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The field of precision medicine explores disease treatments by looking at genetic,

socio-environmental, and clinical factors, thus trying to provide a holistic view of a

person’s health. Public health, on the other hand, is focused on improving the health of

populations through preventive strategies and timely interventions. With recent advances

in technology, we are able to collect, analyze and store for the first-time large volumes

of real-time, diverse and continuous health data. Typically, the field of precision medicine

deals with a huge amount of data from few individuals; public health, on the other hand,

deals with limited data from a population. With the coming of Big Data, the fields of

precision medicine and public health are converging into precision public health, the

study of biological and genetic factors supported by large amounts of population data.

In this paper, we explore through a comprehensive review the data types and use cases

found in precision medicine and public health. We also discuss how these data types

and use cases can converge toward precision public health, as well as challenges and

opportunities provided by research and analyses of health data.

Keywords: precisionmedicine, public health, big data, data analytics, artificial intelligence, precision public health,

systematic review

INTRODUCTION

Over the past decade, there has been an increased interest in the field of precision medicine.
This field explores the development of targeted treatments for individuals based on genetic,
environmental, clinical, and social factors. The National Institute of Health defines precision
medicine as an “approach for disease treatment and prevention that takes into account individual
variability in genes, environment, and lifestyle for each person” (1), with the goal of accurately
identifying which treatments and preventions will be more effective in which population groups
(2). Precision medicine is about having a holistic understanding of an individual’s health to create
more precise treatments or prevention programs for specific traits and profiles in a population (3).
For example, genetic information from patients with a shared disorder can be used to develop new
drugs that could be used in the population with this shared disorder (3, 4).
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The Center for Disease Control (CDC) defines public health
as the “science of protecting and improving the health of people
and their communities” (5). While in precision medicine the
unit of interest is the individual, public health views populations
as the basic unit for interventions. This is achieved through
prevention practices and interventions in a population. From
the previous definition of precision medicine, we can extend
the concept to include “precision public health”: the study of
interactions between biological and genetic factors with personal,
environmental and social determinants of health, to monitor
the incidence of diseases in communities and target effective
interventions in the population (3). This would involve, for
example, stratifying populations according to specific traits,
behaviors or genetic information, to achieve better intervention
and treatment outcomes.

Frontiers in Public Health defines precision public health
as “the application and combination of new and existing
technologies, which more precisely describe and analyse
individuals and their environment over the life course, to
tailor preventive interventions for at-risk groups and improve
the overall health of the population” (6). More succinctly,
Khoury described precision public health as “the ability to
prevent disease, promote health and reduce health disparities in
populations” with the use of emerging methods and technologies
(7). These emerging methods involve the application of
techniques for analyzing large quantities of diverse data, enabled
by several advances in health data collection. Among these
advances we can cite smart technologies collecting patient-
generated health data (PGHD), Electronic Health Records
(EHR), and genomic sequencing.

Regarding the first topic, society is currently moving into
an age of ubiquitous and smart technologies that continuously
monitor our health, enabling the collection of PGHD such as
physical activity levels, heart rate, and blood pressure. These
can be combined with different data types, such as social
data from several social networks, to provide a more complete
and hopefully accurate view of a person’s lifestyle and health
behaviors (8–10). The potential for smart technologies to provide
new, rich, and diverse health data is immense because of their
popularity: a 2016 report showed that 3 out of 4 Canadians
owned a smartphone (11), for example. Even in developing
countries, smartphones are a reality: in Brazil, for instance, 57%
of the population has one (12). The wearable market has also
experienced rapid growth: the number of global smartwatch users
increased from 5 million in 2014 to 141 million in 2018 (13).
Moreover, wearable owners are represented in all age ranges, not
just in young people (14).

Additionally, advances in EHR systems have greatly advanced
healthcare and are currently widely in use (15). In the U.S.,
for example, the Department of Health and Human Services
Meaningful Incentive Programs encouraged 95% of hospitals
to adopt Electronic Medical Records or EHRs in the past 10
years (16).

Finally, the genomics field is also experiencing several
changes. The sequencing of the first human genome happened in
the early 2000s after decades of work and a cost of approximately
USD 3 billion. Today, next-generation sequencing technologies

that read DNA molecules in parallel, make it possible for
individuals to get their genomes sequenced for about USD
1,000 (17–19).

All these technological advances have led to an explosion of
high volume, high velocity, and high variety health data. These
so-called 3 Vs are what define datasets as Big Data (8–10, 20,
21). Since its introduction, many authors have expanded the
definition of Big Data to include many more “Vs.” For example,
in a systematic literature review of methods and challenges for
Big Data, Sivarajah et al. (22) report finding discussions with 4
Vs (adding variability), 6 Vs (adding veracity and value), and 7
Vs (adding visualization). It is important to differentiate here the
term Big Data and associated technologies, which refers to the
“Vs” and the technologies needed to process, store and analyze
these data; and the term Artificial Intelligence (AI), which in
this paper will refer to the methods and algorithms used in
creating advanced computer programs capable of learning and
adapting through several iterations of data to achieve a prediction
or outcome.

Big Data technologies and techniques can help researchers
make sense of the plethora of rich and diverse health data
currently being generated. Data analysis is essential, as society
has reached a point in which data generation surpasses our
capacity to gain knowledge from the data without computational
support (8). In order to perform these analyses, the use of
powerful computing and storage technologies, allied with AI
algorithms to make sense of and gain insight about Big Data,
is needed.

Advances in computing power, data gathering technologies
and storage supplies the resources for researchers to study the
interaction on large datasets, including genomics, environment,
and social networks, as well as other types of health and
personal data. If precision medicine and public health are
going to use the new healthcare data being generated by
emerging technologies, Big Data is the field of computer science
that supports the use of these data, identifying patterns and
insights. To make these analyses possible, AI and statistical
analyses methods are applied. This relationship is illustrated
in Figure 1.

In addition, in contemporary healthcare, precision medicine
and public health are mostly seen as different fields of research.
This is despite the fact that health data used by both fields
is, for the most part, the same. Both fields require a huge
amount of data: in precision medicine researchers usually collect
many different types of data from few people, whereas in public
health, they gather a few data types from many people. In truth,
more data collected from as many people as possible should
yield better results from statistical analyses. For example, only
with a large enough cohort can genomic variance be detected
(23). We argue that precision medicine and public health are
complementary, as shown in Figure 2; further, if Big Data is
the glue that holds all this health data and analytics together
for precision medicine and public health, it can also help to
promote a convergence between the two fields into precision
public health.

Dolley (9) defines four main areas in which Big Data
can improve precision in public health: Disease Surveillance
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FIGURE 1 | Big Data is the glue that brings precision medicine and public health together, allowing researchers to study interactions between comics, clinical, social,

and environmental data.

FIGURE 2 | Precision Medicine: few people providing a large number of types of data. Public Health: large number of people providing limited types of data.

and Signal Detection, Risk Prediction, Targeting Treatment
Interventions, and Study of Disease. In this paper, we will
explore how the recent Big Data explosion can help toward
the convergence of precision medicine and public health into
precision public health. We will review what health data is
important for public health and/or precision medicine. Then,
we will discuss how several of the identified data uses can lead
to precision public health, using Dolley’s main areas to frame
the discussion.

Our goal is to (i) provide an overview of which Big
Data types and usage are relevant to precision medicine
and public health, through a literature review; (ii) to discuss
opportunities and challenges concerning the convergence of
precision medicine and public health into precision public
health. While there have been many publications discussing
the emergence of precision public health and its merits,
we intend to describe the data types and its uses for
precision medicine and public health systematically, in order

to discuss the importance of the novel field of precision
public health.

