigures, the arrowhead on

the x-axis marks the beginning of the officially recorded social-distancing and/or lockdown dates (see Table S1 in Supplementary Material).

implementation of social distancingmeasures. China was the first
country to take the containment measures, nearly 24 days after
the beginning of the epidemic, while Italy took around 40 days,
and other countries followed even later. As a consequence, the
COVID-19 incidence curve in China flattened after nearly 20–
25 days of implementing the intervention measures. Like China,
South Korea adopted different combinations of controlling
measures around mid-February (in the time window of 20–
25 days since the epidemic began there). This measure was
accompanied by a drop in the number of cases, and the curve
followed the pattern observed for China (Figure 1C). The rising
indicators of CSD also suggest that the time gap in implementing
the protocols, such as the closure of public gatherings, controlled
public movement, and lockdown, can significantly influence the
incidence curve and result in the extended time required to
flatten it. However, the interventions around 2–3 weeks prior to
the change in the correlation pattern as well as variance in each
of these countries can slowly hamper the daily increase in the
number of cases.

The scenario is quite different in the case of India. The
EWSs weakly signal the behavior of CSD within the initial 40
days of the disease emergence (Figures 2A,J). Due to a rise in
the number of daily cases, we also analyze the EWSs in the
incidence curve for India considering the cumulative number
of infected cases of up to the beginning of the nationwide
lockdown (March 25, Figure 3A) since the reporting of the first
case. Here, we observe increasing trend in each of the generic
indicators capable of capturing the phenomenon of CSD. The
variance, autocorrelation, skewness, and kurtosis captures the
strong signals of CSD (Figures 3B–E).

2.3. Onset of Social Distancing Practices
and the Affected Population Density
Another important aspect is to consider the reported proportion
of a population affected at the time of the implementation of
intervention measures. So far, Germany, which accounted for
one of the largest outbreaks in Europe around mid-March, had
visible signals of the forthcoming transition (Figures 2F,O). It is
noted that each of the countries, namely India, Germany, and
Italy, adopted concerned public health measures around the time
when the EWSs were visible in their respective datasets (see the
arrowheads on the x-axis in Figure 1). However, the fraction
of the population affected by that time in Germany and Italy
was much higher (∼ 2.9 × 10−4 and 1.2 × 10−4, respectively)
compared to India − 2.36 × 10−7. Thus, the incidence curve
projected a significant rise in these two countries, whereas the
rise in the number of cases in India is relatively slow and is
expected to follow a similar response owing to the effectiveness
of these interventions. Overall, our analyzes suggest that delayed
interventions (depending upon the signals of CSD) along with
the fraction of the affected population can influence the country-
wide variation in the daily number of rising cases.

2.4. Sensitivity Analysis of the Generic
Indicators
The choices made to remove/filter out non-stationarities in
the time series datasets using Gaussian detrending can also
influence the trends observed. Thus, it is necessary to test the
robustness of the estimated trends toward the choice of rolling
window size and the filtering bandwidth. Here, we employ
sensitivity analysis for the variance (see Figure 4) and ACF(1)
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FIGURE 2 | Statistical estimates used to analyze the signals of a forthcoming

transition in the COVID-19 incidence curve. (A-I): Figures on the left panel

depicts the variance each for India, China, South Korea, USA, Singapore,

Germany, Italy, UK, and Spain. (J-R): The right panel shows the lag-1

autocorrelation of the time series data analyzed in the corresponding

countries. Scattered points are the estimated values of the respective slowing

down indicators. Solid lines reflect the increasing/decreasing trend in the

indicators and are obtained by fitting linear regression models. The shaded

regions are the confidence bounds for the fitted models.

