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Over the last months, mathematical models have been extensively used to help control

the COVID-19 pandemic worldwide. Although extremely useful in many tasks, most

models have performed poorly in forecasting the pandemic peaks. We investigate this

common pitfall by forecasting four countries’ pandemic peak: Austria, Germany, Italy, and

South Korea. Far from the peaks, our models can forecast the pandemic dynamics 20

days ahead. Nevertheless, when calibrating our models close to the day of the pandemic

peak, all forecasts fail. Uncertainty quantification and sensitivity analysis revealed themain

obstacle: the misestimation of the transmission rate. Inverse uncertainty quantification

has shown that significant changes in transmission rate commonly precede a peak.

These changes are a key factor in forecasting the pandemic peak. Long forecasts of

the pandemic peak are therefore undermined by the lack of models that can forecast

changes in the transmission rate, i.e., how a particular society behaves, changes of

mitigation policies, or how society chooses to respond to them. In addition, our studies

revealed that even short forecasts of the pandemic peak are challenging. Backward

projections have shown us that the correct estimation of any temporal change in the

transmission rate is only possible many days ahead. Our results suggest that the distance

between a change in the transmission rate and its correct identification in the curve of

active infected cases can be as long as 15 days. This is intrinsic to the phenomenon

and how it affects epidemic data: a new case is usually only reported after an incubation

period followed by a delay associated with the test. In summary, our results suggest

the phenomenon itself challenges the task of forecasting the peak of the COVID-19

pandemic when only epidemic data is available. Nevertheless, we show that exciting

results can be obtained when using the same models to project different scenarios of

reduced transmission rates. Therefore, our results highlight that mathematical modeling

can help control COVID-19 pandemic by backward projections that characterize the

phenomena’ essential features and forward projections when different scenarios and

strategies can be tested and used for decision-making.
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1. INTRODUCTION

Epidemiology is defined in the International Epidemiological
Association’s dictionary as “the study of the occurrence and
distribution of health-related events, states, and processes in
specified populations, including the study of the determinants
influencing such processes, and the application of this knowledge
to control relevant health problems” (1). One of its main
objectives, as stated in the definition, is to provide data so
governments can plan and execute actions to prevent and
control diseases. The current COVID-19 pandemic has put
epidemiology at the center of the debate as, to date, there are
no antivirals with proven efficacy against the disease (2–6). The
first vaccines have just become available, but it is unknown how
long does the immunity last after vaccination. Due to the lack
of pharmaceutical treatments, non-pharmaceutical interventions
suggested by epidemiologists have been used by many countries
to deal with the pandemic, more specifically to reduce
transmission and the impact on healthcare systems (7–12).

Mathematical and computational tools can be used by
epidemiological studies to describe and predict the dynamics
of the spread of a disease over time and space (13, 14). In
addition, these tools can be used to assess the impact of
non-pharmaceutical interventions, such as isolation (15–18).
Several models have been proposed to describe the spread of
diseases (14). Over the last months, many more have been
developed to represent the dynamics of populations and their
interactions, as well as to forecast the dynamics of the COVID-
19 pandemic. Most describe the spread of COVID-19 based
on ODEs (Ordinary Differential Equations) (17, 19–28), but
statistical (29, 30), chaotic (27), and stochastic/probabilistic
models (16, 18, 31, 32) have also been used.

Determining the pandemic’s peak is a piece of valuable
information for planning the health resource needed to cope
with the disease. In the case of COVID-19, it is also relevant for
economic reasons since many countries adopted lockdowns to
reduce the spread of the disease, impairing their gross domestic
product and, consequently, their budget while increasing their

health and social protection costs systems. Although most of the
models found in the literature can have their parameters adjusted

to COVID-19 data, i.e., to describe the behavior of its spread in
different cities, regions, or countries, they usually fail to forecast

the peak of the pandemic accurately (26–28). One could ask if
one particular modeling technique would be more appropriate
to forecast the dynamics of COVID-19 than others. However, a

review of the literature does not clearly show that this hypothesis
holds. In fact, in the literature we can find examples of forecasts
that failed using SEIR (26), SIRD (25) extensions of SEIR with
more compartments (28), statistical (33, 34), agent-based (35),
machine-learning (36), and chaos-based theory models (27).