The rest of the paper is divided as follows: theMethods section
describes the methods that we used to conduct the literature
review. The Results section provides an overview of the main
data types, sources, and uses, and presents how combinations of
these data can be used for precision medicine and public health.
The Discussion section discusses how precision medicine and
public health can be brought closer together with a data-driven
approach, and the challenges related to this approach with a
special focus on privacy issues. The Conclusion section presents
concluding remarks, limitations, and future work.

METHODS

To achieve our goal, we conducted a review. The team followed
a framework (24) to make sure the findings were analyzed
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systematically. The framework consists of the following six stages:
(i) identifying the research question; (ii) identifying relevant
studies; (iii) study selection; (iv) charting the data; (v) collating,
summarizing and reporting results; and (vi) consultation, which
is optional.

Identifying the Research Question
To achieve the two goals defined in the introduction, the paper
will answer the following research questions: (i) What are the
relevant data types related to precision medicine? (ii) What are
the relevant data types related to public health? (iii) What are the
relevant uses of data in precision medicine? (iv) What are the
relevant purposes of data usage in public health? (v) How can
the uses of data types raised in the previous questions promote
convergence between precision medicine and public health into
precision public health?

Identifying Relevant Studies
The review was conducted on the following health and
informatics databases: IEEE, Google Scholar, PubMed, and Web
of Science. We used the following strings related to general
terms of the field: “Precision Medicine,” “Personalized Care,”
“Precision Health,” “Public Health,” “Population Surveillance,”
and “Precision Public Health.” Each of these terms were searched
in combination with the following keywords/search strings,
pertaining to methods of data processing or analytics: “Big Data,”
“Artificial Intelligence,” “Machine Learning,” “Deep Learning,”
“Regression,” “Clustering,” “Analytics.”

As stated by Khoury (3), the terms “precision medicine”
and “personalized medicine” have often used interchangeably,
although there is an increasing preference for the former.
Originally we had included the term “personalized medicine” in
our review for completeness. However, as we proceeded with the
review we realized only one of our references included in our
article included the term “personalizedmedicine.” On a PubVenn
search of the two terms, only about 9% of articles for precision
medicine and personalized medicine overlap at this time (25);
therefore, we decided to remove this term from our review.
For more details, the difference between the terms is described
elsewhere (3, 4, 26). We also included some of the more common
techniques associated with statistical methods, mainly related to
Artificial Intelligence (AI).

Study Selection
The main exclusion criteria were papers that did not deal
with Big Data or associated technologies and methods.
To this end, the team used the definition of the term Big
Data rather than checking whether the term was present.
Additional restrictions include practical concerns of availability
and language (only English references were included,
except for data about mobile device usage obtained from a
Brazilian website).

Charting the Data
This stage consists of defining which information will be
extracted and analyzed from the results of the review.We focused
on the following information:

• What data types are being cited/used?
• What is the purpose of the usage of data?
• Is the focus on precision medicine, public health, precision

public health, or a combination of these fields?

Collating, Summarizing, and Reporting the
Results
For each result, we mapped what data types were cited and
their purpose, as well as the fields in which the data was
collected. Concerning research questions (i) and (ii) in our
literature review, we found four major data types that are used
by precision medicine and public health: omics, clinical, social,
and environmental. In this subsection, we describe each of these
data types and their sources (meaning how and where they are
generated or collected). As we describe the different data types
we found in the literature, we provide examples regarding their
current use, whether in precision medicine or public health—
although certain data type uses are often associated with both.
We go into more detail on these uses in the following sections,
exploring how each of these data types can be combined for both
precision medicine and public health. Table 1 shows a summary
of our results.

RESULTS

Data Types, Sources, and Uses
This section focused on defining data types being used by
precision medicine and by public health. We provide a brief
definition of each data type, discuss possible sources for data
collection and examples of how these data can be used. The next
section provides more details into the use and combination of
these data in precision medicine and public health.

Omics Data

Definition
Omics (or -Omics) studies the features of molecule profiles
(e.g., genes, proteins, metabolites) to understand the relationship
between molecules of an organism better (27, 28). Data
commonly studied include genes, chemical compounds, proteins,
metabolites and carbohydrates, among others (27, 29, 30). The
study of biological factors and their interactions, including the
relationships between the several “-omics” types, are particularly
essential in the field of precision medicine. These studies can lead
to several insights, such as understanding if there are different
subtypes of a disease and studying factors that might make a
potential drug more effective (31).

Sources
These data are mostly obtained from sources such as next-
generation sequencing technologies (NGS) (28, 29, 32, 33). NGS
technologies analyzemultiple chains of DNA in parallel, speeding
up the process (indeed, an entire human genome can now be
sequenced within a day) and making it more cost-effective. An
example of NGS technologies is deep sequencing, which involves
the sequencing of the same gene a multitude of times to detect
rare mutations or variations in a cell (33, 34).
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TABLE 1 | Data Types Identified in the Literature Review.

Data Types Omics Clinical Social PGHD Environmental Demographic

Definition The study that

explores the roles,

relationships, and

actions of the various

types of molecules

Data collected

through the course of

treatment or in the

processes of clinical

trials

Information publicly

shared on social

media and related to

personal health data

collected by the

individual

Information on the

health and behavior

of individuals

collected through

personal smart

devices

Information gathered

from the context in

which individuals and

populations are

immersed

Information

describing attributes

of the population

under study

Examples Genomics,

epigenomics,

proteonomics,

transcriptomics, etc.

EHR, laboratory

tests, MRI, CT

Scans, Administrative

data, etc.

Social media posts,

GPS location, data

generated through

smartwatches,

smartbands, etc.

Smart personal

devices data such as

sleep, heart rate, and

physical activity

Natural resources

quality, temperature,

crime rates, traffic,

walkability of

neighborhoods, etc.

Age, sex, education,

income, ethnicity,

employment, etc.

Possible Uses Oncology and

genetics studies,

pharmacogenomics,

omic biomarkers,

clinical trials

improvement

Predictive medicine,

trends and correlation

identification, clinical

trials improvement,

false alarm mitigation

Social media use,

behavior and social

habits assessment

(e.g., quit smoking,

lose weight, etc.)

Health

self-management

and research into

behavioral aspects of

an individual (e.g.,

dietary intake

tracking, vital signs

log, etc.)

Air and water quality

monitoring, traffic

impact measuring,

social factors impact

on life quality

Stratifying

populations under

study in groups with

the same attributes,

preventing biases

and confounding,

and serving as a

normalization tool for

comparing data

points in a study

Examples of Uses
A possible use for omics data include studying genetic traits to
tailor treatments. For example, many studies can relate diseases
such as obesity and cystic fibrosis to genetic factors (35, 36).
Even communicable diseases, such as influenza, can have genetic
factors that have implications in an individual’s resistance to
treatment (23).

Another use of omics data is the detection of biomarkers,
which can help researchers to better understand certain diseases.
Biomarker detection can also be of great importance in
improving clinical trials. A tool to track biomarkers can allow
the measurement of differences in patients at a biological level,
allowing researchers to assess the effects of a drugmuch faster and
more accurately than current methods permit (31). Omics data
and genomic biomarkers, associated with computational agents
like Machine Learning algorithms, have the power to discover
novel associations between molecular profiles and other clinical
variables that would not be assessed otherwise and can lead to the
identification of new clinically-relevant subtypes in clinical trials
(37, 38).

Clinical Data

Definition
Clinical data is collected from patients during treatments or in
clinical trials, usually at a medical facility. Examples of clinical
data include laboratory tests, such as CT Scans, ECGs X-Rays.
Some subtypes of clinical data can be collected and managed
solely by individuals using health devices such as wireless scales,
smartwatches, and blood pressure monitors. However, these
sources and uses of clinical data are not officially monitored in
medical facilities and registered on patients’ EHRs. Therefore, in
this paper, we are considering clinical data as all data that can be
obtained and stored within healthcare facilities and by providers,

and that definition is used in the points below. For data generated
by health devices, see next subsection on social data.

