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Classification of Alzheimer’s Disease (AD) has been becoming a hot issue along with the

rapidly increasing number of patients. This task remains tremendously challenging due to

the limited data and the difficulties in detecting mild cognitive impairment (MCI). Existing

methods use gait [or EEG (electroencephalogram)] data only to tackle this task. Although

the gait data acquisition procedure is cheap and simple, the methods relying on gait data

often fail to detect the slight difference between MCI and AD. The methods that use EEG

data can detect the difference more precisely, but collecting EEG data from both HC

(health controls) and patients is very time-consuming. More critically, thesemethods often

convert EEG records into the frequency domain and thus inevitably lose the spatial and

temporal information, which is essential to capture the connectivity and synchronization

among different brain regions. This paper proposes a cascade neural network with two

steps to achieve a faster and more accurate AD classification by exploiting gait and EEG

data simultaneously. In the first step, we propose attention-based spatial temporal graph

convolutional networks to extract the features from the skeleton sequences (i.e., gait)

captured by Kinect (a commonly used sensor) to distinguish between HC and patients.

In the second step, we propose spatial temporal convolutional networks to fully exploit

the spatial and temporal information of EEG data and classify the patients into MCI or

AD eventually. We collect gait and EEG data from 35 cognitively health controls, 35 MCI,

and 17 AD patients to evaluate our proposedmethod. Experimental results show that our

method significantly outperforms other AD diagnosis methods (91.07 vs. 68.18%) in the

three-way AD classification task (HC, MCI, and AD). Moreover, we empirically found that

the lower body and right upper limb are more important for the early diagnosis of AD than

other body parts. We believe this interesting finding can be helpful for clinical researches.

Keywords: Alzheimer’s disease, deep learning, automatic diagnosis, gait, EEG

1. INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of cognitive impairment and is one of the
diseases with the highest incidence among the elderly. In 2006, 26.6 million people on the earth
suffered from AD, and the number is still rapidly increasing every year (1). More critically, AD has
become the seventh leading cause of death (2). Conventional AD diagnosis methods often use scale
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screening and brain imaging equipment such as functional
Magnetic Resonance Imaging (fMRI), Computer Tomography
(CT), and Positron Emission Tomography (PET). Thesemethods
require experienced clinicians as well as exhaustive examinations.

Recently, many studies (3–9) have been conducted to reduce
the diagnosis cost and shorten the diagnosis time by designing
an AD classification system that is able to detect and classify AD
automatically. However, it is challenging to classify AD precisely
for the following reasons: on the one hand, the prodromal stage
of AD, namely mild cognitive impairment (MCI), has a light
symptom, making it hard to detect; On the other hand, extracting
robust features for AD detection is very challenging due to the
limited volume of medical data.

Previous studies on AD classification exploit gait data (3,
10–17) due to the strong relationship between gait features
and cognitive function (18–25). They often extract hand-crafted
features from the input gait data (e.g., skeleton) and classify
AD relying on these features. However, designing hand-crafted
features for AD classification requires expert knowledge, and it
is difficult to generalize the hand-crafted features to other tasks.
Recently, some researchers (12, 13, 15, 16, 26, 27) attempt to
conduct AD classification using EEG data. However, existing
EEG-based methods often (6, 7) need to convert EEG data into
frequency domain information and calculate the Power Spectral
Density (PSD) features for classification. In this sense, these
methods will inevitably lose the information in the spatial and
time domains of EEG data, which, however, is very important for
capturing the coherence and synchronizations among different
brain regions. It is worth noting that existing methods use one
modal only (gait or EEG data) and suffer from the following
limitations: (1) as discussed in (28, 29), using gait data can
accurately distinguish HC and patients but often fails to classify
MCI and AD, and (2) using EEG data can classify MCI and AD
more accurately, but it is time-consuming to collect EEG data
from both HC and patients.

