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OnMarch 13, 2020, theWorld Health Organization (WHO) declared the 2019 coronavirus

disease (COVID-19) caused by the novel coronavirus SARS-CoV2 a pandemic. Since

then the virus has infected over 9.1 million individuals and resulted in over 470,000 deaths

worldwide (as of June 24, 2020). Here, we discuss the spatial correlation between county

population health rankings and the incidence of COVID-19 cases and COVID-19 related

deaths in the United States. We analyzed the spread of the disease based on multiple

variables at the county level, using publicly available data on the numbers of confirmed

cases and deaths, intensive care unit beds and socio-demographic, and healthcare

resources in the U.S. Our results indicate substantial geographical variations in the

distribution of COVID-19 cases and deaths across the US counties. There was significant

positive global spatial correlation between the percentage of Black Americans and cases

of COVID-19 (Moran I = 0.174 and 0.264, p < 0.0001). A similar result was found for the

global spatial correlation between the percentage of Black American and deaths due to

COVID-19 at the county level in the U.S. (Moran I = 0.264, p < 0.0001). There was no

significant spatial correlation between the Hispanic population and COVID-19 cases and

deaths; however, a higher percentage of non-Hispanic white was significantly negatively

spatially correlated with cases (Moran I = –0.203, p < 0.0001) and deaths (Moran I =

–0.137, p < 0.0001) from the disease. This study showed significant but weak spatial

autocorrelation between the number of intensive care unit beds and COVID-19 cases

(Moran I = 0.08, p < 0.0001) and deaths (Moran I = 0.15, p < 0.0001), respectively.

These findings provide more detail into the interplay between the infectious disease

and healthcare-related characteristics of the population. Only by understanding these

relationships will it be possible to mitigate the rate of spread and severity of the disease.
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INTRODUCTION

In December 2019, a cluster of pneumonia cases with unknown
etiology were reported in Wuhan, China (1, 2). Following severe
acute respiratory syndrome coronavirus (SARS-CoV) originating
in China in 2003 and Middle East respiratory syndrome
coronavirus (MERS-CoV) originating in Saudi Arabia in 2012,
SARS-CoV-2 appeared to become the third and significantly
more lethal member of the usually less dangerous family of
pathogens (3). COVID-19 caused by SARS-CoV-2 was declared
a pandemic on March 11, 2020 (4). Despite previous epidemics,
the COVID-19 pandemic has revealed ill-preparedness in many
countries (5), especially in the US, with regards to adequate
healthcare resources, including hospital beds, ventilators, and
personal protective equipment for healthcare workers. The
human and economic cost incurred thus far has been devastating.

SARS-CoV-2 belongs to a family of large RNA viruses that
are the second most common cause for the common cold in
humans. The first cases of COVID-19 were linked to a live
animal market in Wuhan, China; however, the current rapid
spread is via human-to-human transmission. Our understanding
of the pathogenesis still appears to be rudimentary with new
data emerging almost daily. COVID-19 primarily spread via
respiratory droplets and has an incubation period of up to 14
days, with symptom onset occurring by 11.5 days in ∼97.5%
of cases (6). Viral shedding occurs mainly from the upper
respiratory tract even in asymptomatic patients; thereby, making
it difficult to institute preventative measures that rely on
symptomatology (7, 8). This has led to different transmission
rates from previous outbreaks, and while SARS was essentially
under control within 8 months, the trajectory for COVID-19
appears to be significantly different. The disease has a wide
variety of presentations ranging from mild cough and fever to
shortness of breath, malaise, and even anosmia (9). The severity
of the illness is also widespread with the majority of affected
individuals being asymptomatic or only showing mild symptoms
while others develop severe forms necessitating hospitalizations
and even prolonged intubations. Treatment thus far has mainly
focused on supportive measures.