Sources
Clinical data is typically collected from the following six sources:
Electronic Health Records (EHR), Administrative Data, Claims
data, Patient/Disease registries, Health Surveys, and Clinical
Trials Data (39).

Example of Uses
Clinical data can be used to predict individuals’ diagnoses,
reaction to treatments and survival outcomes (8, 31, 40, 41).
There have been several research programs using Deep Learning
for this purpose. For example, a researcher at Trinity College
trained a Machine Learning model on 110 MRI scans that
achieved a 90% accuracy in early diagnosis of Amyotrophic
Lateral Sclerosis (31). Gulshan et al. (42) developed Deep
Learning algorithms that exceeded the performance of specialists
in detecting diabetic retinopathy and diabetic macular edema in
retinal fundus images.

Clinical data can also be coupled with remote monitoring
technologies to monitor patients within and outside hospitals
without the need of physical contact—which is essential during
the current COVID-19 pandemic. For example, Dhillon et al. (43)
proposes a system that processes events from wearable sensors
collecting ECG, EEG and Blood Pressure data. This system also
has the ability of providing alarms in case of an emergency event.

Social Data

Definition
A straightforward definition of social data is information shared
publicly on social media, including information on the user’s
location, circle of friends, and language (44). Expanding this
concept, the usage and meaning of certain data are closely
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associated with social interactions (such as behavioral data,
even though they were not generated nor collected through
social media).

Sources
These include social media such as Facebook, Twitter, andGoogle
(e.g., search history, Google Trends), and data representing
social interactions.

Examples of Uses
Social data can be used to estimate behavioral characteristics
of an individual. For example, 20% of patients with chronic
conditions share their experiences online with other patients,
creating communities on social media (10). These data can be
leveraged for health purposes. Food images from Instagram can
be used to study dietary behavior of adolescents. Deiner et al.
(45) used Twitter data to identify the occurrence of diagnosed
conjunctivitis. In addition, more advanced studies are capable of
marker identification and even prediction of diagnosis: Reece and
Danforth (46), for example, used Machine Learning to identify
markers of depression using Instagram photos, Jain et al. (47) use
Twitter data to predict insomnia, and Odlum et al. (48) showed
that an increase in Twitter data about Ebola indicated increased
incidence in Nigeria three days before the news alert and seven
days before Centers for Disease Control official alerts. However,
one has to be careful about using social data as many of these
research results may not be repeatable. In addition, researchers
need to be mindful of users’ privacy as these data may not have
been originally collected as part of a research study (as expanded
in the Discussion section).

PGHD

Definition
PGHD, or “self-generated,” real-world data, includes information
on the health and behavior of individuals collected through
personal smart devices. Many data types in the literature related
to personal clinical data, such as weight and heart rate, are not
officially considered for clinical use by caregivers but can be used
by individuals to self-monitor their health and behavioral goals
(e.g., quit smoking, drink water, exercise, etc.) and are included
in this definition (20, 49–53).

Sources
Data collected through personal mobile/wearable devices such as
smartphones, smartwatches, smart thermostats, among others.

Examples of Uses
Applications such as Apple Health and Google Fit can collect and
manage individual data such as exercise routine, calorie intake,
heart rate, and weight, among others (49, 50, 52, 53). There
is mixed evidence on the accuracy of data collected through
smart sensors, and many factors can affect it (54, 55). A recent
systematic review of wearables found that data may be under-
or overestimated in several devices and models (55), and a
study comparing FitBit Flex and the ActiGraph GT3X+ found
that the Fitbit significantly underreported steps in free-living
conditions (56).

In addition to health self-management, smart devices can also
help researchers collect data for health studies. For example,
ResearchKit is a framework developed by Apple to help
researchers create apps that recruit study participants and collect
health data from connected devices (50). An example is mPower,
an iOS app that measures balance, dexterity, and gait with
iPhones’ accelerometer and gyroscope to understand Parkinson’s
disease better. It has more than 10.000 users (93% never took
part in any study) and became the largest Parkinson’s study in
history (50, 51). Of course, there need to bemanymore studies on
whether the accuracy of this data is adequate to support research.

Environmental Data

Definition
Environmental data is related to information gathered
from the context in which individuals and populations are
immersed. Examples of environmental data include air pollution,
temperature changes, water quality, crime rates, and walkability
of a neighborhood, among others.

Sources
These include air pollution and weather sensors, GPS, GIS, Police
Data, Public Transportation Databases, and mobile apps.

Example of Uses
It is well-known that certain environmental factors can directly
affect our health, such as air and water quality. Natural and man-
made impacts on natural resources are related to several acute
and chronic diseases. These impacts can be assessed to develop
better healthcare strategies for individuals and populations,
although the latter is more often associated with these concerns.
Off-the-shelf sensors such as Ecobee smart thermostats, for
instance, are new solutions that collect several environmental
data variables (57–59).

Other factors related to the built environment, such as
incidence of crime, transportation, and city planning, can have
a significant impact on individual and population health. Many
reports show that factors such as commuting may have a negative
impact on health, affecting our metabolism (e.g., raising blood
sugar and cholesterol levels), posture, and interfering with sleep
patterns (60).

Demographic Data

Definition
This includes any data related to the description of individuals or
populations under study, such as age, sex, ethnicity, education,
employment, and income (61).

Sources
There are many ways to obtain demographic data. Participants
can self-report their demographic characteristics when a study
begins, for example. Researchers can also access data from large
surveys and census which typically collect this information, such
as the Canadian Health Measures Survey (62) (further described
in the Discussion). This information can also come in clinical
records of individuals (in this manner, they can be seen as a
form of Clinical Data) and also be collected through social media
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(in the same manner, data collected in this way would also be
classified as Social Data for our purposes).

Example of Uses
Demographic data are typically used to stratify participants in a
study according to certain characteristics, for example to identify
if a certain factor is present or not in the sample of participants
with the same characteristic (61, 63, 64). The use of demographic
data can also lead researchers to identify and avoid any biases or
confounding, as well as to examine the validity of the study as
analyses performed in a certain population may not be directly
translated to populations with different characteristics (64). In
this manner, demographic information acts as a normalization
tool to ensure that the collected data of individuals can be
compared pertaining to the variable or outcome of interest on
the same basis, minimizing the probability that no other factors
may cause incorrect analysis or results (63).

Data Interactions in Precision Medicine
and Public Health
In this section, we address research questions (iii) and (iv) by
describing the use of the four data types defined in the previous
section for precision medicine and public health. We outline
current uses of these data types, as described in the literature,
and include possible combinations of the aforementioned data
types. The uses proposed here implicitly involve demographic
data as this information is typically used for analyses in studies as
described in the previous section. There are many results that can
be inferred by combining data types, thus expanding the scope of
both these fields.

Precision Medicine

Omics
As previously mentioned, Omics data are extensively related
to precision medicine, as they can help tailor treatments and
interventions specifically to an individual’s profile. The first
advances in precision medicine were mostly driven by the field
of oncology since it is long known that cancers are essentially
genetic abnormalities. By analyzing omics data, it is possible to
identify the molecular profile of the tumors, leading researchers
and clinicians to understand better their specific mutations (36,
38, 41, 65). In addition, many studies are now assessing omics
data to relate phenotypical outcomes with genetic markers better.
For example, Chen et al. (66) demonstrated the critical role of
the GRIN3A gene in nicotine dependence, a key factor that may
affect the success rate of people who try to quit smoking. The
use of omics data for biomarker detection can also further be
assessed for identifying new population stratifications that target
identification and comparative effectiveness (40).