We contend that considering the two modalities (i.e., gait
and EEG data) simultaneously helps achieving faster and more
accurate classification. To this end, we propose a cascade
neural network with two steps for the early diagnosis of
AD using both gait data and EEG data simultaneously. In

the first step, we use gait data to classify HC and patients.
For the purpose of reducing the psychological disturbance to
the subject, we follow (10) to use the Kinect devices as the
acquisition equipment to capture skeleton sequences. Regrading
the non-Euclidean skeleton data, we propose to use attention-
based spatial temporal graph convolutional networks (AST-
GCN) to model the relationships among body key points
and automatically extract powerful features for distinguishing
between HC and patients. In the second step, we use the
original EEG data to distinguish MCI and AD patients further.
Unlike other methods that convert EEG data to the frequency
domain, we propose spatial temporal convolutional networks
(ST-CNN) to directly extract the spatial and temporal features
from original EEG data and use them to classify MCI and
AD. In this manner, the EEG data from HC are no longer
required, saving a lot of data collection time. We collect a data
set consisting of gait and EEG data from 35 cognitively health

controls, 35 MCI patients, and 17 AD patients to evaluate our
proposed method.

Our main contributions are summarized as follows:

• We propose a cascade neural network that uses both gait and
EEG data to classify AD, which achieves a high accuracy rate
with less manual participation. This is the first attempt to
consider two modalities for AD classification to the best of
our knowledge.

• We propose attention-based spatial temporal graph
convolutional networks to automatically extract the features
from gait data and leverage them to classify AD.

• Moreover, we also propose spatial temporal convolutional
networks to fully extract the spatial and temporal features from
the original EEG data in both space and time domains.

• The accuracy rate of our proposed cascade neural network
in the three-way classification of HC, MCI, and AD reaches
91.07%, which is much higher than the method using one
modal (68.18%). The accuracy of HC vs. MCI/AD is up
to 93.09%.

The rest of the paper is arranged as follows: Related work
is concentrated on section 2; Section 3 details the proposed
framework and the modules in it; Experimental results are
exhibited in section 4; Section 5 concludes this paper.

2. RELATED WORK

Gait data has been used extensively to classify AD. Wang et al.
(3) developed a device to collect the inertial signals of subjects.
They designed an algorithm to leverage the inertial signals to
detect and calculated the features of the stride. Then they selected
the salient features to classify HC and AD. The classification
accuracy rates in the female and the male groups are 70.00
and 63.33%, respectively. Choi et al. (29) compared the gait
and cognitive function between the HC group and MCI/AD
groups. They found that gait features can distinguish MCI and
HC, while cognitive tests are suitable for distinguishing AD
and HC. The average detection rate of AD and MCI from HC
using gait variables is 75%. Seifallahi et al. (10) used Kinect to
collect gait data, extracted, and screened the features. Then they
used Support Vector Machines (SVM) to classify AD and HC.
The classification accuracy rate is 92.31%. Varatharajan et al.
(4) used IoT devices to collect gait data and then extracted the
features using the dynamic time warping (DTW) algorithm. The
accuracy rate of classification is about 70%. Although the above
works achieve good performance, they all rely on handcrafted
feature extraction, which cannot guarantee the full use of the
implicit information in gait data, and the features designed for
specific tasks cannot be applied to other general tasks. The
attention-based spatial temporal graph convolutional networks
we proposed can automatically extract gait data features and
exploit the relationships among body joints.

EEG data is another important information that can be
used to diagnose AD. Existing methods for the early diagnosis
of AD using EEG data can be categorized into handcrafted

feature based-methods and deep learning methods. Anderer
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et al. (12) and Pritchard et al. (13) input EEG markers into
an ANN to perform a binary classification between AD and
HC with an accuracy rate of 90%. Trambaiolli et al. (15)
extracted features based on coherence and used Support Vector
Machines(SVM) to classify AD and HC, with 79.9% accuracy.
Rossini et al. (16) tested the IFAST procedure to classify HC
and MCI, achieving 93.46% accuracy. These methods all require
handcrafted feature extraction. In recent years, more and more
deep learning methods have been applied to the classification
of AD. Ieracitano et al. (6) calculated the PSD features of the
subject’s EEG data. They converted the PSD features into images,
and then used the convolutional neural networks for the early
diagnosis of AD, achieving an accuracy of 89.8% in the binary
classification and 83.3% in three-way classification. Bi and Wang
(7) calculated the PSD features of EEG data, then used the
feature representation method proposed by (30) to convert the
PSD features into images. They designed a DCssCDBM with a
multi-task learning framework, achieving an accuracy of up to
95.05%. These deep learning methods all need to convert EEG
data into frequency domain information. This way will lose the
information in the spatial and temporal domains of EEG data,
which is essential for capturing coherence and synchronization
among different brain regions. We directly use the original
EEG data containing both spatial and temporal information. We
propose spatial temporal convolutional networks to extract the
temporal and spatial implicit features of EEG data.