The most recent study on COVID-19 risk factors shows a
higher probability of infection in elderly individuals as well
as men, non-white and individuals from areas with lower
socio-economic status or higher population density (10). Initial
studies showed COVID-19 to be associated with older age,
high population density, kidney disease, obesity, respiratory
infections, hypertension, diabetes, cardiovascular diseases and
ethnicity (3, 11–14).

To reduce the spread of infections many governments have
instituted public health response measures such as movement
restrictions and social distancing (15–17). However, while the
learning curve regarding the disease process is steep and the
country-level (macro) forecasting of the infection spread under
different restriction modes is becoming more accurate, more
granular analysis at a regional level that takes into account the
health rankings of the area has been limited. This is largely
due to data availability issues, with data on regional indicators
rarely being available in real-time. Furthermore, neighborhood

characteristics may also result in higher infection rates and
poorer health outcomes in disadvantaged populations and areas
because of a lack of public trust in government and health
authorities (5) as well as limited access to or use of healthcare
(18, 19). During previous epidemics and pandemics, researchers
have reported that targeting of commuters from high-incidence
locations (20), and low socio-economic areas (21–23) can
mitigate disease transmissions in these communities.

In this study, we hypothesized that the number of COVID-
19 cases and deaths vary geographically across US counties
and that spatial dependencies exist between the disease and
demographic, health, behavioral, and clinical care. For example,
we also hypothesized that the number of primary care physicians
(PCPs) is inversely proportional to the number of COVID-19
cases and deaths while the other variables could be directly
proportional. Therefore, we investigated the relationship between
socio-demographic and healthcare resources at the county
level and the associated infection rate of COVID-19 in the
U.S using global and local Moran’s Index. In particular, we
examined whether the geographic distribution of variables such
as race/ethnicity and number of active PCPs, nurses, and hospital
intensive care units (ICU) beds had any effect in overall incidence
and mortality due to COVID-19.

METHODS

Data Sources
This study was based on three data sources. The primary source
for confirmed cases of and deaths due to COVID-19 in each

TABLE 1 | Descriptive summary of dependent and independent variables

considered in this study.

Variable Description Source

Outcome variables

Counts of COVID-19

cases/deaths

Number of confirmed cases/deaths of

COVID-19 in each county per 100,000

population

(24)

Health, behaviors and clinical care

ICU beds Number of ICU beds (25)

PCP PCPs per 10,000 population (26)

Adult obesity Percentage of adults with Body mass index

(BMI) > 30

(26)

Diabetes Percentage of adults aged 20 and above with

diagnosed diabetes

(26)

Uninsured Percentage of people under age 65 without

insurance

(26)

Flu vaccinations Percentage of annual Medicare enrollees

having an annual flu vaccination, overall and

subgroups

(26)

Demographics

Black American Percentage of the population that is

non-Hispanic Black or African American

(26)

Hispanic Percentage of the population that is Hispanic (26)

White Percentage of the population that is

non-Hispanic white

(26)
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U.S. County by May 22, 2020 (122 days) were obtained from
www.usafacts.org (24). The second source was Kaiser Health
News (KHN) (25) for data on the number of ICU beds. Lastly,
socio-demographic and healthcare resources were extracted from
the County health rankings key findings report 2020 (26, 27).
Variables extracted from these data sources were compiled
from multiple sources such as the World Health Organization
(WHO), U.S. Department of Agriculture, U.S. Census Bureau,
governmental, non-governmental, and educational institutions.
See Table 1 for the list of variables and their sources.

The boundary file of the 3,142U.S. Counties was obtained
from the U.S. Census Bureau, 2018 cartographic boundary files
(www.census.gov). Due to the spatial nature of our study, we
included only 3,108 contiguous counties after excluding counties
in Alaska and Puerto Rico.

We investigated the potential effects of county-level factors
including the number of hospital beds, ICU beds, number
of PCPs, adult obesity, number of uninsured, number of flu
vaccinations, and race on the incidence of and deaths from
COVID-19. The dataset used in this study can be downloaded
from https://github.com/oyeadegboye/USA_COVID-19.

