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During air travel, flight crew (flight attendants, pilots) can be exposed to numerous

flight-related environmental DNA damaging agents that may be at the root of an excess

risk of cancer and other diseases. This already complex mix of exposures is now joined

by SARS-CoV-2, the virus that causes COVID-19. The complex exposures experienced

during air travel present a challenge to public health research, but also provide an

opportunity to consider new strategies for understanding and countering their health

effects. In this article, we focus on threats to genomic integrity that occur during air travel

and discuss how these threats and our ability to respond to them may influence the risk

of SARS-CoV-2 infection and the development of range of severity of the symptoms. We

also discuss how the virus itself may lead to compromised genome integrity. We argue

that dauntingly complex public health problems, such as the challenge of protecting flight

crews from COVID-19, must be met with interdisciplinary research teams that include

epidemiologists, engineers, and mechanistic biologists.

Keywords: flight attendant, pilot, COVID-19, coronavirus, DNA damage repair, air travel, aviation industry, genomic

integrity

INTRODUCTION

Understanding and solving public health crises require consideration of diverse inputs spanning
from the molecular to the global level. The current COVID-19 pandemic illustrates this dynamic
particularly well in the context of air travel, which entails exposure to a complex variety of
potentially hazardous agents, some of which are likely responsible for the excess risk for cancer
and other diseases in flight crews (1–8).

Ensuring safety during air travel represents a large and complex challenge. Approximately 4.1
billion passengers travel by air each year (9). There are estimated to be over 140,000 airline pilots
employed internationally, and approximately 120,000 flight attendants are employed just in theU.S.
(10). On 11th March 2020, theWorld Health Organization declared COVID-19, the disease caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to be a pandemic. The disease
has now touched nearly every aspect of our lives and has severely impacted the aviation industry
(11). Unprecedented flight cancellations, restriction of non-essential travel, border closures, and
policies taken in response to the pandemic have hit the travel industry very hard (12). With
the uncertainty about the development and eventual efficacy of a vaccine for COVID-19, social
distancing and engineering solutions such as the usage of personal protective equipment (PPE)
are pivotal measures to lower the risk of COVID-19 transmission. New guidelines have been
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GRAPHICAL ABSTRACT | SARS-CoV-2 risk is an add-on entity to the list of flight related damaging effects which can impact the genome integrity of flight crew.

implemented by the Center for Disease Control and Prevention
(CDC) and Federal Aviation Administration (FAA) for air travel
during the COVID-19 pandemic, but airlines still struggle to
balance scheduling of fewer flights with maximizing social
distancing (13, 14). Further complicating matters, air travel
demand is in flux, and social distancing in airplanes may be
impossible in some aircraft due to seat configuration. Other
necessary aspects of air travel that occur outside the airplane, such
as passing through Transport Security Administration (TSA)
precheck, can also potentially increase the risk of COVID-19
exposure for flight crew. Thus, every single aspect during air
travel needs to be considered in order to avoid increased risk of
exposure and spread of SARS-CoV-2.

The high frequency of asymptomatic SARS-CoV-2 carriers
and the period between exposure and infection of up to 2 weeks
pose an acute challenge for estimating the risk of transmission in
general, and during the air travel in particular. Furthermore, we
do not yet understand why the virus has such disparate impacts
on different people. Although some clues are beginning to emerge
and are discussed in more detail below, relatively little is known
about the role of environmental exposures and inter-individual
biological variation with regard to susceptibility to viral infection
or development of severe symptoms. We note, however, that
several of the exposures that are associated with greater risk of
severe disease include agents that compromise genome integrity
(15, 16). Genome integrity refers to the protection of DNA from
damage and mutations that can impact cellular function or lead
to cell death (17). Compromised genome integrity is linked to

various health risks (17, 18). This article briefly highlights the
possible role of genome integrity in the etiology of COVID-
19 and other diseases that are of concern for flight crew. We
recommend a multidisciplinary paradigm for advancing our
understanding of complex public health problems by focusing on
key biological pathways, in this case genome integrity.

AIR TRAVEL AND GENOME INTEGRITY

Flight crew are subjected to diverse sources of flight related
exposures that may pose health risks. These exposures include
physical stressors (air pressure changes, vibration, changes in
oxygen levels, prolonged immobility, aircraft noise); in-flight
chemical exposures (pesticides, flame retardants); radiation
(cosmic ionizing radiation, ultraviolet light) and biological
changes (circadian rhythm disruption, mental and physical
stress) (7, 19, 20). In addition, flight attendants are at higher risk
of viral exposure due to their interactions with passengers and are
expected to experience an increased work-related stress during
the pandemic (21–23).