The methods mentioned above leveraged either gait data or
EEG data only for the early diagnosis of AD. The gait data
collection procedure is simple, short in time, and easy to operate,
but there is no significant difference in gait features between
MCI and AD (29), and thus method relying on gait data cannot
classify AD andMCI precisely. Conversely, EEG data can provide
promising cues to classify AD and MCI, but the acquisition
process is complicated and takes a long time. We consider gait
and EEG data simultaneously to achieve a fast and accurate
classification of AD.

3. PROPOSED METHOD

Notation. Let S = {si}
Ns
i=1 be the subject set that includes Ns

subjects, where si represents the ith subject. Let Gi = {g
j
i}
Ng

j=1

denote clip set where Ng clips are sampled from the gait data of

the ith subject si, where g
j
i represents the j

th clip. Let Ei = {εei }
Ne
e=1

denote the epoch set containingNe epochs sampled from the EEG
data of the ith subject si, where εei represents the e

th epoch.
Problem Definition. Given gait clip set Gi and EEG epoch set

Ei of subject si, the classification of AD aims to map physiological
signals, Gi and Ei, into HC, MCI, and AD groups corresponding
to the state of subject si. This task is very challenging due to the
limited volume of data and the subtle differences among the three
groups, especially for HC and MCI.

3.1. Pipeline Overview
Existing methods used either gait data or EEG data only for the
classification of AD. However, as discussed in (28, 29), using gait
data can accurately distinguish HC and patients, but the methods

using gait data only often fail to classify MCI and AD. For the
EEG data that are more sensitive to the differences between MCI
and AD, some studies used EEG data to classify AD. However,
collecting EEG data from both HC and patients takes a lone time.
We believe that combining the two is able to make the early
diagnosis of AD faster and more accurately. This drives us to
propose a cascade neural network for the early diagnosis of AD
with both gait and EEG data.

Given gait clip g
j
i and EEG epoch εei of subject si, we conduct

the classification in two steps. Firstly, we use gait data to
distinguish HC and MCI/AD patients. In this step, we select key

points from g
j
i to form key-point skeleton sequences first. Then

we input the key-point skeleton sequences into attention-based
spatial temporal graph convolutional networks (AST-GCN) to
extract features. Finally, we use these features to classify HC and
MCI/AD by a standard SoftMax classifier. We further distinguish
AD from MCI with EEG epoch εei in the second step. We input
εei into the spatial temporal convolutional networks (ST-CNN)
to extract the implicit features in spatial and temporal domain.
We then used the features extracted by ST-CNN for the binary
classification of MCI vs. AD. In our method, the EEG data
from HC are not required. The architecture of our proposed
framework is shown in Figure 1.

3.2. Attention-Based Spatial Temporal
Graph Convolutional Networks
Existing methods that use gait data for the early diagnosis
of AD rely on handcrafted features, which are inefficient and
cannot fully use implicit information in gait data. We need to
automatically extract the implicit features in gait data for the
early diagnosis of AD, which is the strength of deep learning.
Our gait data is composed of skeleton sequences recognized by
the Kinect devices. Traditional deep learning methods such as
convolutional networks cannot handle such non-Euclidean data.
The ST-GCN proposed by (31) shows an excellent performance
in extracting the features from skeleton sequences. We apply
it as our basic model to the classification of AD and propose
attention-based spatial temporal graph convolutional networks
(AST-GCN) according to our task and data characteristics. Based
on clinical experience and experimental comparison results,
we found that different body parts have different importance
in the classification of AD. For this reason, given skeleton
sequences, we first perform key point filtering to form our key-
point skeleton sequences and then input it into the proposed
attention-based spatial temporal graph convolution networks.
The extracted spatial and temporal features are finally used for
classification. In the next few subsections, we will first briefly
introduce ST-GCN, then we will introduce how we do key point
filtering and the proposed attention-based spatial temporal graph
convolutional networks.