(see Figure 5) using the CSD dataset. Sensitivity analysis ease
outs to disentangle accurate signals of an impending transition
from the false ones for a wide range of window sizes and
bandwidths. We use Kendall-τ estimates of these indicators for
all the combinations of these two parameters (for details, see
Materials and Methods). Furthermore, we test the sensitivity of

FIGURE 3 | Statistical analysis to measure the indicators of CSD for the

dataset of India up to the date of the nationwide lockdown. (A) The incidence

curve depicting the fraction of people infected from January 30 up to April 29.

The shaded region is the data used to calculate the changes in the generic

indicators. The arrow marks the size of the rolling window used to calculate

the statistical signals. The estimated values of the slowing down indicators (B)

variance, (C) autocorrelation function at lag-1, (D) skewness, and (E) kurtosis.

Solid lines are the fitted linear regression models to analyze the trend in the

indicators along with the confidence bounds (shaded regions).

these parameters on the P values of the estimated indicators (for
details see Section 3: Sensitivity Analysis and Figures S2,S3 in
Supplementary Material).

We find that the observed trends in the variance are robust to
the choice of parameters and does not vary between the datasets
of most countries. High bandwidths reveal the opposite outcome
of the variance for the datasets of South Korea (Figures 4C,L)
and Singapore (Figures 4E,F). Since we use the bandwidth, which
gives the best fit and does not over-fit or under-fit the data
therefore, the choice of window size can influence the observed
trends. In our work, we find a large size of rolling window
can alter the EWSs analysis and misleading estimates for the
autocorrelation function (Figures 5A–N). False signals of an
alarming situation can deviate from understanding the gravity
of any situation and intensity of surveillance needed. Thus, the
choice of these parameters is crucial in anticipating the signals
of a forthcoming transition and implementing convincing public
health measures.

2.5. Surrogate Analysis
The lower number of data points available for the analysis
can lead to feeble trends and influence the probability of
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FIGURE 4 | The sensitivity of the choice of the rolling window size and the

filtering bandwidth to estimate the EWSs. (A-I): Contour plots demonstrate the

effect of moving window size and the filtering bandwidth on the trends

observed while calculating the changes in the variance of the time series, using

the Kendall-τ test statistic. (J-R): Panels on right show the frequency

distribution of the trend statistic. The inverted arrows mark the choice of the

filtering bandwidth and moving window size used to capture the trends in the

variance of the time series data.

occurrence of the increased signals of CSD by chance. Further,
due to undocumented patients, there is always a chance of
stochasticity in the number of reported cases. Thus, we studied
the likelihood of coincidence in the occurrence of trends in
the variance and the ACF(1) observed in our original datasets
by investigating the indicators in the surrogate time series
(see Materials and Methods). The surrogate time series is

FIGURE 5 | The sensitivity of the choice of the rolling window size and the

filtering bandwidth to estimate the EWSs. (A-G): Contour plots demonstrate

the effect of moving window size and the filtering bandwidth on the trends

observed while calculating the short term correlation pattern using ACF(1) of

the time series data, using the Kendall-τ test statistic. (H-N): Panels on right

show the frequency distribution of the trend statistic. The inverted triangles

mark the choice of the filtering bandwidth and moving window size used to

capture the trends in the ACF(1) of the time series data.

generated to follow similar distribution (mean and variance)
of the data time series before the episode of a sudden rise
in the number, denoted by shaded regions in Figure 1 (see
Materials and Methods). Figure 6 depicts the distribution of
the test statistic of the surrogate time series. Solid lines show
the trend estimate obtained for the original time series. We
calculate the probability of randomness of our observed estimates
as the fraction of 1, 000 surrogate time series having trend
statistic of same or higher values than the original trend, i.e.,
P(τ ∗ ≤ τ ). The probability of, by chance, obtaining similar trend
statistic varies from country to country, depicting significant
estimates for changes in the variance, except for South Korea
(Figures 6B,I) and Singapore (Figures 6D,K). In the case of the
US, however, the probability of randomness in our observed
estimates is lower (Figures 6C,J), and rapid spreading in the