Another possible explanation for the failed forecasts could
be related to the classical problem of overfitting (37), where
the model can replicate the data it is adjusted to but fails on
any attempt of extrapolation or forecasting. In this paper, we
took several precautions to prevent the issue of overfitting. A
simple mathematical model, based on the classical SIRD model,
was adopted with a reduced number of parameters. We decided

to keep the model as simple as possible since adding more
compartments increases the number of unknown parameters
to be estimated, which hinders the accurate calibration of the
model. We also used the methods of forward and inverse
uncertainty quantification (UQ). The parameters of the models
were treated as probability density functions (PDFs) during
the task of model-to-data fitting (via inverse UQ) and during
the tasks of forecasting and projections (via forward UQ). In
addition, during the fitting phase, we also considered a possible
discrepancy between model and reality (38). Nevertheless, in this
paper, we show that the above precautions to avoid overfitting did
not solve the problem of mispredicting the peak of COVID-19.

This work shows that this common pitfall is likely due to
fast and unpredictable changes in the disease’s transmission rate.
The models are useful for predictions in a more controlled
environment. It is like trying to predict the trajectory of a paper
aeroplan on a windless day. It is much easier than during a
storm. Likewise, it is challenging to predict significant changes
in how a particular society behaves, mitigation policies, or how
society responds to them during a pandemic. However, these
all have a direct impact on the transmission rate, which in turn
significantly affects the dynamics of the pandemic, as shown in
previous studies (20, 39, 40). Nevertheless, differently from the
weather, mitigation policies can be planned and controlled to
some extent. This fact brings up the importance of projections
of different scenarios during this pandemic. Different from
forecasts, projections aim to study one or more hypothetical
scenarios. In contrast, forecasts use the available data and try to
predict future trends (41).

The models and techniques used in this work were first
described in previous work (20). The model consists of a
non-linear system of ordinary differential equations subject to
uncertainty in some of its parameters and initial conditions.
Probability density functions (PDFs) were used to describe
the uncertainties associated with these parameters, so they
are not scalars. Some of them, such as the transmission
rate, are additionally time-dependent. After we adjusted the
model’s PDFs to a particular data (via inverse Uncertainty
Quantification), the model was able to provide useful insights
in terms of characterization of the pandemic dynamics in a
particular country.

The current study uses four countries as examples, with
distinct population sizes and demographics: Austria, Germany,
Italy, and South Korea. For each country, we first show that the
proposed model and methods correctly described the dynamics
of total reported cases, active infected, and deaths when fitting
model to data, i.e., our models can reproduce the different
dynamics and peaks. Next, we show that our models can
forecast the pandemic dynamics 20–30 days ahead when far
from the peaks. However, all pandemic peaks’ forecasts fail,
even when adjusting the model to the data up to 5 days before
the peak in each country. We further investigate this weakness,
which is shared by many distinct models presented in the
literature, by analyzing which parameter was misestimated via
backward projection or inverse UQ. The analysis pointed to the
misestimation of changes in the transmission rate near the peak
as the primary source of error. In addition, the correct estimation
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of any temporal change in the transmission rate was only possible
many days ahead.

Finally, we performed projections, adjusted the model to the
data up to 10 days before the peak, and focused on different
scenarios that considered changes in the transmission rate.
The projections that simulated significant reductions in the
transmission rate were the ones where the pandemic peaks were
closest to the real observed ones.

Therefore, our results highlight howmathematical models can
help the fight against the COVID-19 pandemic: by characterizing
important parameters that dictate the pandemic dynamics, as
performed before in our previous work (20); and via projections,
when different scenarios and strategies can be tested and used
for decision-making. In addition, our analysis suggests that the
misestimation of changes in the transmission rate near the peaks
is themain source of error during the task of forecasting the peaks
of COVID-19 pandemic.