3.2.1. Spatial Temporal Graph Convolutional

Networks
Firstly, a spatial temporal graph is constructed from skeleton
sequences, as shown in Figure 2A. The edges of the spatial
temporal graph consist of two parts. One part is the natural
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FIGURE 1 | Cascade neural network for the early diagnosis of AD. We perform key point screening on gait data to form key-point skeleton sequences. Then we use

attention-based spatial temporal graph convolutional networks (AST-GCN) to extract features and classify the subject into HC or MCI/AD with features. If the subject is

classified into MCI/AD, we will input the EEG data into spatial temporal convolutional networks (ST-CNN) to extract features and perform MCI vs. AD

binary classification.

FIGURE 2 | (A) Spatial temporal graph of skeleton sequences. (B) The “Spatial Configuration” strategy. (C) The architecture of ST-GCN.

connections between joint points of the human skeleton in
a single frame called spatial edges, and the other part is the
time edges formed by connecting the same joint points between
adjacent frames. Then, the input features composed of the
coordinate vectors of the nodes in the graph are inputted into
multiple layers of spatial-temporal graph convolution. Defining
the weight function of the graph convolution operation can be
realized by a variety of strategies for partitioning each node’s
neighborhood point set. Experiments show that the “Spatial
Configuration” strategy, as shown in Figure 2B, works best.
According to this strategy, the neighborhood point set of the root
node (red node) is divided into three subsets, namely: (1) The
root node itself (red node); (2) The centripetal group (orange
node): the nodes closer to the gravity center of the skeleton than
the root node; (3) centrifugal group (green node): the nodes that
are farther from the gravity center of the skeleton than the root
node. The formula of space graph convolution can be written as:

fout = 3− 1
2 (A+ I)3− 1

2 finW, (1)

where fin denotes the feature map of the clip composed of the
coordinates of input skeleton sequences, which is a D × T × V
matrix, where D = 3 corresponds to Three coordinates (x, y, z),
T represents the time points i.e., the number of frames of the
skeleton sequences, V is the number of nodes that constitute the
spatial graph in each frame. W is the weight function; 3 is the
degree matrix of the spatial graph; A is the adjacency matrix of
the spatial graph; I is the self-connection matrix. Moreover,M is
proposed as a learnable edge weight, which has the same size as
the adjacency matrix. It is used in every layer of spatial temporal
graph convolution. Then the Equation (1) can be written as:

fout = 3− 1
2

(

(A+ I)
⊙

M
)

3− 1
2 finW, (2)

where
⊙

notes the element-wise multiply. Spatial temporal
convolutionmodule consists of a convolution in the spatial graph
and a convolution in the temporal graph. The structure of spatial
temporal convolution module is shown in Figure 2C.
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3.2.2. Key Points Filtering
Several studies (18, 20–24, 32) found that the AD group has
significant differences with the HC group in gait speed, gait
cadence, stride et al. This means that the joints of the lower
body, such as the ankles, are more critical for the early diagnosis
of AD. Besides, Most subjects are right-handed. It is clinically
believed that the left hemisphere of right-handed patients is more
sensitive to AD and more likely to be affected. When we observe
the learnable parameter M of the basic model after it converges,
we find that the connections among the joint points of the lower
body and the right upper limb are given higher weights, which
means that these joint points are more important than other
parts. Through experimental comparison, we also verified that
performance classification with the skeleton sequences composed
of the joint points of the lower body and the right upper limb are
better than that with the skeleton sequences composed of other
parts. Therefore, we select the joint points of the lower body and
the right upper limb to form key-point skeleton sequences.

3.2.3. Hourglass Attention Module
From the description above, we can see that different parts are
of different importance for the early diagnosis of AD. We argue
that even in the key-point skeleton sequences we construct, joints
in some parts are more important than other parts, such as
ankles and wrists. Therefore, to drive the model further focus on
important joints, we introduced an hourglass attention module
with a structure similar to the attention module in (33). However,
we replaced the pooling layer with a convolutional layer in the
time domain with a stride of 4. The structure of the hourglass
attention module is shown in Figure 3.