Clinical Data
An interesting application of clinical data in precision medicine
is to improve clinical trials. Models that accurately predict
diagnoses can lead to better treatments for patients, which in turn
will lead to better outcomes as well as a better understanding
of the underlying causes of diseases. Diagnostic prediction can
also minimize the risk of misclassification of patients in trials,

making their results more accurate. In addition, companies like
Origen Data Sciences want to use Machine Learning to create
“virtual patients” for the trials. In short, instead of the traditional
clinical trial model in which patients are divided into groups,
with a comparison group that will receive a placebo drug, the
goal with “virtual patients” is that all patients would receive drugs
and be compared to a computer model of how they would have
progressed in the treatment if they had been placed in the control
group (31, 67).

Omics and Clinical Data
Considering omics and clinical data, Johnson et al. (40) describe
how medication dosing is a huge problem in healthcare,
particularly in ICUs. Studies conducted in institutions show
that, because of complex factors involving dose-response
relationships, it is very hard for medical staff to assess the
appropriate dosage for each patient. To that end, there have been
several research programs that try to estimate medication dosage
through analytic techniques, such as linear regressions (68) and
reinforcement learning (40, 69), applied to omics and clinical
data. Clinical-genomic data can also be considered closer to real-
world data, useful not only for delivering care but also to support
the design of future clinical trials since it could provide better site
selection and patient recruitment criteria (41).

Clinical, Social and PGHD Data
From a precision medicine perspective, there is little, if any,
division between clinical, social or PGHD data. The source of
the data is not as important as having accurate information
that reflects a patient’s history. However, knowing the source
of the data can help researchers to understand its accuracy
better; typically, data from clinical sources are highly accurate,
but represent few measurements over a short period of time.
Social data and particularly PGHD, on the other hand, represent
a large volume of data that may help in identifying outliers
and filter variations, but may also contain more gaps and
innaccuracies. Since the purpose of precision medicine is to
deliver more precise care, individual health data is of the utmost
importance. The popularity and ubiquity of smart technologies,
coupled with increasingly advanced methods and services of
storage and analytics platforms (21), allows for the creation of
real-time feedback loops for the patients (10, 20). For example,
an individual that uses smart devices such as smart bands,
smartwatches or smartphones can have their health data collected
continuously and effortlessly. This data can be further analyzed
and the results of these analyses can be provided as feedback
given to the user in near real-time. These results can tell the
user, for example, if he exercised enough during the day or if
he needs to exercise more to compensate for not doing enough
physical activity in the previous week. In this case, the analyses
of the data “bypasses” the need for a doctor and very quickly
provides feedback on individual health, as well as treatment or
prevention strategies tailored to the individual. It is important
to note that health data collection, particularly PGHD, make it
essential for data collectors to handle the data in an ethical way
and lead to a discussion about data accuracy, ownership, privacy,
and consent. Johnson et al. (40) indicate that privacy is one of the
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main factors that can impact health data collection and use; this
is an important consideration for all data types mentioned here
in the article, but from a research and analytics standpoint PGHD
may provide additional difficulties as this information typically is
not collected primarily for research purposes. We provide a more
detailed discussion of privacy in section Security and Privacy of
Personally Identifiable Information (PII).

Social, PGHD, and Environmental Data
Although clinical data is the more obvious data type in which
analytics can be run and insights into individuals health and
behavior generated, Barret et al. (20) proposes that socio-
environmental data can also be integrated for more analyses
and to encourage healthy lifestyles. For example, social networks
could be used to link groups with common interests and who
live in the same location to increase physical activity (52, 59, 70–
72). Hicks et al. (63) describes examples of studies using social
and environmental data, for example by linking smartphone-
based physical activity with city walkability data to analyze
activity inequality.

Public Health

Clinical Data
Chimmula and Zhang (73) used a relatively small Canadian
dataset on fatalities and recovered patients to model the
virus’ transmission, achieving 93.4% accuracy for short term
predictions (although the researchers found that the pandemic
would continue in Canada until June of 2020, which was not the
case, suggesting that long-term predictions are not valid; a large
dataset can potentially represent more accurate information).

Omics and Clinical Data
Prevention is a major public health goal. An essential step for
prevention is identifying risk factors for diseases, which range
from genomic factors to physical activity, tobacco use, and
pollution, among others. Advanced analytical techniques can
help in identifying risk factors and correlations among variables
(20). An example includes state run public health programs in the
U.S. which screen more than 4 million newborns yearly to detect
genetic or metabolic conditions (74).

Clinical and Social Data
Google search data has been used to identify suicidal ideation,
while Twitter data can be used to assess insomnia at a population
level (47). Another example of multi-data usage for public health
is targeting effective interventions to specific subgroups in the
population, as proposed by Barret et al. (20).

During the COVID-19 pandemics, we have seen several
papers which use advanced analytics to try and predict the spread
of COVID-19 in a certain region. For example, Ayyoubzadeh
et al. (75) analyzed a dataset comprised of daily incidence of
COVID-19 in Iran and Google Trends data, specifically looking
for search terms appearing in queries like “corona,” “antiseptic
selling” and “hand sanitizer” (as an example of integration of
clinical and social data). While accuracy was not reported, the
model’s Root Mean Square Error was 27.187. The authors found
evidence of overfitting in the model because of the limited

amount of training data and suggested that more data will lead
to better accuracy, again suggesting the potential of advanced
analytics combined with large volumes of data. Qin et al. (76)
were able to predict COVID-19 cases successfully using search
indexes from Baidu’s, China’s more popular search engines.
Arguably, these cases could be branded precision public health
owing to their use of Big Data and a more precise understanding
on the behavior of individuals; we decided to include them
here as they target entire populations as opposed to specific
groups or regions and therefore may not represent a truly
precision approach.

Clinical, Social, and Environmental Data
Ram et al. (77) used social media data (Twitter data and Google
search queries) coupled with environmental data (air-quality
data) to predict clinical data (daily emergency visits for acute
asthma) accurately.

Omics, Clinical, Social, PGHD, and Environmental
Public health has been redefined for the past decade,
incorporating concerns that go beyond communicable diseases.
Many populations suffer, for example, from endemic obesity, and
it has been a major challenge for public health agencies to design
strategies to fight it. Obesity is known as a multi-factorial disease
caused by genetic, social and environmental factors. If data from
EHRs and smart devices (e.g., Fitbit, Apple Watch) could be
brought together with social and environmental data, it might
be possible to study several factors relating to physical activity
(or lack thereof) and obesity in a population (20). For instance,
the walkability of a city and quality of the environment (e.g.,
air pollution, crime rates, availability of public transport, traffic,
etc.) can affect the amount of exercise a person gets (20). In
addition, obesity in a person’s social network can be a predictor
of the individual’s BMI (e.g., if their friends do not go out and
exercise, mostly living a sedentary lifestyle, the individual may
do the same).

Precision Public Health
As can be inferred from the previous section, many data types
and use cases can be helpful both for precision medicine and
public health. Further, for these data types to provide results,
the datasets must include at least a large variety and volume
of high-speed data, characterizing Big Data. In this section, we
discuss research question (v) as we describe specific use cases
that bridge these two fields, converging into precision public
health with the use of Big Data. Drawing on Dolley’s framework
of areas in which Big Data can be applied in Precision Public
Health (9), we divide our discussion into Targeted Interventions
(divided into personalized risk factors and feedback loops), Risk
Prediction, and Disease Surveillance. The fourth broad area that
Dolley defines, Understanding Disease, is distributed throughout
the first areas.