2. MATERIALS AND METHODS

To demonstrate the impact of the transmission rate in forecasting
the peak of COVID-19 pandemic, the parameters of our
model (20) were calibrated according to total and active COVID-
19 cases and deaths in three countries that have already achieved
the pandemic peak: Austria, Germany, South Korea, and Italy.
Peak predictions are performed considering a distinct number of
available days.

The characterization of COVID-19 in these four countries is
performed using inverse UQ techniques. Therefore, during the
calibration of the model, the coefficients are treated as unknown
probability density functions. Once estimated, the PDFs of the
coefficients, their means, standard deviations (SD), and shape
provide important information on model parameters that are
essential in the characterization of the COVID-19 pandemic. The
model and how it is adjusted are briefly described in this section
to facilitate the understanding of the results. More details about
the model, calibration of the parameters, and uncertainties can be
found in our previous work (20).

2.1. Mathematical Model
The model used in this work (20) is based on the classic
compartmental SIRD model (13, 14, 42–44), and was kept as
simple as possible to reduce the number of unknown parameters
to be estimated.

The model is described by the following set of equations:



















































dS
dt

= −α(t)
N SI,

dI
dt

= α(t)
N SI − βI − γ I,

dR
dt

= γ I,
dD
dt

= βI,

Ir = θI,

Rr = θR,

C = Ir + Rr + D,

(1)

where S, I, R, D, Ir , Rr , and C are the variables that represent
the number of individuals within a population of size N that

are susceptible, infected, recovered, dead, reported as infected,
reported as recovered, and total confirmed cases, respectively.
The term α(t) = a(t)b denotes the rate at which a susceptible
individual becomes infected; where a(t) denotes the probability
of contact and b the rate of infection. The function a(t) models
temporal changes in the transmission rate:

a(t) =











1, if t < ti,
r−1
1

(t − ti)+ 1, if ti ≤ t ≤ ti + 1,

r, otherwise.

(2)

Each transmission change starts at ti, and is changed by a factor r
at the final time ti+1. Themortality rate of infected individuals is
modeled by the constant β = m(1/τo), wherem is the probability
of death. It must be noted that this is not the same as the rate of
death and as the percentage of death among the reported cases of
positive infection (Ir). The number of days from infection until
death is represented by τo = τ1 + τ2, where τ1 is the incubation
time of the virus and τ2 is the time between the first symptoms
until death. Similarly, represented by τr = τ1 + τ3, where τr is
the number of days from infection until recovery and τ3 is the
time between the first symptoms until recovery. The rate at which
infected individuals recover from the virus is given by constant
γ = (1 − m)(1/τr). Lastly, the percentage of confirmed infected
individuals that are notified or reported is represented by θ .

For making projections using the model beyond the last day
used during the fitting, we consider α(t) = ap(t)b:

ap(t) =































1, if t < ti,
r−1
1

(t − ti)+ 1, if ti ≤ t ≤ ti + 1,

r, if ti + 1 < t ≤ tf ,
rf−r

1f
(t − tf )+ r, if tf < t ≤ tf + 1f ,

rf , otherwise.

(3)

The function ap(t) is similar to a(t) but it adds different scenarios
in terms of how the transmission rate evolves after the last day
of data used for model fitting. The constant tf is the last day
used during the calibration of the model, rf is the final value of
ap(t) during the projection phase, and 1f is the time interval for
ap(t) to change from r to rf . Figure 1 is an illustrative example for
Equation (3).