3.3. Spatial Temporal Convolutional
Networks
Existing deep learning methods that use EEG data for the
classification of AD convert EEG data into frequency domain
information, then calculate PSD features and convert them into
images. This way will lose the information in the time domain or
even the spatial domain, which is essential to capture coherence
and synchronization among different brain regions. The EEGnet
proposed by (34) extracts the temporal and spatial features
of original EEG data to recognize task-state EEG and shows

good performance. However, its feature extraction in the spatial
domain of EEG data simply uses a convolution layer to map
the data to a single value. We believe that this is not able to
fully extract the spatial features of EEG data. We propose the
spatial temporal convolutional networks to extract features from
original EEG data. Each ST-CNN module consists of a spatial
convolution layer with a kernel size of Ks × 1 and a temporal
convolution layer with a kernel size of 1 × Kt similar to (31).
In this way, the EEG data is alternately convoluted in the space
domain and the time domain through multiple ST-CNN layers to
fully extract the implicit features in space and time. The structure
of spatial temporal convolutional networks is shown in Table 1.

TABLE 1 | The structure of spatial temporal convolutional networks, where Ks and

Kt are the size of the kernel used in the spatial convolution layer and the temporal

convolution layer in a ST-CNN module, respectively.

Layer Input

channels

Operation Kernel size Stride Output

channels

0 3 Batch normalization – – 3

1 3 ST-CNN Ks = 1,Kt = 33 1 4

2 4 ST-CNN Ks = 15,Kt = 33 4 4

3 4 ST-CNN Ks = C,Kt = 33 1 16

4 16 ST-CNN Ks = 1,Kt = 33 4 8

6 8 Flatten – – T/2

Classifier
T/2 Full connection – – N

N SoftMax – – N

C is the number of EEG channels. T is the number of time points. N is the number of

classes. In the second layer, we use depthwise separable convolutions. In the 2nd and

4th ST-CNN module, we set stride to 4 as the pooling layer. The residual mechanism is

used in each ST-CNN module.

TABLE 2 | The grouping criteria for HC, MCI, AD.

HC MCI AD

MoCA > 30 18 ∼ 30 0 ∼ 17

MMSE ≥ 24 ≥ 24 < 24

FIGURE 3 | The structure of hourglass attention module.
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FIGURE 4 | The deployment diagram of Kinect V2.0 devices: (A) The deployment diagram of devices in the Neurology Department. (B) The deployment diagram of

devices in the Geriatrics Department. (C) The diagram of the actual data acquisition scene.

4. EXPERIMENTS

4.1. Data Acquisition and Preprocessing
We collect gait data in cooperation with the Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences and
the Shenzhen People’s Hospital, and the EEG data are collected
by the Shenzhen People’s Hospital. All MCI and AD patients
are diagnosed by experienced neurologists based on the
Montreal Cognitive Assessment(MoCA) and Mini-Mental State
Examination (MMSE). We divide the subjects into three groups:
HC, MCI, and AD. These groups include 35 cognitively healthy
controls, 35 MCI patients, and 17 AD patients with mild-
to-severe AD, respectively. The grouping criteria are shown
in Table 2. We collect both gait and EEG data for MCI
and AD patients, and only collect gait data for cognitively
healthy controls.

4.1.1. Gait Data

4.1.1.1. Data Acquisition
Gait data of 52 MCI and AD patients and 35 control subjects
are collected in the Neurology and the Geriatrics Departments
of Shenzhen People’s Hospital, respectively. Our data collection
settings are similar to (35). We use Microsoft Kinect V2.0
cameras as our data acquisition devices. The subjects are asked
to walk at their natural and comfortable speed and posture under
the devices. They walk a round trip on a straight path about 10
m. We deploy 8 and 6 devices in the Neurology and Geriatrics
Department, respectively. The deployment diagram is shown in
Figure 4. The tilt angle of all devices was set 27◦.

4.1.1.2. Data Preprocessing
Our gait data consists of the skeleton sequences recognized by
the devices. Each skeleton is composed of three-dimensional
coordinates of 25 joints. Their indexes are shown in Figure 5A.

In each recording, the devices estimate the skeleton joint
coordinates from both the front and back views. However, the
skeletons estimated from the back view are less accurate than
those from the front view. Therefore, we only select the skeletons
from the front view as gait data.