Frontiers in Public Health | www.frontiersin.org 6 September 2020 | Volume 8 | Article 569669

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Kaur et al. Anticipating COVID-19

FIGURE 6 | The probability distribution of Kendall-τ test statistic on a set of

1,000 surrogate time series generated by bootstrapping and shuffling (with

replacement) the residual time series of the original data. (A-G): Histograms

depict the distribution of the test statistic for the surrogate time series variance

(left panels) and (H-N): autocorrelation function at lag-1 (right panels). Solid

lines indicate the limit beyond which the Kendall-τ of the surrogate data is

higher than the statistic observed in the ACF(1) of the original time series.

TABLE 1 | Probability of, by chance, obtaining the observed trend statistic of the

original data for the set of 1, 000 surrogates having similar distribution (mean and

variance) as the original datasets.

Country Kendall-τ Kendall-τ

(variance) [ACF(1)]

China 0.04 0.09

South Korea 0.21 0.01

US 0.001 0.1

Singapore 0.48 0.09

Germany 0.08 0.20

UK 0.001 0.05

Spain 0.001 0.21

The likelihood of randomness in the estimated variance and ACF(1) is mentioned for the

datasets of each country studied in the work.

epidemic makes it keystone to consider applicability of EWSs to
warn-off such events. The probability estimates P obtained by
bootstrapping the datasets for each of the countries are given in
Table 1.

Overall, we find a low probability of randomness in both
the ACF(1) and the variance estimates for most of the cases.
However, the observations are more significant for the variance.
This analysis suggests the robustness of the variance as an EWS
in predicting the signals of CSD.

FIGURE 7 | (A-I): Time series of triads of the population-weighted

total-column NO2 (molecules/cm2 ) density over the length of the study period

for the nine countries considered in this work (depicted by the circular points).

The solid curve in each subfigure represents a 10-triad moving window

average of the time series.

2.6. Impact of COVID-19 Spread on the
Atmospheric Total-Column NO2 Density
The rigor of social distancing/intervention strategies can be
measured by atmospheric data, as the lockdown periods have
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witnessed better air quality across the globe (39). We note that
anthropogenic NO2 is emitted predominantly at the surface
from transportation activities, industries, and power plants.
NO2 emitted has a short lifetime and can be transported up
to a few hundred meters during the day. Therefore, NO2 is
expected to be a profound indicator of the efficiency of lockdown
measures enforced by the countries. Thus, we first obtain time
series of triads of the population-weighted total-column NO2

(molecules/cm2) density over the length of the study period
for the nine countries considered in this work (the circular
points in Figure 7) (for the NO2 data source see Materials
and Methods). The solid curve in each subfigure of Figure 7
represents a 10-triad moving window average. In the majority
of the countries, the timing of NO2 decline concurs with the
spread of the virus and the onset of pragmatic lockdown in
a country may be hypothesized by the reversal (or break)
in the trend of NO2. In China (Figure 7B), the decreasing
trend in NO2 is evident from January to February; after that,
it starts increasing which is coincident with the dynamics of
the spread of COVID-19 disease. In India (Figure 7A), South
Korea (Figure 7C), US (Figure 7D), Italy (Figure 7G), and Spain
(Figure 7F), the decreasing trend in NO2 coincides with time of
the rapid spread in the virus (Figure 1). We estimate that after
the date of official enforcement of lockdown, the time-averaged
NO2 decreased by 26.6% in China and 55.6% in Italy compared
to the pre-lockdown period. Spain, USA, and India have also seen
a significant decrease after the lockdown was enforced in these
countries by 33, 22.9, and 11.8%, respectively. It increased in the
UK and Germany by 18 and 32%, respectively, however, even
after the initiation of lockdown, which indicates an inefficient
closure of anthropogenic activities (like road and rail transport,
industries, and power plants). The spatial distribution of total-
column NO2 for all the triads from Dec 28, 2019, to May, 10,
2020, can be visualized Movie 1 in Supplementary Material.
It should be noted that we did not control for meteorological
variations, which may have a significant impact on total-column
NO2 over the period of our study (40). Overall, amidst the
fears of the novel coronavirus, the countries where the lockdown
intervened are expecting a rejuvenated environment. However,
at the same time, possibilities of decreasing air pollutants when
the world is not facing such harsh conditions is also important to
understand.

