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Objectives: To understand and forecast the evolution of COVID-19 (Coronavirus disease

2019) in Chile, and analyze alternative simulated scenarios to better predict alternative

paths, in order to implement policy solutions to stop the spread and minimize damage.

Methods: We have specified a novel multi-parameter generalized logistic growth model,

which does not only look at the trend of the data, but also includes explanatory covariates,

using a quasi-Poisson regression specification to account for overdispersion of the count

data. We fitted our model to data from the onset of the disease (February 28) until

September 15. Estimating the parameters from our model, we predicted the growth

of the epidemic for the evolution of the disease until the end of October 2020. We

also evaluated via simulations different fictional scenarios for the outcome of alternative

policies (those analyses are included in the Supplementary Material).

Results and Conclusions: The evolution of the disease has not followed an

exponential growth, but rather, stabilized and moved downward after July 2020, starting

to increase again after the implementation of the Step-by-Step policy. The lockdown

policy implemented in the majority of the country has proven effective in stopping the

spread, and the lockdown-relaxation policies, however gradual, appear to have caused

an upward break in the trend.

Keywords: coronavirus infections, forecasting, logistic models, Quasi-Poisson regression, non-linear dynamics,

Chile

1. INTRODUCTION

The pathogen SARS-Cov-2 has caused the infection called Coronavirus disease 2019 (COVID-19),
spreading worldwide in just a few months. On January 30, 2020, the World Health Organization
(WHO) declared the COVID-19 outbreak a Public Health Emergency of International Concern,
considering the occurrence of cases in five WHO regions within 1 month (1).

Chile is an interesting case study to monitor the evolution of COVID-19: It is not a
developed country, in spite of its membership in the Organization for Economic Co-operation
and Development (OECD). Income inequality has been a persistent discussion topic for decades
(2). Yet, its authorities took early measures to augment emergency room capacity and to restrict
individual freedom of movement, in order to be able to face the pandemic.
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On February 8, 2020, the Chilean government declared a
national health emergency in the country, beginning Phase 1
of the epidemic “as no cases had been reported yet,” to deal
with the imminent arrival of the virus. On March 3, 2020, the
first case (an international traveler) was announced (3), meaning
that the country had entered thus Phase 2 of the epidemic
“all cases corresponding to people who had traveled abroad.”
On March 6, 2020, the Chilean Ministry of Health (CMoH)
issued a new legal order to increase its attributions to be able
to mitigate the imminent local spread of the virus. Two weeks
later (March 18, 2020), the Chilean government decreed a state
of constitutional exception due to national catastrophe, after the
WHOdeclared COVID-19 a pandemic onMarch 11 (1), enabling
the government to restrict free movement and association.
Some policies were implemented both at the national (curfews
and prohibition of crowded events) and local (zonal weekly
quarantines and regional sanitary blockages) levels, depending
on the evolution of the disease (4).

By the end of June 2020, Chile had over two hundred and
thousand confirmed cases of COVID-19. The majority of new
cases concentrated in the Metropolitan Region (RM, where
Santiago, the capital city, is located), where about a third of the
country’s population is concentrated. Chile has the highest testing
rate in Latin America, with nearly one million tests carried out
by June 23rd (4, 5). Overall case fatality was of 12,278 as of
September 15th 2020.

Full lockdown in the RM was implemented on May 13th
2020. Progressive improvements in the daily number of both
infected individuals and casualties, prompted the government to
announce on July 16th a new policy called Paso-a-Paso (Step-by-
Step), aimed at a slow relaxation of the confinement measures.
It was devised as a five-stage program: Lockdown, Transition,
Preparation, Early Reopening, Advanced Reopening, each with
specific restrictions and obligations for individuals. The progress
from one stage to the next is gradual, and each municipality
will be centrally assigned to each stage according to their
epidemiological statistics, with continuous monitoring of those
indicators in order to allow them to progress or return between
stages. On July 28th, the plan was finally implemented, where
seven municipalities in RM and two others in the Valparaíso
region exited Lockdown to be assigned to Transition. This policy
slowed down the previous downward trend in the number of
new cases.

With this reality in mind, we set ourselves to forecast and
model the evolution of the disease in Chile. Several studies have
modeled and predicted the spread of COVID-19 in different
countries, using data that begins with the first reported cases.
Some studies (6, 7) have fit data using Gaussian models or other
standard regression models, which are inappropriate given the
nature of discrete count data.