Due to the venue restrictions, the data acquisition devices
for patients and the devices for heath controls are deployed in
different environments, which may cause differences in absolute
coordinates of key points. To eliminate these differences, we
follow (36) to perform the following coordinate transformation
on the collected gait data in the data preprocessing stage. Since
our devices are mounted on the ceiling, and there is an angle of
27◦ with the horizontal, we first rotate the coordinates

[

x, y, z
]

around the x-axis by−27◦ by calculating

∣

∣

∣

∣

∣

∣

x′

y′

z′

∣

∣

∣

∣

∣

∣

= Rx ×

∣

∣

∣

∣

∣

∣

x
y
z

∣

∣

∣

∣

∣

∣

, where Rx =

∣

∣

∣

∣

∣

∣

1 0 0
0 cosθ −sinθ
0 sinθ cosθ

∣

∣

∣

∣

∣

∣

, θ = −27◦. (3)

In this way, the skeleton sequences are in a horizontal position
relative to the cameras. We then move the origin of the
coordinates to the base of the human spine, namely point 0,
by computing

v′τp = vτp − vτ0, (4)

where vτp is a coordinate vector of pth joint point of the skeleton
in τ th frame. Moreover, the time lengths of gait records are
different. Similar to (37), we intercept several clips of data from
each gait record through a sliding window to make the number
of clip frames consistent. We set the sliding window with a size of
60 frames and a stride of three frames. In this way, we have a total

of 5,519 clips, and each gait clip g
j
i is a matrix with a dimension

of D× T × V , where D = 3, T = 60, V = 25.
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FIGURE 5 | (A) The 25 markers on human skeleton recognized by Kinect. (B) 64 EEG electrode locations in the International 10-20 System.

4.1.2. EEG Data

4.1.2.1. Data acquisition
The EEG data are collected by the Neurology Department,
Shenzhen People’s Hospital. Due to a large mount of artifacts
(e.g., myoelectricity) during human walking, the collected EEG
data are in low quality. We follow (6, 38) to collect higher-
quality resting EEG data. We collect the EEG data of the
patients with eyes closed and with eyes open for 8 min each.
We place 64-channel EEG electrodes on the patient’s scalp at
the standard locations during data acquisition as shown in
Figure 5B. The EEG signals are recorded at a sampling frequency
of 5,000 Hz.

4.1.2.2. Data preprocessing
After EEG records are collected, we first remove artifacts from
EEG records, such as electrooculograms and myoelectricity.
Then we re-reference the data. The EEG signals of the Ref
and Gnd electrodes are removed, and the average value of the
remaining 62 channels is used as a reference value to recalculate
the value of the EEG data. Using the original EEG data with a
sampling rate of 5,000 Hz in our ST-CNN will inevitably incur
large computation cost. Specifically, the input size is 5,000 × 62
when the epoch duration is set to one second. In this paper, we
follow Toll et al. (38) to downsample the EEG data to 250 Hz,
aiming to reduce the computation cost and improve the inference
speed. Similar to (7), we then intercept 120 epochs from each
subject’s EEG data by a sliding window without overlapping. We
set the sliding window with a size of 256, which is about 1 s. The
epochs sampled from the data collected with the eyes open and
the eyes closed are concatenated in the time dimension. Finally,
we copy it for three times in depth dimension. In this way, we
have a total of 5,519 epochs, and each epoch εei is a 3 × C × 2T
matrix, where C = 62 is the number of channels of EEG data,
T = 256 denotes the number of time points.

4.2. Implementation Details
We randomly select 75% of the subjects. We use their
corresponding data clips as our training set, including 3,277 data
clips. The remaining data clips serve as our test set, including
2,242 data clips. We train the model for 50 epochs, using
a stochastic gradient descent (SGD) optimizer with an initial
learning rate of 0.05 and a batch size of 64. All experiments are
conducted on a single GTX 1060 GPU.

As for EEG data, we randomly select 75% of the EEG epochs
as our training set, containing 4,680 epochs, and the remaining
EEG epochs serve as our test set, including 1,560 epochs. We
train the model for 70 epochs, using a stochastic gradient descent
optimizer with an initial learning rate of 0.005, and with a batch
size of 64. All experiments are conducted on a single GTX
1060 GPU.