Targeted Interventions—Personalized Risk Factors
One of the promises of Big Data in healthcare is the discovery
of new risk factors for diseases (9, 20). This is helpful in public
health as the discovery of risk factors can help in the development
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of strategies for prevention of diseases and behavioral change in
populations. Massive datasets from heterogeneous sources and
including the data types described earlier in the paper allow
population, subpopulation and personal-level analyses, which
can lead to the discovery of personalized risk factors that take into
account individual variables and traits, characterizing a precision
medicine application as well.

Without Big Data, it would be extremely hard to perform
stratification and detect these risk factors: for example, certain
factors may be beneficial to some people but harmful to others,
so the overall effect that will be measured in this population will
be zero. Only with high-speed data collection and high volumes
and varieties of data is there enough granularity and variety in the
data to calculate such statistical interactions. In other words, only
with population-level data is it possible to detect relationships
that will be beneficial for a precision approach.

One interesting case of environmental data for detecting
personalized risk factors is the use of Big Data to predict
environmental factors, such as concentration of a certain
particulate matter in the air. Identifying environmental risk
factors can help determine who is more at risk of exposure
(e.g., expectant mothers), allowing personalized treatment,
and it can lead to targeted interventions with the goal of
improving population health (e.g., implementing policies in
urban environments) (78). Prediction of air pollutants is an
excellent use case to illustrate how the lines between precision
medicine and public health can converge. The analysis and
insights gained from using Big Data to analyze environmental
factors can help both individuals at a personalized level (such
as detecting levels of pollution in their neighborhood) and also
support targeted population-level interventions (for example, for
an entire city).

Targeted Interventions—Feedback Loops
We have previously discussed how analytic methods applied to
PGHD and social data (and possibly in conjunction with other
data types, such as clinical date) are used to analyze data quickly,
gaining insight into the behavior of individuals. These insights
can be communicated back to the user (for example, through
phone notifications) generating a feedback loop: data is collected
and analyzed, and actionable insights are transmitted back to
users with information about their health (and possibly even
recommendations for improvement). This can greatly improve
the engagement of patients with their health and, by providing
suggestions for health improvements based on an individual’s
specific behaviors, these loops represent a case of Big Data use
for precision medicine.

However, they can also be seen as a form of targeted
intervention in public health by being applied to a large
percentage of the population in a very specific, personalized
manner. In the past, interventions to improve exposure to disease
risk factors meant that doctors gave recommendations to patients
(e.g., stop smoking or drinking, be physically active). With real-
time feedback loops enabled by smart devices which collect and
transmit data, as well as the application of advances analytics,
including AI methods, these interventions can reach a much
larger sample of the population in little to no time. Further, these

interventions can be viewed as precise, as they are based on data
collected at an individual level. Therefore, the same data types
and uses for precision medicine can be helpful for interventions
in public health, leading to precision public health. Jain et al.
(47) highlights, for example, that wearable accelerometers can
track functional outcomes in people with neurological disorders
and provide data for designing rehabilitation programs. This
can be seen as precision public health, as information contained
in feedback loops can provide interventions to a subgroup of
the population.

Predicting Risk
For medicine to be precise, it must rely on evidence-based, richly
diverse data aggregated from a variety of sources. This means
crossing traditional boundaries of what is thought of as health
data (omics, clinical data) to aggregate and integrate social and
environmental determinants of health. Integrating a multitude of
data from different sources will lead to a better understanding of
what makes treatment effective for a person or group of people. It
will also bring precisionmedicine closer to public health, as social
and environmental variables are usually collected, analyzed, and
used at a population level. For example, Xiaonan et al. were able
to estimate accurately exposure to particulate matter in the air
using Google Maps data (79).

Authors such as Prosperi et al. (8) set disease prevention
as one of the goals of precision medicine. One can argue
that precision medicine deals with the specific traits of an
individual in order to protect that person from diseases. However,
once this knowledge is applied to a community of individuals
with similar characteristics, precision medicine converges into
precision public health. In the same vein, traditional public
health analysis has typically looked at population-level data,
including social, environmental, and clinical data. Including
more precise data about each individual, such as omics, can
improve prevention efforts, as they can be targeted to more
specific subgroups of a population, and can help researchers
understand the characteristics of diseases (20) better. Further,
models created using this wide variety of information can be used
to predict risks. As described by Dolley, early attempts to use
Big Data for public health purposes with Google Flu Trends data
resulted in a failure, leading researchers to integrate more data
sources (9).

Disease Surveillance
In the previous sections, we discussed how novel sources
and types of data can lead to increased disease tracking
and surveillance. With the ubiquity and connectivity of new
technologies, researchers can study movements, patterns, and
behaviors of individuals and populations, by tracking affected
individuals. The key difference between traditional approaches
of surveillance and Big Data is that Big Data can lead to
disease surveillance in close to real-time. As Dolley (9) suggests,
“Access to huge volumes of streaming real-time data generated by
humans seems at once an ideal signal repository for identifying
and tracking affected individuals.”

Ginsberg et al. (80) uses clinical data (the number of
physicians in a region), and social data (search queries) to
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estimate the probability that a visit to a physician in that region is
related to influenza.

An interesting example that leverages a precision approach
to public health is presented in Arora et al. (81), in which the
authors divided India into several regions according to severe,
moderate andmild depending on the number of COVID-19 cases
and created separate models for each of the states and union
territories. Unlike the COVID-19 prediction cases described
above, this work has a precision approach to public health that
targets detailed areas within a larger population or region.

One caveat to be made here is that disease surveillance as well
as the handling of any type of patient data, need to be assessed
in terms of privacy of patient data and anonymization. We will
discuss these topics in the section entitled The Challenges to a
Data-Driven Approach to Precision Medicine and Public Health.

DISCUSSION

Convergence of Precision Medicine and
Public Health into Precision Public Health
The previous section provides details on several examples of
data types, sources and use cases from precision medicine and
public health, as well as how these can converge into the field
of precision public health. Indeed, as we add large amounts of
diverse data to health studies and research, it becomes harder
to differentiate between precision medicine and public health.
Further, with generation and access to more data, we converge
to precision public health.

For example, we cited U.S. state programs that use genomic
and clinical data to screen newborns for certain conditions. These
programs have been run for more than 50 years, even before
the term precision medicine were used, and are part of public
health tracking and interventions. However, it is possible to
argue that by targeting a specific subgroup of newborns inside a
population, this could be considered one of the earliest efforts in
precision public health (74). In the same token, we mentioned
how COVID-19 studies that leverage Big Data to study the
incidence of the virus in a country could also be considered
examples of precision public health. In this sense, precision
public health is nothing more than the natural evolution of the
fields of precisionmedicine and public health.With the use of Big
Data, the individual and the population are complementary and
health problems can be solved both at the micro and macro level.

One interesting observation in our previous definition of
data types and uses is that we did not explicitly include
epidemiological data, i.e., data focusing on a disease in a
population, despite having extensively described studies and
examples of the use of this data (82). This is owing to the fact
that this data source is typically collected from other datasets and
used for population-level surveillance, such as patient records
and social media information.

As a further example of how Big Data can be used to
gain insights into the health and behavior of individuals and
applied in a population-context, we propose the following
example: the Canadian Health Measures Survey (CHMS) (62) is
a major survey comprised of: (i) an hour-long interview in the

respondents’ home; (ii) a visit to a temporary clinic to collect
physical measures; and (iii) use of a fitness tracker for a week.
Most of the measures in this survey, such as body composition
or heart rate, can be collected using smart technologies, and
the aforementioned platform can reduce social and recall biases.
Incorporating smart technologies in survey design will minimize
time and financial burdens of clinicians and interviewers, while
data can be reported in real-time. By leveraging the data already
collected from personal devices for long periods of time, studies
could minimize follow-up losses by providing automated data
collection while ensuring the data are more representative than
those obtained from the fitness tracker.