Phenomenological models (8–13) have been previously
applied to various infectious disease outbreaks including other
respiratory illnesses, such as severe acute respiratory syndrome
(SARS) and pandemic influenza. These models, including the
sub-epidemic growth model, can capture empirical patterns of
past epidemics, and are useful in generating short-term forecasts
of the daily trajectory of the epidemic. These approaches are

especially useful when epidemiological data are limited. Real-
time short-term forecasts generated from such models can be
useful to guide the allocation of resources that are critical to bring
the epidemic under control. Remuzzi and Remuzzi (14) used
exponential growth models to predict the early propagation of
the virus in Italy. Canals et al. (3) also used an exponential growth
model to predict in the case of Chile. Maier and Brockmann
(15) used sub-exponential growth in confirmed cases of recent
COVID-19 outbreak in Mainland China. Exponential growth
models, however, are unrealistic in scenarios where additional
information is available: Once an epidemic has progressed, and
mitigation measures start to have effects, contagion rates are
slowed down, with a reduction of the count of new cases,
making exponential growthmodels less appropriate for modeling
purposes. Hence, logistic growth models are a better option to
model data in these instances. For example, Roosa et al. (16),
Aviv-Sharon and Aharoni (17), and Chen et al. (18) have used
generalized logistic growth models and the Richards model (19)
to generate forecasts of the cumulative reported cases of COVID-
19 in China, Asia, and USA, respectively.

For our study, we have used a novel multi-parametric
method that extends the standard logistic growth curve, allowing
us to understand the past and predict the future evolution
of the disease in Chile. The model is a nonlinear quasi-
Poisson regression specification that explicitly accounts for
overdispersion of the count data. The trend has been estimated
using a Richards growth curve, incorporating weekday-specific
effects and policy interventions as control variables. This sort
of specification has not been used so far in previous COVID-19
studies. In specific, our approach allows for additional flexibility
compared to other studies that analyze the evolution of COVID-
19 in Chile [e.g, (3, 20)]. That additional flexibility of our
specification allows us to both forecast and simulate multiple
alternative scenarios, such as the continuation of the Lockdown
policy (in contrast to the Step-by-Step policy) and changes in the
growth rate of the epidemic.

In section 2, we describe our data, our forecasting
methodology and model; in section 3, we present our estimation
results; in section 4, we discuss our findings and conclude. In
the Supplementary Material document, we offer an Appendix
with additional comparative statics for different scenarios (with
additional tables and results included as well).

2. DATA AND METHODS

2.1. Description of the Data
Data used in this work comes from the epidemiological
reports from the CMoH, spanning from February 28 until
September 15, 2020. These epidemiological reports are updated
overtime by the independent expert panel working with the
CMoH, and it is updated regularly to adjust for errors
and misreports. These most accurate counts are collected
on the Chilean Ministry of Science (CMoSc) website at
https://www.minciencia.gob.cl/covid19. Considering the many
issues regarding collection and publication of COVID-19 data in
Chile, we believe that this data source is the best option available

Frontiers in Public Health | www.frontiersin.org 2 April 2021 | Volume 9 | Article 610479

https://www.minciencia.gob.cl/covid19
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Vicuña et al. Forecasting COVID-19 in Chile

to analyze the Chilean case, as other authors have similarly done
[e.g., (3, 20, 21)].

The dataset includes the total count of confirmed cases
according to (a) the date that COVID-19 symptoms first
appeared (as provided by the patient), and (b) Polymerase chain
reaction test (PCR) prognosis notification date (as registered by
the physician on the CMoH surveillance system). It is important
to mention that this case count is retroactively corrected as new
cases are confirmed and the epidemiological situation evolves
as measured by the CMoH epidemiological department. In this
study, we decided to use the daily count of cases according to
PCR notification date, due to higher reliability.

Since our study is based on secondary data from the CMoH’s
official daily public reports as published by the CMoSc, it did not
require approval from an Ethics Committee.

2.2. Richards Growth Curve Models
The Richards growth curve model (19), a generalization of the
logistic curve (22), is a growth curve model for population
studies used in cases where growth is not symmetrical about the
point of inflection (23, 24). It has been widely used to describe
epidemiological processes for real-time prediction of outbreak of
diseases [e.g., SARS (25), dengue (26), influenza H1N1 (27), and
COVID-19 (7, 18)].

3t =
K

(1+ exp(−r(t − tm)))α
.

Here, K is a parameter corresponding to the total count of
infected people by the end of the pandemic, r is the daily hazard
(infection) rate, tm is the lag phase, and α is a variable which fixes
the point of inflection and control asymmetry parameter. The
first derivative of this function with respect to time t allows us
to model the number of new cases.