Data Analysis
Descriptive summaries of study characteristics were presented
as mean, median and interquartile range. Often in spatial data,
there is some degree of dependency among observations within a
geographical space (28, 29); therefore, we measured the bivariate
spatial autocorrelation between county-level health factors and
the number of confirmed COVID-19 cases using Moran’s Index
based on Queen’s contiguity spatial-lag of order 1 (immediate

FIGURE 1 | The number of confirmed cases of COVID-19 and deaths per 100, 000 population by US county. Note: Visual effects may be distorted due to the large

area of US counties in the West compared to the East. (A) Cases/100,000 population. (B) Deaths/100,000 population. (C) Univariate LISA cases/100,000. (D)

Univariate LISA deaths/100,000.

Frontiers in Public Health | www.frontiersin.org 3 November 2020 | Volume 8 | Article 579190

www.usafacts.org
www.census.gov
https://github.com/oyeadegboye/USA_COVID-19
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Saffary et al. Spatial Dynamics of COVID-19 in US Counties

neighbors) (30). Moran’s I is the most common measure of
global spatial autocorrelation which gives the overall distribution
of departures from randomness. We presented both global and
local Moran’s I (univariate and bivariate) and local indicators
of spatial association (LISA) (31) at the county level to provide
information on spatial clusters and outliers and types of spatial
correlation. LISA allows for the decomposition of global Moran’s
I inferring the scope of clustering in smaller areas (31). Similarly,
LISA calculation was based on Queen’s contiguity spatial-lag of
order 1, and the statistical significance of the pattern of spatial
autocorrelation in each county (relative to the entire spatial
scope) was tested at 5% level of significance. The counties’ spatial
dependence was plotted on the map and color-coded according
to the type of interaction. The high-high and low-low areas
represent positive local spatial correlations that are identified
as spatial clusters (red and blue color, respectively), while the
high-low and low-high areas represent negative local spatial
correlations that are classified as spatial outliers (pink and light
blue color, respectively).

All statistical analyses were implemented in R statistical
software version 3.6.2 (32).

RESULTS

A total of 1,622,612 cases of confirmed COVID-19 and 97,087
deaths were recorded in the US as of May 24, 2020. Figure 1
shows the distribution of the number of confirmed cases
of COVID-19 and deaths in the 3,108 contiguous counties
considered in this study. The number of cases per 100,000
revealed a clear separation between the West and East due to
much few cases in the central counties (Figure 1A). A similar
pattern was observed in the deaths per 100,000, with higher
rates observed in the East (Northeast and Southeast). Table 2
presents the exploratory summaries of incidence and deaths
from COVID-19 and county level health factors. An average of
503.1 cases and 30.5 deaths due to COVID-19 per county were
recorded during the study period. We observed moderate and
high significant global spatial autocorrelation based on Queen
Contiguity spatial-lag of order 1 in the distribution of COVID-19
cases and deaths across US counties (Global univariate Moran’s I
=0.228, p < 0.0001), and (Global univariate Moran’s I =0.477,
p < 0.0001), respectively. Univariate LISA plots displayed the
presence of significant spatial clusters or outliers by county
(Figures 1C,D). Counties with similar numbers of cases/deaths
are clustered with immediate neighboring counties, especially in
the Northeast and Southeast.

ICU Beds and Number of PCPs
Global bivariateMoran’s I identified a significant but weak spatial
dependence between COVID-19 cases and the number of ICU
beds (Moran’s I = 0.08, p < 0.0001). Similarly, we observed
weak global bivariate spatial dependence between the number
of COVID-19 deaths and the number of ICU beds (Moran’s I
=0.15, p < 0.0001). However, there was no significant global
bivariate spatial dependence between the disease and the number
of PCPs (Moran’s I=0.0001, p> 0.05) and COVID-19 deaths and
PCPS (Moran’s I = −0.01, p > 0.05). Figure 2 displays the maps

TABLE 2 | Descriptive summary of dependent and independent variables

considered in this study.