A growing body of literature suggests that flight-related
exposures can directly or indirectly affect the human body. In
particular, some of these exposures damage DNA, the genetic
blueprint of the cell (24–26). DNA damage can lead to cell death
or mutations, which are key biological mechanisms underlying a
variety of diseases. To avoid cell death and mutagenesis, DNA
repair mechanisms in human cells remove DNA damage and
thereby maintain genome integrity (27–30). Inefficient DNA
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repair in humans has also been associated with susceptibility
to several diseases including cancer and immune disorders that
predispose to infection (8, 31–34). Epidemiological studies have
documented excess cancer risk in flight attendants and pilots
(1–8), indicating that compromised genome integrity may be
a particular problem for this population. Although not all of
the agents to which flight crew are exposed are known DNA
damaging agents, some flight crew-based research studies have
demonstrated that exposure to cosmic ionizing radiation, which
damages DNA, is associated with elevated cancer risk (35–40).
Additional evidence comes from studies that have found links
between cosmic ionizing radiation exposure and reproductive
health risk (2, 41, 42), but the underlying biological mechanism
has not yet been elucidated.

One testable hypothesis is that DNA damage and alterations
in repair responses due to flight related exposures are responsible
for the diminished genomic integrity that leads to increased
risk of cancer and perhaps other diseases among flight crew.
Notably, viral infections also pose a threat to genome integrity
(43) and there is evidence suggesting that the severity of disease
caused by respiratory RNA viruses may be related to the extent
of DNA damage induced during and after infection (44). Since
the ability to repair DNA damage would influence the extent
of DNA damage that accumulates during infection, and since
DNA repair pathways play a central role in immune function,
it is possible that DNA repair capacity impacts susceptibility to
severe COVID-19. Thus, some of the same principles that are
increasingly well-understood in the context of genome integrity
and cancer risk may also apply to understanding the origins of
inter-individual differences in susceptibility to viral infections
and the development of severe symptoms, but this idea has yet
to be explored.

COVID-19 RISK AND GENOME INTEGRITY

SARS-CoV-2 is an RNA virus that hijacks host cellular
mechanisms during its lifecycle (45, 46). RNA viruses can trigger
a multitude of cellular changes including activation of the
DNA damage response, DNA replication stress, dysregulation of
the cell cycle, induction of apoptosis, and several other stress
responses (47–49). In the case of SARS-CoV-2, alterations in
cellular processes that promote viral replication also lead to
activation of oncogenic pathways (50), which raises questions
regarding the potential for SARS-CoV-2 to promote cancer (51).
As is the case for cancer risk (29, 34, 51) genetic background
contributes toward inter-individual variation in susceptibility
and treatment outcomes for respiratory disease (52). In the
case of SARS-CoV-2, polymorphisms in the gene encoding
angiotensin converting enzyme 2 (ACE2) have been associated
with variation in susceptibility to SARS-CoV-2 infection (53, 54).
The etiology of SARS-CoV-2 infection and severe COVID-19 is
multifactorial and can be attributed to polymorphisms immune
system genes (55, 56), viral mutations (57), variation in the
respiratory microbiome (58). Although DNA repair has not been
studied in the context of SARS-CoV-2 susceptibility, limited
studies that have been conducted in other infectious disease

contexts suggest that polymorphisms in DNA repair genes may
affect host responses to pathogens (59, 60).

The potential interaction between cancer and COVID-
19 outcomes remains largely unexplored and may provide
additional insights into a possible shared role for genome
integrity in the etiology of both diseases. A study among
1,590 COVID-19 patients in China revealed cancer to be an
important risk factor for health endpoints associated with severe
COVID-19 (61), raising important ethical questions regarding
the prioritization of treatment (62). In further support of a
link between cancer and COVID-19, an analysis by WHO
found the fatality rate among COVID-19 infected patients with
cancer was double the rate for COVID-19 patients without
cancer (51). This excess mortality may be attributed at least
in part to compromised immune function in cancer patients
due to treatments and the effects of the disease itself. However,
the biological mechanisms underlying these associations remain
unclear. Given the well-established relationship between cancer
risk and inter-individual variation in DNA repair capacity (34)
and given the potential role for persistent DNA damage in
the pathogenesis of COVID-19, an intriguing possibility is
that DNA repair capacity might play a role in the severity of
COVID-19 infection and treatment outcomes. A more complete
understanding of how SARS-CoV-2 impacts genome integrity
would provide valuable information for developing potential
DNA damage and repair biomarkers that could help to assess an
individual’s risk infection and severe illness due to SARS-CoV-
2 and other viral infections that may be influenced by genome
integrity pathways.