λt = αrK
exp(−r(t − tm))

(1+ exp(−r(t − tm)))α+1
.

2.3. The Quasi-Poisson Approach
Expanding upon the logistic asymmetric Richards curve
discussed previously, we have fitted a Generalized Quasi-Poisson
Nonlinear Regression to model the evolution of daily cases,
using explanatory covariates, to predict the daily number of
COVID-19 cases in Chile. Poisson regressions are models used to
model count data, assuming that the response variable is Poisson
distributed. Denote {Yt} as the number of confirmed COVID-19
cases at time t, {Xt} the vector of collected covariates at time t,
and Ft−1 : = {Xt ,Yt−1,Xt−1, . . .} a collection of all realizations
of {X} and {Y} until period t−1. The Poisson regression assumes
that the response variable, conditional on the past, follows the
following probability model:

Pr(Yt = y|Ft−1) =
λ
y
t exp(−λt)

y!
, y = 0, 1, 2, . . .

where E(Yt|Ft−1) = Var(Yt|Ft−1) = λt > 0. Here, rate λt =

g(Ft−1,β) is a function of the covariates, and of unknown β

parameters to be estimated. If g(·) is a linear combination of the
β parameters, then the model is considered a Poisson Generalized
Linear Model.

A key assumption for the validity of Poisson regressionmodels
is that both the mean and the variance are the same. In our case,
the variance is larger than the mean. We address this using a
quasi-Poisson regression. In this model, count data is assumed
as generated by an exponential family distribution where the
variance is equal to the mean multiplied by an over-dispersion
parameter φ > 1, thus,

E(Yt|Ft−1) = λt

Var(Yt|Ft−1) = φλt

In our proposed model, covariates collected in {Xt} include a
weekday seasonal effect as well as holiday dummies. Both of these
are crucial, considering that most PCR testing labs do not operate
on weekends or holidays. Additionally, our proposal considers
an intervention variable to capture the Step-by-Step confinement
reduction policy, added to the Richards curve estimate.

λt =

(
ϑ1

exp(−ϑ2(t − ϑ3))

(1+ exp(−ϑ2(t − ϑ3)))ϑ4
+ exp(ψδt)

)

× exp


α1Holidayt +

7∑

j=1

βjWeekDayj,t


 , (1)

for t = 1, 2, . . . , 201, where WeekDayj,t is a dummy

variable equal to one when t corresponds to day j, j ∈

{Monday, ...,Sunday}; Holidayt equals one if t is a holiday; δt
is a dummy variable equal to one for t starting on July 28, 2020
(marking the start of the Step-by-Step policy); ϑ1 = αrK, ϑ2 =

r, ϑ3 = tm and ϑ4 = α + 1. Please note that, unlike the case
of traditional linear regressions, in the quasi-Poisson model the
estimated parameters do not have a direct elasticity or marginal
effect interpretation. The parameters are estimated maximizing
the quasi-likelihood function:

θ̂ = argmax
θ

n∑

t=1

[
1

φ

(
yt log(λt)− λt

)
+ κ(yt ,φ)

]
, (2)

where κ(y,φ) = φ−1[−y log(y) + y] and θ =

(α1,β1, . . . ,β7,ϑ1, . . . ,ϑ4,ψ ,φ).
As such, themodel allows us to obtain an estimate for the basic

reproduction number, R0(t).

R0(t) =
λ̂t∑t−1
j=0 λ̂j

(3)

2.4. Implementation of Modeling Analysis
To estimate the parameters of the generalized linear model given
by expression (1), we used the software R. The "gnm" library
includes the function gnm(). The iterative algorithm requires
starting values for the parameters, which were obtained through
the function nls() in the "nls" library. To obtain confidence

Frontiers in Public Health | www.frontiersin.org 3 April 2021 | Volume 9 | Article 610479

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Vicuña et al. Forecasting COVID-19 in Chile

TABLE 1 | Summary of estimated parameters.

Parameter Estimate SE Z p-value Lower 95% CI Upper 95% CI

ϑ1 36695.16 5346 6.864 < 0.0001 26216.723 47173.596

ϑ2 0.046 0.003 16.081 < 0.0001 0.041 0.052

ϑ3 81.893 5.754 14.233 < 0.0001 70.616 93.171

ϑ4 3.158 0.4102 7.698 < 0.0001 2.354 3.962

ψ 7.166 0.081 87.772 < 0.0001 7.006 7.326

α1 −0.564 0.089 −6.315 < 0.0001 −0.739 −0.389

β1 0.268 0.030 8.951 < 0.0001 0.209 0.326

β2 0.163 0.031 5.337 < 0.0001 0.103 0.224

β3 0.113 0.032 3.571 < 0.0001 0.051 0.176

β4 0.081 0.033 2.027 0.0158 0.016 0.147

β5 0.077 0.033 2.346 0.020 0.013 0.141

β6 −0.306 0.040 −7.733 < 0.0001 −0.383 −0.228

β7 −0.507 0.043 −11.704 < 0.0001 −0.591 −0.422

Parameters estimated based on daily cases of COVID-19 in Chile between February 28, 2020 and September 15, 2020.