Variables Mean Median (IQR)a Global bivariate Moran’s I

Deaths Cases

Cases per 100,000

population

503.1 32.0 (7.0–147.8) 0.228****b

Deaths per 100,000

population

30.5 1.00 (0–5) 0.476****b

Health, behaviors, and clinical care

ICU beds 23.6 0 (0–12.0) 0.15**** 0.08****

PCPs 54.5 48.0 (32.0–71.0) 0.001 −0.01

Adult obesity 32.9 33 (29–37) 0.005 0.01

Diabetes 12.2 12 (9–15) 0.03 0.01

Uninsured 11.5 11 (7–14) 0.005 0.012

Flu vaccinations 41.7 43 (36–49) −0.004 −0.006

Race/ethnicity

Black American 9 2.2 (0.7–10.2) 0.264**** 0.174****

Hispanic 9.6 4.4 (2.4–10.0) −0.002 0.008

Non-Hispanic white 76 83.4 (64.3–92.3) −0.137**** −0.203****

amedian and interquartile range over 3,142 US Counties.
bunivariate Moran’s I.
Significant at *p < 0.05, **p < 0.01, ***p < 0.001, ****P < 0.0001.

showing the number of ICU beds (Figure 2A), the number of
PCPs per county (Figure 2D) and the spatial correlation analysis
(middle and bottom panels of Figure 2). We observed a high
concentration of ICU beds in the Northeast, South Atlantic and
West Pacific (Figure 2A). Local bivariate Moran’s I analyses are
displayed as LISA maps (Figures 2B,C). Few spatial clusters of
low COVID-19 cases (and deaths) with a low number of ICU
beds were observed in the Midwest counties with few high-high
relationships noted in the Northeast, South Atlantic and West
Pacific (Figures 2B,C). There was no clear spatial pattern for the
number of PCPs (Figure 2D) although a few clusters of high-high
and low-low were observed in the Midwest.

Adult Obesity and Diabetes
Figures 3A,B presents the spatial distribution of adult obesity
measured by BMI > 30 and diabetes across US counties.
There was a significant spatial dependency in the incidence
of adult obesity (Global univariate Moran’s I = 0.01, p <

0.3341) and diabetes (Global univariate Moran’s I = 0.34, p <

0.0001). However, there was no significant global bivariate spatial
correlation in the number of cases (and deaths) of COVID-19
vs. adult obesity (p > 0.05). Similarly, although the global spatial
correlation between diabetes and COVID-19 cases/death was not
significant, several counties in the Midwest and South of the U.S.
were identified as significant low-low and high-high clusters for
COVID-19 cases/deaths and diabetes (Figures 3C,D).

Flu Vaccination and Health Insurance
The geographical distribution of uptake of flu vaccination and
uninsured population is displayed in Figures 4A,B. There was
a slightly higher increase in flu vaccination uptake in Eastern
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FIGURE 2 | (Top) Distribution of the number of ICU beds (A) and PCPs (D) across US counties; (middle and bottom) Bivariate LISA map between ICU beds/PCPs

and COVID-19. (A–C) ICU beds, (D–F) PCPs. The high-high and low-low areas represent spatial clusters, while high-low, and low-high represent discordant patterns.

(A) Number of intensive care units (ICU) beds. (B) Cases vs. ICU beds. (C) Deaths vs. ICU beds. (D) Primary care physicians (PCP)/10,000 population. (E) Cases vs.

physicians. (F) Deaths vs. physicians.

Pacific counties while the percentage of uninsured population
was slightly higher in the Midwest. Global bivariate Moran’s I
indicated no spatial autocorrelation between COVID-19 and flu
vaccination or percentage of uninsured population (Table 2).