4.3. Comparisons With Other AD Diagnosis
Methods
We compare our proposed method with other existing methods.
The results is listed in Table 3. Firstly, we compare our proposed
attention-based spatial temporal graph convolutional networks
with the methods using handcrafted features. We extract the
same features as (10) from gait data and feed them into a
SVM classifier with the Gaussian (RBF) kernel and a random
forest classifier, respectively. The accuracy of the two classifiers
are much lower than our proposed attention-based spatial
temporal graph convolutional networks (93.09%). These results
demonstrate that our proposed attention-based spatial Temporal
graph convolutional networks is able to extract more powerful
features for the diagnosis of AD.

Then we compare the proposed spatial temporal
convolutional networks with several baselines on the collected
EEG dataset. The baselines include EEGnet (34), ResNet-18 (39),
VGG-13 (40), and the standard convolution networks. standard

Frontiers in Public Health | www.frontiersin.org 7 November 2020 | Volume 8 | Article 584387

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


You et al. Cascade Neural Network Classifies AD

TABLE 3 | Comparison with other methods.

Methods
Data Accuracy

Gait EEG HC vs. MCI/AD (%) MCI vs. AD (%) Three-way classification (%)

Handcrafted features + SVM X 63.64 57.73 55.45

Handcrafted feature + RF X 81.82 57.14 68.18

AST-GCN(ours) X 93.09 58.41 68.51

standard CNN X – 69.66 –

EEGnet X – 97.85 –

ResNet 18 X – 97.59 –

VGG 13 X – 96.48 –

ST-CNN(ours) X – 98.63 –

cascade neural network(ours) X X 93.09 98.63 91.07

Standard CNN represents the model we substitute 2D convolution layers with a kernel size of Ks ×Kt for ST-CNN modules. “Handcrafted features + SVM” and “Handcrafted features +

RF” indicate the methods using different classifiers with the handcrafted features same as (10). The bold values indicates the best performance that method obtain in that experiment.

TABLE 4 | Ablation study of key point filtering and hourglass attention module on

gait data.

Components
Accuracy (%)

Key point filtering Hourglass attention module

× × 88.18

X × 91.97

× X 90.14

X X 93.09

convolutional networks share the same architecture as the spatial
temporal convolutional networks but all ST-CNN modules are
replaced with 2D convolution layers with a kernel size of Ks×Kt .
It is observed that our model achieves the best performance on
our data set. We believe that the reason is that ST-CNN can
extract the spatial and temporal features from EEG data better.
Finally, we test our proposed neural network on our test set. The
accuracy of binary classification is 93.09%, and the accuracy of
the three-way classification is 91.07%. In addition, we introduce
a voting mechanism to improve the fault tolerance of the entire
framework. We randomly select a subject si from the test set
and input his gait clip set Gi into AST-GCN for classification. If
more than 50% of the clips are classified into MCI and AD, all
the EEG epochs in Ei will be inputted into ST-CNN to perform
binary classification of MCI vs. AD. Otherwise, si is finally
classified into HC. If more than half of the epochs are classified
into MCI(AD), then si is finally classified into MCI(AD). With
the voting mechanism, the framework can achieve an accuracy
of 100% on the binary classification of HC vs. MCI/AD, and
accuracy of 99.14% on the three-way classification of HC, MCI,
and AD.

4.4. Ablation Studies
4.4.1. The Effectiveness of the Proposed Component
We conduct experiments on gait data to study the effectiveness
of key point filtering and the hourglass attention module. In
Table 4, we observe that these two components increase the
accuracy from 88.18 to 91.97% and 90.14%, respectively. With
both components, we achieve the best performance with an

accuracy rate of 93.09%. We believe the reason is that both
components can guide the model to focus more on the points
more critical to the diagnostic task. Key point filtering removes
insignificant points and noise points, and the attention module
drives the model to further focus on the important points in
key points.

4.4.2. Which Key Points Are Essential for AD

Diagnosis?
In Figure 6A, we compare the performance of the skeleton
sequences of the lower body, the upper body, and the whole body.
We find that the whole body joint performs best. We consider
that this is because all joints can provide more information for
diagnosis. In addition, we observe that the lower body joints
perform better than upper body joints. We believe the reason
is that the behavior of lower body is more relative to early
AD diagnosis.