FIGURE 1 | (A) Daily count of confirmed COVID-19 cases in Chile. (B) Cumulative count of COVID-19 cases in Chile.

intervals for out-of-sample predictions, we approximated the
quasi-Poisson likelihood with negative binomial distributions via
a bootstrap of size 10,000, using the ciTools library in R, as
described by (28). The intervals are, thus, built as follows:

1. The model in Equation (1) is fitted to obtain estimates θ̂ and
Ĉov(θ̂). The number of simulations is set at 10,000.

2. Simulate 10,000 draws of the coefficients θ̂∗ ∼ N(θ̂ , Ĉov(θ̂)).
3. Simulate Y∗|Ft−1 from the response distribution using the

following approximation:

Negative Binomial(λ̂t , λ̂t/(φ̂ − 1)).

4. Determine quantiles α/2 and (1 − α/2) of the simulated
conditional responses.

Because information is updated daily, for replication purposes,
full data was updated in our spreadsheet on September 16, 2020.
For the actual realizations of data from that date until October
30, 2020, we used the November 7, 2020 update.

3. RESULTS

The model was fitted to the observed daily cases from
February 28 to September 15. Table 1 summarizes the estimated
parameters, standard errors (SE), and 95% confidence intervals
(CI). Parameters β4-β5 were statistically significant at p <

0.05, and all other parameters were significant at p <

0.001. The point estimate of the quasi-Poisson over-dispersion
parameter is φ̂ = 68.79.

For further illustration, Figure 1 offers a depiction of how well
our estimated model fits the data. On Figure 1A, we display the
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FIGURE 2 | Forecast for future cases until October 30th.

TABLE 2 | Prediction of the fitted model.

Date Day of the week Predicted cases Daily cases CI Actual cases

Daily Accumulated Lower 95% Upper 95% Daily Accumulated

2020-09-30 Wednesday 1530.5 448012.2 955.975 2218.025 1,793 454,948

2020-10-05 Monday 1766.4 454541.5 1134.000 2500.025 1,875 461,949

2020-10-10 Saturday 986.9 461532.4 548.000 1575.000 1,093 469,912

2020-10-15 Thursday 1443.4 467838.0 888.000 2136.000 1,840 477,559

2020-10-20 Tuesday 1558.1 474338.4 986.975 2249.025 1,677 484,464

2020-10-25 Sunday 451.4 480098.6 169.000 876.000 643 490,539

2020-10-30 Friday 1417.1 487681.7 868.000 2109.025 1,354 498,466

daily number of new COVID-19 cases in Chile, with true values
denoted with the black line, and fitted values denoted by the blue
line. Analogously, Figure 1B showcases the cumulative count
of COVID-19 cases in Chile, with the black line denoting the
true cumulative count, and the blue line denoting fitted values.
Accordingly, the goodness of fit of the model is assessed with the
Heinzl-Mittlböck Pseudo R2 (29). The Pseudo R2 equals 95.3%,
confirming the excellent fit of the model to the data.

Note that the proposed model offers a good visual fit to the

evolution of the epidemic, where the curve succeeds at capturing

the exponential growth of the data as well as the seasonal effects

corresponding to weekdays/weekends.
The intervention variable captures the (statistically

significant) slowdown of the decay effect typically present
toward the end on Richards curves, as caused by the introduction
of the Step-by-Step policy.

Figure 2 shows our projected forecasts (together with 95% CI)
for the short and medium run (up until October 30). Table 2
displays the values of the predicted new cases for specific dates of
Figure 2, between September 16 and October 30, including 95%
CI. Please note that, as can be observed from reading Table 2, all
our predicted daily cases fall within the 95% CI, until the end of
October 2020. Our predicted total number of cases at that date
was almost 488,000 cases, against the actual count of 498,466
observed that day.

4. DISCUSSION AND CONCLUSIONS

The estimated model evidences that the trend of the data
changes once the Step-by-Step governmental policy was
implemented. Before that date, the daily count of new
cases was decreasing at a faster rate than after the policy.
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This is a measure of the effects that the implementation or
removal of lockdown policies have in the infection curve
in the middle-to-short-run, understanding that new policy
measures are likely to cause structural changes to the shape of
the curve.