Race
Figure 5 presents the distribution of the US population by race
and local patterns of spatial correction at the county level between
COVID-19 cases and deaths. The global bivariate Moran’s I for
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FIGURE 3 | Relationships between adult obesity (right), diabetes (left) and number of COVID-19 cases (and deaths). Spatial distribution of (A) adult obesity and (B),

diabetes. LISA map for spatial dependence between adult diabetes and COVID-19 cases/deaths (B,C). (A) % of adults with BMI > 30. (B) % of adults aged 20 and

above with diagnosed diabetes. (C) Cases vs. diabetes. (D) Deaths vs. diabetes.

the spatial correlation between the percentage of Black American
population and COVID-19 cases and deaths were 0.174 (p ≤

0.0001) and 0.264 (p ≤ 0.0001), respectively (Table 2). Global
bivariate Moran’s I identified significant spatial dependence
clusters between COVID-19 cases/deaths and Black American
and non-Hispanic white populations across U.S. counties. The
global spatial autocorrelation between COVID-19 cases (and
deaths) was negative for the non-Hispanic white population
and positive for the Black American population (Table 2). The
LISA map (Figure 5, right panel) displayed the clusters of
these relationships. The high Black American population and
high COVID-19 cases/deaths as well as low Black American
population and low COVID-19 cases/deaths are significant in
the Southeast. The West and Midwest revealed many outliers
of high cases/deaths but a low Black American population. The
global spatial correlation between the distribution of Hispanic
population and COVID cases/deaths were not significant

(p > 0.05); however, there were some significant local clusters
of high cases/deaths and high Hispanic population and low
cases/deaths and low Hispanic population in the Southwestern
and Western U.S. counties. Most of the significant outliers were
located in the Mideast, Southeast and Northeast. There were
significant clusters of low COVID-19 cases/deaths and low non-
Hispanic white populations in the West (South and Pacific)
(Figures 5H,I). Significant outlying counties displayed high-low
or low-high bivariate correlations between race/ethnicity and
COVID-19, and they are illustrated and color-coded as pink and
light blue, respectively, in Figure 5.

DISCUSSION

Containing and ultimately eradicating infectious diseases
require interdisciplinary collaboration because the spread
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FIGURE 4 | Spatial distribution of flu vaccination (A) and uninsured population (B). (A) % of annual medicare enrollees having an annual flu vaccination, overall and

subgroups. (B) % of people under age 65 without insurance.

not only depends on the nature of the pathogen but also on
health and healthcare-related factors as well as socioeconomic
characteristics of the population. A better understanding of all
these factors and their interdependencies are essential to finding
the best strategies to contain the pathogen and protect the
population. The purpose of this study is to shed more light on
the spread of the COVID-19 pandemic by analyzing county-level
relationships between confirmed U.S. COVID-19 infections and
deaths and healthcare and socio-demographics indicators such
as ICU beds, number of PCPs, prevalence of adult obesity and
diabetes, number of uninsured individuals, and flu vaccinations
as well as race/ethnicity.

Our study showed a significant positive spatial dependency
between confirmed COVID-19 cases/deaths and the number
of ICU beds, with pockets of positive autocorrelation
predominantly located in Central and Northwestern regions
(low-low) and along the Southwestern, Southern, and
Northeastern borders (high-high). According to data presented
by the Society of Critical Care Medicine, the U.S. have the
highest number of ICU beds per 100,000 with significant
variations across the country and an estimated 94% of ICU beds
in metropolitan areas with populations of >50,000 (33). ICU
bed availability also indicates that the hospital is well-equipped
to serve as a tertiary care center, treating referred, or transferred
patients who require an acute level of care not available at their
local hospital. Our data indicate that areas with a high population
density have higher transmission rates than areas with lower
population density. More rural areas with fewer ICU beds
may therefore benefit from the lower population density and a
resulting lower transmission rate. Besides, areas with more ICU
beds may serve as referral centers for patients with more severe
forms of COVID-19 therefore resulting in a higher death rate.