Clinically, it is believed that the left hemisphere of right-
handed patients is more sensitive and easier to be affected by
AD. As the left hemisphere controls the movement of the right
body part, for the right-handed patients, their behaviors of the
right body part may provide more information for AD diagnosis.
To study this empirically, we further divide the body joints into
two more fine-grained groups, namely “lower body + right upper
limb” and “lower body + left upper limb.” All subjects in the
collected dataset are right-handed. In Figure 6B, “lower body +
right upper limb” performs best. these results are consistent with
the clinical perspective. Based on such observation, we select the
skeleton sequence of “lower body + right upper limb” as a default
setting in all experiments.

4.4.3. Where Should We Use the Hourglass Attention

Module?
We explore the performance of our model with different
placements of the attention module. We try to add the hourglass
attention module after the third, sixth, and ninth layer of the
basic model, respectively, and add three hourglass attention
modules after the 3rd, 6th, and 9th layers. The experimental
results are shown in Table 5. We see that using three attention
modules additionally includes 67.78% parameters more than
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FIGURE 6 | The performance comparison of the basic model on the skeleton sequences composed of different parts: (A) The performance of the basic model on the

skeleton sequences composed of the lower body, the upper body, and the whole body. (B) The performance of the basic model on the datasets of skeleton

sequences composed of the whole body, the lower body + the right upper limb, and the lower body + the left upper limb.

TABLE 5 | Performance comparison of the models with different hourglass attention module locations.

Basic model (%) After 3rd layer (%) After 6th layer (%) After 9th layer After 3rd,6th,9th layers (%)

Accuracy 88.18 88.76 88.22 90.14 87.97

The bold values indicates the best performance that method obtain in that experiment.

TABLE 6 | Comparison of the performance and inference speed with different models.

Cascade stage
Accuracy(%) No. of parameters Inference speed (ms)

Stage 1 Stage 2

AST-GCN (gait) AST-GCN (gait) 74.46 9.42M 7.06

AST-GCN (gait) ST-CNN (EEG) 91.07 4.72M(4.71M+0.01M) 3.99

The bold values indicates the best performance that method obtain in that experiment.

using one attention module while decreasing the performance.
It is worth nothing that the model with three attention modules
outperforms that with one attention module (99.75 vs. 98.04%)
in the training phase, but it leads to a worse accuracy (87.97 vs.
90.14%) in the testing phase. We conjecture that adding three
attention modules may incur the overfitting issue since a larger
network is more likely to lead to overfitting in the case of a
limited amount of data (41). We see that adding one attention
module after the ninth layer of the basic model achieves the
best performance. Therefore, we use the model with an attention
module after 9th as the default setting.

4.4.4. The Efficiency of Our Method
We conduct an ablation study to validate the effectiveness and
efficiency of our method. We replace ST-CNN (classification
model with EEG data) in our cascade network with AST-GCN
(classification model with gait data). The experimental results
are shown in Table 6. Our proposed method with two models
significantly outperforms the baseline with one modal (i.e., gait
data) while enjoying a faster inference speed (3.99 vs. 7.06 ms)
and less parameters (4.72 vs. 9.42M). Since we do not have the
EEG data collected from HC regarding the difficulty of collecting

them in our experimental environments, we did not compare
our method with the EEG-based method, and we leave it for our
future work.

5. CONCLUSION

In this paper, we have exploited both the gait and EEG data
to achieve a faster and more accurate classification of AD. To
this end, we have proposed a cascade neural network. Our
proposed neural network consists of two parts. In the first part,
we used gait data to distinguish HC from patients. For the
purpose of modeling the natural connection among the human
joints, we have proposed attention-based spatial temporal graph
convolutional networks to extract features to classify the HC and
patients. In the second part, we further classify MCI and AD
patients with EEG data. Compared with themethods that convert
EEG data into the frequency domain, we extract the spatial and
temporal features from the original EEG data to distinguish the
AD patients from MCI patients. The proposed cascade network
has the following advantages: (1) The EEG data from HC are not
required in our method, which saves a lot of data collection time.
(2) The accuracy of our proposed framework in the three-way
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classification of HC, MCI, and AD is 91.07%, which is much
higher than the method using one modal only (68.18%), and the
accuracy in the binary classification of HC vs. MCI/AD reaches
93.09%. It would be interesting to extend this framework to the
diagnosis task of other neurological diseases, and we leave it for
future work.
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