In other words, the use of smart technologies to collect
social data here would lead to more precise and accurate data
on the health of individuals, which would allow public health
agencies to have a more complete view of the health and behavior
of these groups. Further, it would also help these agencies to
create population-wide interventions in the public health sphere.
This kind of bi-directional relationship between the two fields,
described in detail in the previous section, is what we call
the convergence of precision medicine and public health into
precision public health.

Having data, however, is only one half of the equation.
Research should generate insight, and the use of advanced
analytics—for example through the use of AI—to allow us
to make sense of and extract meaningful information from
a massive amount of diverse data. We propose that, if the
aggregation and integration of heterogeneous data is the door to
converging precision medicine and public health into precision
public health, then Big Data and its associated technologies
(including AI and statistical analytic methods) is the key. It is the
tool that allows us to analyze and hopefully understand what all of
this data means at an individual and population level. Indeed, the
studies mentioned in the Results section use a wide variety and
quantity of data, combined with advanced analytic tools, to study
complex interactions on the health and behavior of individuals.
However, achieving precision in the context of public health is
not a trivial task.

Researchers and policy makers must be very careful, as
improving an individual’s health does not always translate to
an improvement in the health of an entire population. For
example, a prediction model that can improve the health of a
large sample of the population can still neglect minorities (83).
Here, it is imperative that evidence-based research is used by
public health agencies and policy makers to design effective
treatments and interventions for communities and populations.
While this may seem like an obvious statement, in practice it is
difficult to integrate knowledge translation strategies with public
health. Fafard and Hoffman (84) state that while public health
policies must be based on the best available evidence, “all too
often efforts to do so rely on mechanistic and unrealistic views
of the process by which public policy is made.” Indeed, while
knowledge translation was successful in health care areas such
as clinical practices, the same success was not achieved for public
health. A systematic review of knowledge translation strategies
(85) found, for example, thatmultifaceted knowledge translations
strategies may lead to a change in knowledge but not practice,
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and no singular knowledge translation strategy was effective in
all situations. Rather, strategies should be applied depending on
the stakeholders involved and the kind of knowledge being used.

Further, while comprehensive data that allows for precision
healthcare across populations is ideal, it is also important to note
also that data monitoring, collection, analysis and dissemination
is expensive and time-consuming. Therefore, while aggregation
and integration of heterogeneous data types and sources are
necessary, researchers should try to balance that with real-world
demands to obtain the best results (8).

In addition to concerns regarding knowledge translation and
research limitations, we must also consider challenges to a data-
driven approach to precision public health in the context of data
generation. These challenges are described in the next section.

The Challenges to a Data-Driven Approach
to Precision Medicine and Public Health
In this section, we briefly state some of the current challenges in
healthcare that prevent the generation of data needed at the scale,
volume, and velocity necessary for Big Data.

The first and most important challenge is data fragmentation.
Currently, data is fragmented throughout current EHR systems.
In addition, providers have systems that are often not
interoperable. Coupled with a lack of comprehensive formats and
standards for data storage, these factors lead to great difficulty in
data sharing. In practice, this means that patients interact with
different providers throughout their lives while they access care
services and end up losing access to past data (8, 41, 86).

Ultimately, patients’ health data end up in silos and cannot
be integrated with data from other providers or sources, such
as connected devices (e.g., smartphones, fitness trackers). This
means that there is no easy way to obtain a holistic view of
a patient’s health, leading to errors, delays, and poorer health
outcomes (87). This also limits the availability of massive datasets
needed for precision public health.

There are also several barriers to the availability of massive
genomics datasets, including security and privacy concerns,
prohibitive individual costs, rights to ownership of genomic data,
and data sharing. The latter is related to a lack of interoperability
among systems that store genomics data. Considering that a
human genome generates over 200 gigabytes of data and that
estimates predict that more than 100 million genomes will be
sequenced by 2025, storage and network transfer speeds also limit
data sharing (17, 67, 88).

The question of data accuracy must also be addressed when
dealing with large datasets from heterogeneous sources. As
mentioned, many authors extend the 3 Vs of Big Data to
include additional properties, one of which is Veracity. For
example, social media data may be biased regarding age, and also
concerning minority groups or those who live in remote/rural
locations may be underrepresented owing to limited Internet
access (67). Conclusions drawn from social media datasets should
also be assessed very carefully as many of the results reported in
the literature have not been repeatable.

Johnson et al. defines three major problems in data
collection and cleaning in healthcare and clinical settings:

compartmentalization, corruption, and complexity (40). While
not in the scope of this paper, it is interesting to note that Big
Data and Artificial Intelligence techniques may be able to solve
some problems related to corruption (e.g., estimating values of
missing data based on time-series analysis) and complexity (e.g.,
through prediction and state estimation). Johnson et al. provides
a good overview of techniques in this context (40).

Currently, Big Data and AI are often mentioned together
and seen as complementary. In short, Big Data techniques and
associated technologies (including storage and analytic engines,
data warehouses, pre-processing and visualization tools, among
others) can enable Artificial Intelligence algorithms to access,
process and analyze the data (67) efficiently. O’Leary described
how AI contributes to at least the basic 3 Vs of Big Data, as it can
aid in the processing of large volumes of data, increase the speed
in which data is analyzed and shared, and process a variety of data
(both structured and unstructured) (89). Precision public health,
owing to its dependency on insights generated by the analyses of
Big Data, depend on the quality of the data and in the models
developed to interpret this data. Therefore, it is interesting to
explore potential limitations of these models.

One of the issues is the quality of data used to create and
train (or “teach”) an AI model. For example, if the data is biased,
the program may make skewed decisions when outputting
information (90). As an example, consider a security system that
uses AI to analyze the face of a person and check whether that
person is authorized. If the data set used to train this system
does not have high quality, varied data (e.g., if it is comprised
mostly of men’s faces), the learning process could potentially be
affected. In the example of a men’s face data set, for instance,
the software could produce unfortunate results when trying to
analyze the faces of women (67, 91). Extending this problem to
precision medicine and public health, as stated in the previous
section, researchers need to be very careful—especially in dealing
with precision public health—that the models are not biased and
do not exclude any segment of the population that is relevant or
provide misleading insights.

In addition, security of these models is also a concern.
Adversarial attacks, for example, happen when an input to
a model is specifically designed by an attacker to cause
perturbations to the model and cause them to make a mistake
(92). This is dangerous in several situations, and in healthcare it
can lead to grave consequences. In theory, it would be possible
for an attacker to falsify a certain output, such as a diagnosis or a
prescription. Current research also extends to prevent adversarial
attacks, for example by training the model on possible examples
of adversarial inputs (92).

Another challenge is the problem of explainability in AI
algorithms, or in other words, how the AI algorithm arrived
at the conclusion it did. In other words, how can we identify
how an AI algorithm arrived at the conclusion it did? And if
we cannot identify this, how can we trust the predictions of an
AI model? The issue of explainability can be exemplified when
we consider neural networks (e.g., Deep Learning). In short,
neural networks are AI algorithms that try to achieve a prediction
by creating models that simulate the operation of the human
brain. Neural networks work as black-boxes, in the sense that
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it is not possible to describe how the algorithm reached specific
conclusions. In this technique, small computational units (the
“neurons”) are arranged in layers that are connected (digital
“synapses”) (91). Each unit in the layer processes data and each
layer integrates input from previous layers. At the end of the
process, the topmost layer provides an output. These algorithms
learn through an iterative method; in neural networks, the
learning process simulates the human brain by conditioning
the “neurons.”