Interestingly, we did not find any significant spatial
autocorrelation between the COVID-19 cases/deaths and
the number of PCPs, prevalence of adult obesity and diabetes,

number of uninsured individuals or flu vaccination. Our initial
hypothesis was that the number of PCPs would be inversely
proportionate to the number of COVID-19 cases/deaths, while
the other variables listed would be directly proportionate.
However, the data do not show any significant correlation.
Regarding the number of PCPs, this may indicate that the
diagnosis of COVID-19 is not commonly made by the PCP.
Unlike other chronic diseases, COVID-19 presents with acute
respiratory symptoms that may require immediate attention
found in the emergency department—particularly if symptoms
are severe. In addition, COVID-19 requires a nasal swab for
definitive diagnosis. Unfortunately, testing was not widely
accessible during the beginning of the pandemic and most PCPs
likely had limited access.

COVID-19 has been shown to affect individuals with
comorbidities more severely. Among other chronic illnesses,
the Centers for Disease Control and Prevention (CDC) listed
diabetes and severe obesity (BMI>40) as risk factors for
COVID-19 (34). We analyzed data on obesity (BMI>30) and
diabetes. Interestingly, the data presented here did not reveal
any significant global spatial autocorrelation for these variables;
however, the data identified counties in the Midwest and South
that were significant low-low and high-high clusters, respectively,
for COVID-19 cases/deaths and diabetes. One explanation for
the lack of spatial dependency between obesity and COVID-19
may be the fact that we looked at a BMI of >30 rather than >40
(34). It is well-documented that an increase in BMI predisposes
patients to more severe chronic illnesses, and although obesity in
itself may place patients at a higher risk, it may require severe
obesity to see a significant difference in the COVID-19 disease
process compared to individuals with a normal BMI. Known
as the “stroke belt,” these areas in the southeastern part of the
U.S. have been shown to have a consistently higher stroke rate
than the rest of the country (35). While the etiology is unknown
and likely multifactorial, the finding was still useful in creating
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FIGURE 5 | (Top) Percentage of population, (middle and bottom) LISA map for spatial dependence between race, and COVID-19 incidence. (A–C) non-Hispanic

Black or African American (D–F), Hispanic. (A) % non-Hispanic Black or african american. (B) Cases vs. Blacks. (C) Deaths vs. Blacks. (D) % of population that is

Hispanic. (E) Cases vs. Hispanic. (F) Deaths vs. Hispanic. (G) % of population that is non-Hispanic White. (H) Cases vs. White. (I) Deaths vs. White.

targeted public health initiatives to address the issue. A similar
approach can be used for COVID-19. Although our data did not
show a significant association, between COVID-19 and diabetes
and BMI, spatial clusters can be used to identify areas that would
benefit from targeted interventions and public health initiatives.

Recent current events have put racial inequality back into the
forefront of the national and even international conversation.
Unfortunately, it is often overlooked that racial inequality affects
all aspects of daily living, including healthcare (36). Limited
access to healthcare does not only affect acute conditions, but
can also result in chronic disease that worsens over time if
left untreated. In the case of COVID-19, this is particularly
concerning as inequalities may lead to significant comorbidities,
which predispose individuals to the disease for which they may
not be able to seek treatment. For example, data from New
York City revealed a disproportionately higher death rate due
to COVID-19 in Black American and Hispanic persons than
white and Asian persons (37). Studies on patients treated at

five NHS Hospitals and at Oxford Royal College, UK, showed
similar results (38, 39). Our data confirm these findings and
showed a positive significant spatial dependence between Black
Americans and COVID-19 cases/deaths but negative spatial
dependency for non-Hispanic whites. Northwest and Southeast
counties with a high proportion of Black Americans are also
positively spatial correlated with COVID-19 cases/deaths. The
counties with a negative spatial dependency between cases/deaths
and non-Hispanic whites are located along the Northern and
Southern borders, respectively.