2.7. A Minimal Stochastic Model
We propose a minimal kinetic model for the short-term
prediction of the spreading of COVID-19 disease. Suppose that
the only processes are infection and recovery. The processes can
be described as

I +H
ki
−→ I + I; and I

kr
−→ H, (1)

where I and H are infected and healthy people, respectively, and
ki and kr are rate constants for infection and recovery. The first
equation shows that if I is the infected people, then H becomes I
at a rate ki; and the second equation indicates that I recovers at a
rate kr . A minimal kinetic model can be formulated as ordinary

differential equations for the population of I:

dI

dt
= kiI(1−

I

K
)− krI, (2)

where K is the size of the population.
We develop a master equation for the infected population

by considering the two elementary processes (Equation 1). The
transition probability at which the number of infected population
increases from i to (i+1) is w(i + 1|i) = kii(1 − i/K), and the
rate at which the number of infected population reduces from
i to (i-1) is w(i− 1|i) = kri. From these, the probability of finding
i infectives in the system at time t, P(i, t) can be obtained from
the following equation:

dP(i, t)

dt
= w(i|i− 1)P(i− 1, t)+ w(i|i+ 1)P(i+ 1, t)

−(w(i+ 1|i)+ w(i− 1|i))P(i, t). (3)

The above probabilistic model is solved by the kinetic Monte
Carlo simulations by means of the Gillespie algorithm, which
incorporates the intrinsic noise (41). The algorithm considers
each of the events as individual realizations of the Markov
process. The time and species numbers are updated stochastically
by choosing the random processes.

To simulate the system (Equation 3), we first obtain the
parameters from the cumulative time series data of confirmed
cases for India, China, and South Korea. In the datasets, we fitted
the below logistic function (which is a solution of Equation 2):

f (t) =
a

1+ b exp(−ct)
, (4)

where a, b, and c are parameters. Once we obtain these
parameters for an individual country, we map them to our model
and find the system parameters ki, kr and K, and i0 is the initial
infected population. We list those parameters below:

Country ki kr K i0

India 0.608 0.486 11,722,830 2
China 1.235 0.988 419,880 27
S. Korea 0.9075 0.726 54,200 4

Then the above parameters are used to solve the Master equation
(Equation 3), and we perform Monte-Carlo simulation to get
stochastic trajectories up to April 15. We present the simulated
stochastic trajectories in Figure 8. For each country, we have
five trajectories. For China and South Korea, we find that our
stochastic trajectories are consistent with the real time series
of the number of infected people. However, for India, our
result shows that on May 20, 2020, the number of infected
people reached ∼109,262 (an average of final values of the five
simulated trajectories).

The problem of predicting the spreading of COVID-19 is a
complex one and depends on many factors like social distancing,
an early detection of the disease, the detection of major hubs of
the disease, etc. Here, we have provided a minimal kinetic model
that uses the trends of the available data and may work only for
short term prediction.
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FIGURE 8 | Stochastic trajectories (marked with pink, yellow, gray, green, and blue curves) of the infected population generated using the Gillespie algorithm for: (A)

India, (B) China, and (C) South Korea. The original datasets up to April 6 for the respective countries are depicted by circular (red) points for a comparison.

3. DISCUSSION

The COVID-19 pandemic revealed an exponential rise in the
reported number of cases and has affected the public health,
ranging from mild to severe conditions. Countries across the
world are combating the spread of the coronavirus through
various social distancing/intervention measures, such as the
closure of schools and universities, banning of public events
and large gatherings, isolation of symptomatic COVID-19 cases,
implementation of mass quarantines, etc. For national as well as
international control of public health, it is crucial to understand
the significance of the onset timing of such measures (42).