CURRENT AND FUTURE APPROACHES
TO RISK MITIGATION

Despite aggressive efforts to minimize SARS-CoV-2 risk during
air travel, this exposure joins a long list of others that cannot
be entirely eliminated for those who must travel. In-flight
transmission risk is still not completely understood, and several
studies have shown compelling evidence of validated in-flight
COVID-19 mass transmission from past in-flight events (63, 64).
The advanced particle filtration and air exchange systems used
in commercial aircraft should decrease transmission risk, which
was supported by a recent in-flight aerosol dispersion study
that found minimal aerosol exposure risk even during long
duration flights (65). In-flight COVID-19 risk is likely impacted
by differences between aircraft type, ventilation systems and real-
world flight environments as compared to experimental flight
conditions, however one factor that appears to have a noteworthy
impact on in-flight transmission is use of face-masking during
air travel (66). For the time being, global, one-size-fits-all
preventive measures are the mainstay of efforts to protect the
public. Hand washing, masks, and other PPE (13), together with
temperature checks, touchless check-in, one-way boarding (back
to front), plexiglass shields and empty middle seats in aircraft,
are among the available strategies for mitigating air travel-related
spread of SARS-CoV-2 (67). Additional measures can likely
be developed to augment these strategies. Improved screening
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tools can be developed to upgrade the existing non-laboratory-
based methods for detecting COVID-19 infected individuals
and ensuring asymptomatic infectious individuals do not travel.
Coordination within airports is also essential for reducing the
spread of SARS-CoV-2 infection among airport employees such
as ticketing staff, TSA, security personnel, airport workers and
others. In the US, TSA security procedures have already been
updated and implemented to minimize the risk of COVID-19
transmission (68).

Looking forward, the myriad exposures encountered by flight
crews will remain for the foreseeable future, necessitating new
approaches for understanding and mitigating their potential
health effects. Even after the COVID-19 pandemic passes,
lessons learned during this time should inform preparedness
for similar events in the future. Some strategic measures
available to individuals that have been proposed include avoiding
itineraries that may disrupt circadian rhythm (69) or using
antioxidants to counteract the production of free radicals
produced as a consequence of viral infection or exposures
encountered during travel (70). Many historical areas of concern
for adverse flight environment exposures such as ultraviolet
(UV) radiation have been mostly mitigated through upgrades
in aircraft materials or systems (71). However, a comprehensive
understanding of the biological mechanisms underlying the
excess risk of disease in flight crews will be needed in order to
develop truly personalized prevention strategies that take into
account individual exposures and inter-individual differences in
responses to exposures.

There is a need for multidisciplinary approaches to address
this issue and gather information about the impact of air
travel on genomic integrity. Although many factors contribute
to disease risk, one promising approach toward improved
and more personalized prevention is to focus on genome
integrity, a fundamental biological pathway that links many
of the exposures encountered by flight crew. Well-designed
studies should make use of dosimetry or sensors to quantify
as many occupational exposures as possible. Comprehensive
exposure analysis will enable efforts to determine the effect of
complex mixtures. By joining these analyses with laboratory
based mechanistic studies using genomics approaches and
functional assays in biospecimens and model systems, we can
improve our understanding of how DNA damage and repair
influence health outcomes in flight crew. Such studies will
provide a foundation for developing personalized prevention
or risk assessment profiles for the flight crew that may also
benefit passengers.

CONCLUSIONS

The COVID-19 pandemic has severely impacted the global
economy, affecting several industries and having a ripple effect
on every aspect of human life. The complexity and magnitude
of the challenge of responding to COVID-19 is exemplified by
the multiple, in some cases ill-defined risks associated with air

travel. Because these risks are unavoidable for some, it appears
the only way out is through. A multidisciplinary approach
toward COVID-19 mitigation to support the safe and secure
return of normal air travel operations is already underway
(72). There still exist many unraveling puzzles regarding the
biological basis for infection risk in humans that need to be
explored and could strongly influence the preventive measures
implemented by airlines in the future. Activation of host DNA
damage responses are associated with RNA virus replication
(46, 47), raising the possibility that inter-individual differences
in DNA repair capacity may play a role in susceptibility
to severe COVID-19 symptoms. DNA damage and repair
biomarkers may provide insights into an individual’s risk toward
viral infection or poor outcomes. Better understanding of the
etiology of COVID-19 will shed light on optimal approaches for
limiting COVID-19 spread and may inform preparedness for
future pandemics.

Research aimed at understanding individual disease
susceptibility following flight-related exposures can assist
policy makers in making data-driven decisions regarding travel
regulations. Efforts to understand the biological mechanisms
underlying disease as they operate in a real world context
must be a central element of this research. This form of
mechanistic epidemiology is sometimes perceived to be at
odds with the conventional reductionist approach to biology,
which favors the isolation of variables and experimentation
with the simplest possible model. As a result, there will be
a need for funding agencies to promote work that follows
this paradigm. To achieve success, there is an utmost need to
establish collaborative working platforms among researchers,
engineers, clinicians and the pharmaceutical industry to identify
new strategies for reducing the risk of COVID-19 during air
travel. In turn this will help the aviation industry to develop
measures for safeguarding passengers and aircrew during air
travel. Although we have chosen in this article to focus on the
complex interplay of COVID-19 and threats to genome integrity
during air travel, the interdisciplinary mechanistic epidemiology
approach we favor is applicable to studying COVID-19 in
other settings, and for unraveling complex public health
problems in general.
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