Taken together, these data indicated that the global pandemic
affects different races in the U.S. differently, with racial minorities
having higher rates of infection and death. There is a multitude
of explanations that may account for these findings. In addition
to comorbidities due to poor health maintenance and limited
access to acute care, living conditions may also lead to a higher
risk of COVID-19 infection and death. Racial minorities are
more likely to live in more densely populated areas within
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multi-generational households, making preventative measures,
such as social distancing, more challenging or even impossible
(37). As previously reported by the WHO, crowding, which
occurs when the number of occupants exceeds the capacity of
the dwelling space available, has been associated with significant
adverse health outcomes, including infectious diseases (40).
Unfortunately, mitigating this issue requires local and national
governments to provide more adequate housing options that
are available to low-income families. In the case of COVID-
19, this may also require adequate testing, contact tracing and
the ability to assist with isolating individuals who have tested
positive and who would otherwise not be able to due to economic
restrictions. Additionally, the provision of hand sanitizers and
masks to decrease the risk of spread should be considered if
isolation is not possible.

This study has several limitations. First, detailed testing data
including the number of negatives and positive cases were not
available. Particularly during the early phase of the first wave,
testing was very limited and unequally distributed throughout
the U.S. Therefore, areas that appear to have low COVID-
19 cases/deaths may in fact have had higher rates that went
unnoticed due to lack of testing. As testing improves, data points
may start to represent actual case load more accurately. Secondly,
our data did not show any significant correlation between
obesity and the rate of COVID-19 cases/deaths. As mentioned
above, severe obesity has been associated with an increased
predisposition for COVID-19 (8, 34); however, in this data set
the cutoff was set at BMI > 30. This may indicate that obesity in
itself does not result in higher positive rates but that extremes of
obesity have to be achieved to see significant differences. Thirdly,
our data did not consider the timing of preventative measures
such as shelter-in-place and mandatory mask policies. There
were significant differences in when and how different states
approached the pandemic. For example, California was among
the first states to declare a strict shelter-in-place policy, while
other states decided to completely forgo this measure. Likewise,
the adaptation of mask policies was very variable throughout
the U.S. and may have affected the COVID-19 cases/deaths
significantly. Lastly, although, we observed several interesting
patterns of spatial dependency in this study, these patterns
should be interpreted with caution, because inferences were
based on uncorrelated level of significance (0.05). However, we
presented supplementary results (Supplementary Table 1) based
on correlated tests (multiple comparisons) using Bonferroni
bounds (conservative approach) and false discovery rates (less
conservative approach) (41–43). Although, there were slight
changes to the pattern of the spatial dependency in the LISA map
using false discovery rate adjusted alpha level, that of Bonferroni

correction were more pronounced. Additional analyses based
on recent data would make it possible to reinforce the patterns
detected during the early phase of the epidemics.

CONCLUSION

By shedding more light on the interplay between COVID-19 and
health-related characteristics of the US population, this study can
help mitigate the spread rate and severity of the disease as well as
advocate for more attention to minorities at higher risk of severe
infection and death. Our analysis has shown significant positive
spatial dependency between confirmed COVID-19 cases/deaths
and the number of ICU beds. Moreover, significant low-
low and high-high clusters for COVID-19 cases/deaths and
diabetes are shown in the Midwest and South, areas which are
known as the “stroke belt” with a significantly higher stroke
rate that the rest of the nation. Interestingly, we did not
find any significant spatial correlation between the COVID-
19 cases/deaths and the number of PCPs, prevalence of adult
obesity and diabetes, number of uninsured individuals, or flu
vaccination. Last but not least, our data confirm previous findings
that racial minorities are at higher risk of severe infection and
death, in particular, a positive significant spatial dependence
between Black Americans, and COVID-19 cases/deaths is shown
which could be explained with poor living standards, insufficient
access to healthcare facilities, and domicile in areas with higher
population density.
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