The World Health Organization lately reported new cases
being detected in several new countries across the globe (43–45).
Our study can provide insight to tackle the ongoing pandemic
and its associated incidence curve in the context of the timing
and strength of the interventions. We use the data of the number
of COVID-19 cases in nine different countries to investigate some
statistical patterns in the incidence curves. The number of cases
covers a small fraction of the population during the initiation of
the epidemic, and the fraction remains nearly stagnant ranging
nearly from 20 to 50 days from the arrival of the first case.
Furthermore, the number of cases are increasing rapidly, and in a
relatively shorter span, a significant fraction of the population can
be affected. This trend is analogous to the idea that the incidence
curve remains close to one stable state for a sufficient time and,
crossing a time threshold, invokes a sudden shift/transition to
another stable state, where a significant fraction of the population
gets affected. In our work, we employ statistical indicators of
critical slowing down to check if such transitions can be signaled
beforehand and how the anticipation of such transitions can help
mitigate such a crisis at a policy level.

We observe that the initial time window from the arrival of
the first case in each country signaled an impending transition.
An increase in the ACF(1) of the data as well as variance,
before an actual rise in the number of cases, indicates the
phenomenon of critical slowing down. Our work suggests that
while non-pharmaceutical interventions are necessary tomitigate
such an epidemic, the timing of initiation of concerned actions
can strongly influence the outcome of the situation. Owing
to the time lag in the detection of symptomatic cases, the
statistical indicators suggest that a time period of 2–3 weeks
before an impending transition is crucial to suppress the loss of

public health. The controlled response of the epidemic incidence
curve for China and South Korea can be associated with the
time distance between implementation of interventions and the
transition point. Both these countries initiated interventions
before the visible signals of CSD in the incidence curve.
Timely interventions were thus important factors to suppress the
fluctuations in the number of cases and shape the curve. The
analysis of EWSs analysis is crucial while defining the onset of the
interventions and suppress the rise in daily cases. Importantly,
another crucial aspect is the proportion of affected cases in each
country, i.e., a measure of the fraction of the country’s population,
and not the absolute numbers, which is infected at the time of
interventions, such as a strict lockdown. As probability of the
propagation of disease can be thought of as mostly similar or
equal amongst individuals across the globe, it depends upon the
fraction of infected cases in each country during the beginning
of interventions. For instance, the EWS analysis anticipated the
upcoming rise in the incidence curves for both India as well as
Italy, and, interestingly, both the countries imposed individual
nationwide lockdown near the situation close to the transition
(see Table S1 in Supplementary Material). However, the control
in India depicts better results in altering the incidence curve than
that in Italy. The alterations in the incidence curve is most likely
to be a consequence of a difference in the proportion of cases
affected by the epidemic at the beginning of mitigation strategies.
India, resembling China in terms of the total population density,
accounted for ∼ 2.36 × 10−7 cases of the total population,
while Italy, with a relatively smaller population density, crossed
1.22 × 10−4 cases of their total population. Thus, even with
imposition of the public health measures near the signals of
CSD, the outcome for both the countries can vary dramatically.
The variation is the consequence of the proportion of affected
cases when visible signals of EWSs are observed and at the time
of interventions. This suggests that the proportion of affected
population during visible signals of CSD is key to shaping the
disease incidence curve. The strength of the signals can alter the
duration and scale of the interventions needed. Furthermore, the
disruptive situation in the US is indicated by EWSs, as the EWSs
indicators show significant trends for the US in addition to a
large fraction of population being affected at that time. A sharp
rise in the number of cases for the country is a consequence of
both the delay in effective social distancing interventions as well
as a significant proportion of affected cases. Overall, our work
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suggests that, in almost all the countries, an imminent sharp rise
in the incidence curve can be seen using statistical measures prior
to the actual transition.