A Machine Learning researcher gives the following example
(91): “Where is the first digit of your phone number stored in
your brain? Probably in a bunch of synapses, probably not too
far from the other digits. But there is no well-defined sequence
of bits that encodes the number.” Therefore, understanding
the explainability of a neural network algorithm is significant,
and this lack of transparency is what gives the impression of
a “black-box.”

If researchers are not able to understand how an algorithm
arrived precisely at its prediction, it becomes difficult to place
trust in AI systems. In simple use cases, it is easy to verify the
accuracy of AI (e.g., by looking at a picture, we can tell if the
animal in the picture is a dog, even if the algorithm classified it
as a cat). However, the situation becomes more complicated as
we increase the complexity of the decision. If a neural network
analyses clinical data and concludes that a patient has cancer, is it
possible to trust this diagnosis if we do not understand how the
machine arrived at it? On the one hand, the neural network may
have recognized patterns and features that humans do not have
the capacity to analyze; on the other hand, the algorithm could
simply be wrong. Should we trust machines in the same way that
we apparently trust our doctors even though they also may be
wrong in making a diagnosis? Further, if we do not understand
yet how our own brains work, should we be concerned about
understanding how an AI system’s reasoning takes place?

To solve this issue, the field of explainable AI has experienced
rapid growth in the last years, as it seeks to improve transparency
and justify decision making based on the results of AI models.
Arrieta et al. provides the following definition of explainable
AI: “Given an audience, an explainable Artificial Intelligence is
one that produces details or reasons to make its functioning
clear or easy to understand” (93), and provides an overview of
current terminology and techniques for explainable AI. Advances
in this field can greatly improve the trust and human factor
challenges and contribute to an increasing adoption of a data-
driven approach to precision public health.

In addition, it is also important to note that the problems
mentioned here are not specifically unique to AI but can be
present in statistical techniques and modeling in general, even if
they are not using Big Data or AI algorithms (90). As previously
discussed, the quality of an algorithm’s results, regardless of
whether it uses AI techniques or not, will depend on the quality
of the input data and the biases of the model.

Nevertheless, since AI can provide powerful prediction tools
and is becoming increasingly popular in the field of healthcare,
these considerations of data quality and trust can hamper the
acceptance of such techniques, particularly in the context of
predicting health outcomes and diagnosis. Research in areas such

as explainable AI can help to minimize these issues and increase
the interpretability of AI algorithms (67). Finally, a data-driven
approach to precision public health has to overcome societal
challenges, such as religious beliefs, political views, science denial,
and racial disparity (8).

Security and Privacy of Personally
Identifiable Information (PII)
Two major challenges that must be addressed when dealing
with large datasets comprised of sensitive information are
security and privacy. Generally, different jurisdictions contain
acts that protect PII. In Canada, for example, The Protection and
Electronic Documents Act (PIPEDA) regulates the collection, use
and disclosure of PII for private sector organizations involved in a
commercial activity. This federal act applies to all types of PII (94,
95). Several provinces have adopted health sector laws dealing
with personal health information (PHI), some of which are
deemed substantially similar to PIPEDA and taking precedence
in these provinces (94–96). PIPEDA’s principle of Safeguards
mandate that PII “be protected by security safeguards appropriate
to the sensitivity of the information,” including encryption,
authentication, and access control (95). It is important to
note that organizations must obtain informed consent for the
collection, use and disclosure of PII and state their purposes
of data collection (95). The Health Insurance Portability and
Accountability Act (HIPAA), which applies to subsets of health
custodians in the U.S., offers a similar but more comprehensive
list of technical, physical and administrative safeguards (97). The
General Data Protection Regulation in Europe provides a more
comprehensive framework than the previously cited regulations
for the protection of personal information, including the right of
access by the data subject and the right to be forgotten (98).

Ultimately, this means that the collection of data from
individuals which is accounted for in regulatory acts such as the
ones just described must protect this information using different
kinds of safeguards, considering cybersecurity attacks and taking
the necessary measures to prevent it. This would include, for
example, mobile apps collecting social data (99).

The collection, use and disclosure of PII for research are
typically not subject to regulatory acts butmust get approval from
review ethics boards, which also require safeguards according to
the sensitivity of data (94, 100).

One way to deal with PII is to anonymize it, meaning that the
datasets will be de-identified so that data will not be considered
identifiable; as such, it can be freely shared and stored (101).

To anonymize datasets, direct identifiers (DIs) in the dataset
are removed. In addition, quasi-identifiers can be masked to
decrease the risk of re-identification. For example, the last 3 digits
of a postal code can be removed, as well as the day and month in
the date of birth in a database (101).

In the context of precision public health, we are dealing
with massive datasets with information collected from different
sources. Therefore, after a large dataset with diverse data from
heterogeneous sources is anonymized, a challenge becomes how
to link records from different sources. Two possible methods
include Direct Linkage and Probabilistic Record Linkage.
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- Direct Linkage: this involves methods that include the use
of a unique identifier for record linkage followed by the
removal of DIs to anonymize data (101–104). For example,
the Institute for Clinical Evaluative Sciences (ICES) repository
contains several types of health administrative data. New data
typically contains Ontario health card numbers, which are
used to generate an ICES-specific key number (IKN) that
uniquely identifies individuals and links records from different
datasets (102).

The BORN registry, which includes all births in Ontario, follows
a somewhat similar approach in which DIs are directly used for
record linkage. These identifiers are not removed but converted
to a pseudonym.While this can simplify linkage, pseudonyms are
still considered PII and subject to regulations; in addition, their
use increases the risk of re-identification (101, 105).

In these examples, DIs are used to link records belonging to
the same individual directly. This is called deterministic record
linkage (102).

- Probablistic Record Linkage (PRL): In several situations,
incoming data may not contain DIs. In this case, PRL is
used for record linkage, which considers similarities and
frequencies of quasi-identifiers in a dataset to predict the
probability of a record belonging to one person (e.g., a
rare name in the population of study in two records
increases the probability that the records belong to the same
individual) (101).

In the case of ICES, incoming data may not contain health
card numbers. The Ministry of Health’s Registered Persons
Database (RPDB), containing demographic information on
Ontario residents, is used for PRL. Once a new record is
identified, the health card number of the individual in the
RPDB is used for IKN generation and to link this record
deterministically to others in the ICES repository, followed by the
removal of DIs (101).

The Centre for Health Services and Policy Research at the
University of British Columbia also applied PRL for linking
records. Researchers created a master file of all provincial health
service recipients, and different combinations of direct and quasi-
identifiers were used for PRL depending on which variable was
available in a given record (e.g., sex, birth year, Personal Health
Number) (101, 104).

One challenge with this method is that links between
records can be uncertain. In the previous example, researchers
filtered possible links according to similar patterns of agreement
and manually reviewed them for inclusion. The reviewers
took a conservative approach to identify matching records, as
minimizing the number of false positives was a priority for
subsequent researches involving the databases (104).

The reason why privacy of PII is so important is that, as we
explained throughout this paper, for precision public health to
improve the health of individuals and populations, generation
of Big Data is essential. Large volumes of linked, accurate and
representative data collected at an efficient and fast pace must
be present to generate actionable insights. However, privacy
concerns may lead to hesitancy on the part of individuals to

share their data with researchers and public health agencies.
This is particularly true of social data and PGHD. In this way,
privacy regulations must be respected and, in case the data is
anonymized, appropriate precautions must be taken to diminish
the risk of re-identification while appropriate techniques for data
linkage must be used to ensure that information can be linked
across a wide variety of data types and sources. This, in turn,
will facilitate state-of-the-art research into the field of precision
public health.