From the proposed model, we can observe that the estimated
daily growth rate of COVID-19 in Chile is about 4.5% (95% CI:
[4%, 5%]). Compared the to the rates observed in the US (16.9%,
95% CI: [15.9%, 17.8%]) (18) and China (17.12%) (30), we can
conclude that the infection rate in Chile is about three times
smaller. The growth rate in Chile in the second half of September
2020 implies that the cumulative count of COVID-19 cases in
Chile doubles every 2 weeks.

The accuracy of our model, naturally, is contingent on
the governmental level policy decisions as they emerge.
The restrictive lockdown policies imposed by the CMoH in
the RM starting on May 15 had an impact in the slow
down of the epidemic’s spread two weeks later (the disease’s
incubation period): We predict, using our model, that the
count of COVID-19 cases would have been 491,096 by July
28 without lockdown policies, compared to the actual count
(with lockdown in place) of 267,846 cases. This reduction in
the total count made possible for the government to launch the
Step-by-Step policy.

The Step-by-Step policy generates a break point in the
downward trend observed before July 28. We forecast that the
introduction of that change might increase the daily count of new
cases up to ten times the expected count under lockdown. The
short run impact is thus relevant, particularly considering that
our model doesn’t consider the possibility of a second outbreak
of the disease, which in practice cannot be ruled out from
happening. Indeed, a natural limitation of our study is the fact
that the COVID-19 epidemic is still under development. Thus,
the estimates of the parameters of the model have a substantial
amount of uncertainty associated to them. For instance, after
the end of the epidemic, the interpretation of the parameter
K is the count of infected individuals at the end of the
pandemic, which is not an entirely valid interpretation for our
current data.

Our ability to understand the COVID-19 epidemic is essential
in order to curb its global spread. Our study provides an
important framework to inform public health decision-making
designed to end the epidemic in different regions, by not
only aiding decision makers in Chile, but also illustrating
the usefulness of the quasi-Poisson modeling approach to
follow the evolution of the disease when availability of
data is limited.

Our selection of the growth model was based on intensive
testing of other models: This functional specification
produced the most accurate results, provided enough
flexibility, and generated key information, including the
exponential growth rate, the doubling time for the epidemic,
and the effect of the governmental policy interventions
in the level at which the rate of growth of the epidemic
levels off. Our key contribution is methodological:
We strongly believe that models from the generalized
logistic family, such as the one we present here, are

useful to be able to track the future trends of diseases
like COVID-19.

Naturally, our study has limitations. Particularly, the time
frame of the study corresponds to the data available until
September 2020, and in the long run, it doesn’t account for
further interventions (as they indeed took place: Authorities
implemented further relaxations of the containment measures
in November and December, causing the growth rates of the
epidemic to continue to increase until the date of this revision
in March 2021).

One of the main limitations of the proposed approach is
the fact that its ability to make accurate predictions only works
for the short-term, being unclear in general for how long such
predictions remain reasonably accurate. However, it is also fair
to recognize that this limitation is not unique to the proposed
approach, as any other model-based methods that serve similar
purposes also present the same limitation. Table 2 shows in its
final column the actual observed data, to make comparisons for
the out-of-sample observations: In each case, the true observed
daily cases fell within the 95% forecast confidence intervals (as
we also displayed in Figure 2). As expected, the model’s short-
term daily forecast of new cases is close to the observed new cases.
All in all, given the aforementioned reasons, long-term inferences
using this type of model should not be considered. In spite of its
limitations, findings from this study provide useful information
to inform public health decision-making and policies designed to
end the epidemic.

From a policy perspective, as Hodgins and Saad (31)
noted, the high-income countries’ blueprint of suppression
and maintenance is less likely to be effective in low-and-
middle-income countries. In specific, strict lockdowns like
the ones implemented in Chile have had substantial negative
impacts on the economy, access to education, and disruption
of routine clinical services. This was the motivation behind the
introduction of policies like Step-by-Step. It is unrealistic that
radical suppression can be considered a viable policy in the
long run. Tools like the one we present in our article, however,
enable policy makers to keep a close eye on the evolution of
the disease. In any case, it is crucial that authorities understand
that the relaxation of protective measures caused by policy
announcements such as the Vacation Permits released since
December 2020 for the Summer Season in 2020/2021 had a direct
effect on the count of new COVID-19 cases, as reflected by the
upsurge of new cases present throughout the first trimester of
2021 in Chile.
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