2.2. Parameter Estimation and Uncertainty
Quantification
Model parameters were adjusted using the differential
evolution (DE) optimization method (45) implemented in
the C programming language. The DE was used to estimate
each of the parameters of the proposed mathematical model,
respecting the limits established for each one of them [see (20)].
The parameter values were estimated based on official data from
the epidemic reported in each country (Austria, Germany, S.
Korea, and Italy) and made available by Dong et al. (46). Here,
we are using Î(t) as the reported numbers of active cases, D̂(t)
the number of deaths, and Ĉ(t) the total confirmed cases. The
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FIGURE 1 | Illustrative example of Equation (3), ap(t), considering ti = 5,

1 = 20 days, tf = 20, r = 0.5, rf = 0.1, and 1f = 15 days for a 70

days simulation.

following objective function, Equation (5), was used to minimize
the relative error (RE(λ, λ̂)) between the data and the model:

RE(λ, λ̂) =
‖λ(t, p)− λ̂(t)‖1

‖λ̂(t)‖1
, (4)

min
p

(

ω1RE(I, Î)+ ω2RE(D, D̂)+ ω3RE(C, Ĉ)
)

, (5)

where p is the set of parameters to be estimated andωn is a weight.
For this work, we used ω1 = ω2 = ω3 = 1.0.

Some input parameters of the model are subject to
uncertainties and variations, due to measurement errors,
technical limitations, and resource availability. Parameters such
as the incubation period, mortality, period from symptoms to
death, period from symptoms to recovery, and the effectiveness
of contact reduction are hampered by uncertainties, as suggested
in data from literature. Therefore, when evaluating models such
as the one studied in this work, it is important to evaluate
the uncertainties from estimated input parameters, providing a
confidence interval for the predictions.

Although the parameter intervals are reported in the
literature, we still do not know how their probability densities
functions behave. So, an inverse UQ technique was used to
estimate the PDFs and corresponding uncertainties of the
input parameters or coefficients of the model during model
calibration. For each model parameter, we determined its PDF
from the fitting procedure using the DE method. Among the
offsprings generated by the DE, during the fitting process, we
selected individuals with o(p) ≤ 25%, where o(p) is defined in
Equation (6).

o(p) = max
p

(

ωnRE(I, Î),ωnRE(D, D̂),ωnRE(C, Ĉ
)

, (6)

in which p is the set of parameters to be estimated and ωn are
the same weights defined in Equation (5). Using this procedure,

we acknowledge a possible discrepancy of up to 25% between the
model and reality.

Thus, from these samples, we estimate the covariance matrix
and mean of all parameters. We use these data to generate
a multivariate normal distribution to perform a forward UQ
analysis via the Monte Carlo method with a total of 10,000
samples using the ChaosPy library (47).

Finally, we evaluate how the uncertainties in the input
parameters of the model impact its outputs using forward
UQ techniques. The forward UQ technique propagates the
uncertainty of the input parameters to the outputs. Among the
consolidated methods from the literature, Monte Carlo is one
of the most used to perform uncertainty propagation (48–50).
Briefly, this method draws samples of the input parameters and
evaluates the model using them to provide statistical properties
for the quantities of interest.

2.3. Data Sources
The model was calibrated using the data reported by the
Center for Systems Science and Engineering at Johns Hopkins
University (46), between 01/22/2020 and 12/20/2020. The
bounds used for the parameters are described in (20).

2.4. Characterization
Tables 1–4 show the mean and standard deviation of all offspring
solution with o(p) ≤ 25%. The value ofN is 9.00×106 for Austria,
83.02 × 106 for Germany, 60.42 × 106 for Italy and 51.47 × 106

for South Korea.

3. RESULTS

3.1. The Calibrated Model Captures the
Peak of the COVID-19 Pandemic
First, to check if the proposed model is able to fit the available
data of countries during the peaks. A summary of the inverse
UQ analysis results is presented in Table 1, which presents the
mean and standard deviation (SD) of the estimated PDFs of the
parameters for the three countries. Figure 2 compares the results
of the fitted models to the original data for each country. For
each time instant t, I(t), C(t) and D(t) are PDFs, in response to
the process of forward uncertainty quantification. It should be
noted that the same model, with different parameters, was able
to reproduce the distinct scenarios and peaks of the COVID-
19 pandemic in Germany, Austria, Italy, and S. Korea. For the
case of Italy, we fitted the recent second peak that has just
been reached.