As previously mentioned, knowledge translation is an
essential part of translating actionable insights into practice,
specially in public health interventions. The dimension of privacy
must also be considered when creating and deploying knowledge
translation strategies. A report from the Canadian Marketing
Association reports that, while consumers in Canada, the U.K.
and the United States are becoming more comfortable sharing
data with companies, more control over what data are currently
being collected by organizations is desirable, and trust is essential
in this matter (106). Another study shows that patients wish
to be consulted before de-identified medical records are used
for research (107). In this manner, researchers must ensure that
individuals that generate data are aware that their data are being
used for research and that all appropriate safeguards and security
measures are being taken to handle these data. In addition to
collecting data in an ethical, secure and private manner, this will
also garner public support for precision public health initiatives.

Critiques to the Field of Precision Public
Health
In addition to the challenges mentioned above, there has
been recent critiques of the field of precision public health.
Chowkwanyun et al. (108) points out that the term precision
public health seems to have two different definitions within
the science community. The first, more restrictive view,
overwhelmingly focuses on the use of genomic data. This data
type is used to create subgroups in the population that can
be targeted for specific interventions according to their unique
genetic traits. The second, broader definition encompasses the
use of vast amounts of novel data, such as the data types
discussed throughout this paper (including, but not limited to,
genomics) in order to gain actionable insights into the health
of populations with a much more detailed and precise focus for
interventions. Given these views, Chokwanyun et al. (108) have
two main critiques: (i) the first definition, focusing solely on
genomic data, risks ignoring a plethora of data types and socio-
economic factors that can contribute to our understanding of
population health. In addition, despite advances in its generation
and analyses, genomics currently does not fulfill its promises of
revolutionary insights into our health. The focus on genomics,
according to the authors, seems to be the more prevalent
definition when discussing precision public health; (ii) while
Chokwanyun et al. (108) recognize that recent innovations
(e.g., in sensing technologies, computational power and data
storage) can improve our understanding of individual and
population health, the authors believe that adding the word
precision to public health is merely a “rebranding” exercise.
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Rather, traditional public health always made use of tools and
technologies, and the novel data types described in this paper
and associated technologies are simply additional tools to help
the field achieve its goal of improving population health.

On the other hand, authors such as Horton (109) support
the field of precision public health, stating that researchers in
this emerging field do not seek to ignore determinants of health,
but rather to gain a new understanding of them through the
use of new data types and technologies. The goal of the field
is not to focus on genomics to the exclusion of everything
else, but to make use of all available data in order to improve
population health—which is the ultimate goal of traditional
public health efforts. However, Horton (109) does not address the
previous concerns of many researchers having an over-emphasis
on genomic data (110).

Khoury, the founding director of the Office of Genomics
and Precision Public Health of the CDC (74), argues that
while many critics of precise approaches to medicine and
health equate this term with genomics, the goal of precision
public health is much more in line with the second definition
mentioned by Chokwanyun et al.: using all available data,
coupled with advanced analytics and technologies, to improve
population health (108). Traditional medicine and public health
have always been complementary—medicine focuses on the
individuals through traditional health care, while public health
focuses on addressing socio-environmental causes of declining
health in populations. By improving the individual, the quality of
life of populations is also improved; conversely, by addressing the
community, the quality of life of the individual increases. In this
context, precision public health is about making interventions
in the community more precise—for example, by understanding
what groups in a population might be more affected by a certain
cause and providing a targeted approach to solve the issue. While
the idea of targeted interventions in the population is not new,
new technologies and data (as seen throughout this paper) allows
public health practitioners, for the first time, to understand and
improve population health with much more detail and precision
than ever before—for instance using genomic data to identify
anomalies in a population; social data to study subgroups of
Facebook or Twitter users; or environmental data to look at
the prevalence of a condition in a neighborhood. All these
examples have in common the idea that novel data types and
technologies allow us to target a much narrower, precise segment
of a community to better understand its health.

Throughout this paper, we explored potential data types,
their uses and sources, and how they can contribute to a data-
driven approach to precision public health. While the risk of
relying too much on genomic data is certainly worrisome, and
researchers and agencies need to be cautious of not focusing too
much on one area that they “miss the forest for the trees,” we
believe that precision public health—meaning the collection and
analyses of all available data, enabled by advances in sensing,
analysis and storage technologies, to understand and improve
the health of individuals and populations better through targeted
interventions—represent a new era in public health efforts. We
discussed potential use cases in precision public health, from
targeted interventions to risk prediction and surveillance. While

these have always been the priority of public health, the use
of precise methods that “use the best available data to target
more effectively and efficiently interventions of all kinds” (109)
can greatly revolutionize our understanding on the health of
individuals, populations, and the relationship between micro and
macro levels of health. In this sense, precision public health can
be seen as a new era in the practice of public health and precision
medicine; it is the natural combination of these two fields to
improve how we understand our health and the health of the
community around us, made possible by the generation and use
of Big Data.

CONCLUSION

Recent advances and emerging technologies are resulting in an
explosion of rich and diverse health data sets. This, in turn, is
causing a paradigm shift in healthcare, bringing together the
fields of precision medicine and public health and converging
them into precision public health. Aggregation, integration,
and analysis of Big Data are key, bolstered by advanced
analytical methods including Artificial Intelligence algorithms,
as it can help researchers make sense of available data and
their interactions.

In this paper, we have conducted a survey and highlighted
some of the key data types and uses of these data currently
being studied for precision medicine and public health through
a review. These data types include -omics, clinical, social,
patient-generated, environmental, and demographic data. We
also included examples of precision medicine and public health
that use these data types, alone or in combination. Using the
taxonomy of data types in this paper, and classification of
various studies, we intend to show that with the aggregation
and integration of diverse data types from several sources, the
lines between what constitutes precision medicine and public
health become blurred. Indeed, several examples of precision
medicine and public health can be classified into precision
public health with the use of novel technologies and more
data. Furthermore, these fields can complement each other
and provide precision medicine doctors and public health
practitioners with new insights into individual and population-
level data, leading to the field of precision public health—with the
potential of revolutionizing traditional public health by allowing
a more precise and targeted approach to improving the health of
populations, through the use of new technologies.

Further, we discussed several challenges that exist in
healthcare and computer science that currently prevent a
complete data-driven approach to healthcare. Among them,
we can cite complexity of data, interoperability issues among
healthcare providers, lack of provenance (which, in turn, results
in a lack of trust) in AI systems and difficulty in knowledge
translation approaches. The major challenges of security and
privacy of PII were also discussed, and how they contribute or
hinder precision public health. We also discussed novel research
that can solve some of these challenges, including explainable AI,
record linkage in large datasets and anonymization. We finish
with an overview of current critiques to the field of precision
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public health, including the fact that the “precision” label is
nothing more than a rebranding of traditional public health
efforts, now bolstered by novel technologies. It is our view that
the alignment of precision medicine with its focus on individuals,
and of public health with the goal of improving the health of
populations, enabled by the sudden explosion of Big Data and
associated technologies for processing, storaging, and analyzing
of data, enable a revolution in the way that researchers and
agencies understand and improve health, both at the individual
and the population-level.

Limitations in our review include the fact that our initial
goal was to study analysis techniques rather than focusing on
uses of data. Most papers we found were related to health care
rather than computer science, and were more qualitative than
quantitative (e.g., discussing uses of data rather than techniques
or technical details). In addition, since so many of the terms
used here do not have a concise definition across research (e.g.,
personalized medicine is sometimes used interchangeably with
precision medicine), it is possible that, despite our methodology,
important papers related to data types, analysis, and use
were missed.

Future work should focus on exploring each data type
separately to identify more use cases and opportunities for

bridging the gap between precision medicine and public health.
In addition, reviews focused solely on computer science databases
could yield more information on aggregation, integration, and
analysis techniques for Big Data health analytics.
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