Another issue the infectious coronavirus raises is the quality
of air pollution in countries where social distancing/lockdown
is enforced. NO2, which is majorly emitted from anthropogenic
activities like land transportation, industries, and energy sectors,
was estimated to decrease in consequence to lockdown measures
implemented by the government of respective countries.
Population-weighted average columnNO2 was found to decrease
with amplification in a number of cases across most of the
countries. Apart from this, NO2 column quantities may be used
as a proxy to estimate the effectiveness of a lockdown on air
quality. We find that NO2 column quantities started following a
decreasing trend during the last week of February in Italy and the
US, which indicates a partial unofficial closure of anthropogenic
activities, taking into consideration that the official COVID-19-
induced lockdown was enforced on March 09 and around March
25 in Italy and the US, respectively. In the UK, however, an
increasing trend in the NO2 column up until May 10 indicates
no such public awareness to restrict anthropogenic activities
(the government declared the lockdown from March 23). We
acknowledge that the reduction in NO2 is also associated with the
compliance of the population of the individual nation to abide by
the lockdown measures.

Furthermore, we suggest that the interventions employed by
India may not come at a time when the curve is very far from
reaching the transition; however, the smaller number of affected
cases may be the determining factor in limiting the disease spread
in India. Implementation of a nationwide lockdown in India may
have better prepared the country for taking measures to control
the epidemic spread and bend of the curve. However, our analysis
also suggests that the period beyond the signals of CSD also needs
efficient monitoring. The results of our minimal stochastic model
predicted that, on May 20, the number of infected people could
go up to∼109,262. Thus, an extended period of such measures is
needed and likely to be effective (6).

We envision that it is fundamental to identify the situation
of such a crisis across the world and make use of the
lead time. The EWSs can keep track of the changes in the
trend statistics in the number of reported cases and warn
when a threshold is reached. The statistical tools used can
be beneficial to identify whether the features of shift in a
system are suppressed by the intervention strategies being
adopted. In particular, while different combinations of strategies
are adopted to overcome such a crisis, the information of
an upcoming transition and its threshold is important to
formulate the degree of such interventions. However, special
care should be taken in the choice of rolling window size and
the filtering bandwidth while estimating the signals of slowing
down. Inappropriate choices may give weak and/or diminished
signals of an imminent transition, which may deviate from
understanding the urgency of the situation. Another aspect to
consider is that the varying extent of testing for COVID-19 across
the countries may have affected the total number of reported
cases; thus, our results here hold specifically for the number of
reported cases.

4. MATERIALS AND METHODS

4.1. The COVID-19 Data Source
We have used the COVID-19 dataset provided by the European
Centre for Disease Prevention and Control (ECDC): An agency
of the European Union (available from https://www.ecdc.europa.
eu/en/publications-data). Initially, we extract the data of the
daily number of reported cases up to March 25, 2020, and in
general mark the first date of the reported cases as the day
of the beginning of the epidemic in the respective countries.
Regardless of the affected person recovers or dies, the virus
contraction occurs once; we thus consider cumulative data of the
daily number of the confirmed cases for nine different countries
for our study.

4.2. Data Selection
We use the available time series to test the predictability
of an upcoming transition for each country. The generic
indicators are examined using the time series segments before
the transition in the number of cases of the epidemic (see
Section 4: Detection of the Transition Phase and Figure S5 in
Supplementary Material) in each country (shaded regions
in Figure 1).

4.3. Detrending
Often, non-stationarities in the data lead to false indications of
impending transitions. To overcome this, we obtain the residual
time series by subtracting a Gaussian kernel smoothing function
from the empirical time series (23). Furthermore, we estimate
the variance and autocorrelation at first lag for the residual time
series choosing a rolling window size from the sensitivity analyzes
of the time series data for each country. We choose the filtering
bandwidth and avoided any under-fit or over-fit (for details see
Table S2 in Supplementary Material).

4.4. Autocorrelation at First Lag and
Cariance
The fluctuations in the time series reveal different novel
phenomena, such as sudden transition, flickering, stochastic
switching, etc. It is established that followed by a perturbation,
the rate of return of the system slows down near an impending
transition or a tipping point. This phenomenon of slow return
rate or recovery from a perturbation in the vicinity of a sudden
transition is known as critical slowing down (CSD). We capture
the signals of CSD by estimating changes in the short-term
autocorrelation (at lag-1) and variance of the time series. CSD
increases the short-term memory of the time series, which is
observed through the correlation structure of the time series
before a transition. We compute autocorrelation at lag-1 by
fitting an autoregressive model of order 1 (of the form zt+1 =

α1zt + ǫt) using an ordinary least-squares fitting method. The
time series analysis has been performed using the “EarlyWarning
Signals Toolbox” (http://www.early-warning-signals.org/).

4.5. Sensitivity Analysis
The predictability of each of the indicator depends upon the
datasets investigated as well as the choices made for processing
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the data. Thus, it is essential to check the efficacy of our results
to such choices. In particular, we analyze the sensitivity of our
observations to the choice of rolling window size and degree of
smoothing (filtering bandwidth) used during the calculation of
indicators and detrending/filtering the datasets, respectively. We
estimate the CSD indicators using window sizes ranging from 40
to 90% of the time series length in an increment of 1 point and
for bandwidths ranging from 5 to 100% with the increment of
1 point. We quantify the robustness of the outcomes toward the
range of window sizes and bandwidth using the distribution of
the Kendall-τ test statistic.

4.6. Surrogates
To test the significance of our statistical analysis, we estimate
Kendall rank correlation-τ test statistics for both the generic
indicators. We generate 1,000 surrogate time series of the same
length as the analyzed real datasets to test the likelihood of
obtaining the computed trends by chance. The surrogate records
are obtained on bootstrapping the real datasets by shuffling
the original residual time series and sampling the data with
replacement. This method generates the surrogate time series
with a similar distribution of the original time series (27).
For each surrogate, we consider the Kendall-τ estimate as
the test statistic to measure the robustness of the outcomes.
Furthermore, we calculate the fraction of the surrogates having
the same or higher test static value than the original data
and measure the probability P(τ ∗ ≤ τ ) to calculate that
the observed test statistic is by chance. We also generate
surrogate time series using phase randomization method (for
details see Section 3: Surrogate Analysis and Figure S4 in
Supplementary Material).

4.7. Satellite Retrieved Total Column NO2
Worldwide, the lockdown response to the onset and spread of
COVID-19 caused a decrease in daily and economic activities,
which in turn is expected to cause a reduction in ambient air
pollution. This can also be used as an indicator to determine
whether government policies of lockdowns/restricted human
movements are successful or not. To further examine this, we use
the Ozone Monitoring Instrument (OMI) retrieved total column
NO2 (available from https://aura.gsfc.nasa.gov/omi.html) as a
proxy to infer the change in anthropogenic air pollution for

the time-period of our study. OMI flies onboard the EOS Aura
sun-synchronous polar-orbiting satellite. It has a swath length of
2,600 km and a level-2 and spatial resolution of 13 × 24 km2

(46). The OMI NO2 column was satisfactorily validated against
surface spectrometer measurements in recent studies (47, 48).
To roughly obtain a global coverage, we consider 3-days time
slices (triads) within which the overlapping swath overpasses
were averaged. Thereafter, we perform a population-weighted
average of the grids that lie within the political boundaries of the
countries considered in this study. Gridded population data was
obtained for 2015 from SEDAC (https://sedac.ciesin.columbia.
edu/data/collection/gpw-v4).
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