3.2. The Models Correctly Forecast the
Dynamics of COVID-19 Away From the
Peaks
Figure 3 shows that the models can correctly forecast the
dynamics of COVID-19 for the four countries when away from
the peaks. The match between forecasts and real data is observed
to last between 20 and 30 days after the fitting phase, which
used 30 days for all countries. We have chosen different but all
recent phases for these forecasts. The curves’ shapes are very
distinct, but as long as the forecast is away from the peak, the
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TABLE 1 | Values of parameters used to fit model to data.

Symbol Austria Germany S. Korea Italy

Mean STD Mean STD Mean STD Mean STD

b 3.01× 10−1 5.98× 10−3 3.35× 10−1 4.45× 10−3 5.01× 10−1 8.19× 10−3 6.40× 10−2 5.39× 10−4

r 1.05× 10−2 2.78× 10−3 8.19× 10−2 3.73× 10−3 1.01× 10−2 5.96× 10−4 2.75× 10−1 2.81× 10−2

ti 1.04× 101 1.06× 100 9.16× 100 9.47× 10−1 5.53× 10−1 3.63× 10−1 9.47× 101 2.21× 100

1 1.85× 101 1.47× 100 3.20× 101 1.23× 100 1.92× 101 4.66× 10−1 5.48× 100 3.90× 100

θ 8.95× 10−1 1.80× 10−1 6.38× 10−1 2.72× 10−2 9.71× 10−1 6.21× 10−2 9.75× 10−1 9.76× 10−2

τ1 3.20× 100 9.81× 10−1 9.33× 100 2.18× 10−1 1.31× 101 3.77× 10−1 1.60× 101 3.71× 100

τ2 1.17× 101 2.05× 100 6.26× 100 4.71× 10−1 1.74× 101 2.04× 100 2.47× 101 4.27× 100

τ3 1.56× 101 9.20× 10−1 7.15× 100 1.11× 10−1 1.64× 101 3.47× 10−1 2.85× 101 3.44× 100

m 3.09× 10−2 4.45× 10−3 3.13× 10−2 9.88× 10−4 2.75× 10−2 2.49× 10−3 3.01× 10−2 2.85× 10−3

b, COVID-19 transmission rate; m, death probability; r, contact reduction; ti , start of intervention policy;1, duration of intervention policy; τ1, incubation period; τ2, period from symptoms

to death; τ3, period from symptoms to recovery; θ , fraction of notified cases. The model parameters were calibrated using data from the first day with more than 100 cases to 05/11/2020

for each country for Austria, Germany, and S. Korea. For Italy the model parameters were calibrated from 08/17/2020 to 12/14/2020.

TABLE 2 | Value of parameters used to make short forecasts.

Symbol Austria Germany S. Korea Italy

Mean STD Mean STD Mean STD Mean STD

b 7.59× 10−2 3.57× 10−3 5.02× 10−2 2.73× 10−3 6.27× 10−2 1.10× 10−3 1.90× 10−2 1.59× 10−3

r 1.96× 100 9.81× 10−2 2.07× 100 1.15× 10−1 1.83× 100 1.62× 10−1 4.10× 10−1 1.43× 10−1

ti 7.51× 10−1 2.97× 100 1.50× 101 1.14× 100 2.63× 101 1.45× 100 5.48× 10−1 1.75× 100

1 2.85× 101 3.43× 100 1.26× 101 1.33× 100 1.83× 100 1.34× 100 1.19× 101 2.06× 100

θ 3.90× 10−1 3.21× 10−2 2.77× 10−1 4.00× 10−2 3.85× 10−1 3.45× 10−2 6.49× 10−1 5.76× 10−2

τ1 4.33× 100 1.23× 100 5.20× 100 1.70× 100 8.99× 100 2.61× 100 7.95× 100 3.05× 100

τ2 1.63× 101 3.00× 100 1.75× 101 2.21× 100 1.67× 101 2.86× 100 1.74× 101 3.92× 100

τ3 9.28× 100 1.22× 100 9.91× 100 1.63× 100 1.18× 101 2.52× 100 1.97× 101 3.61× 100

m 4.33× 10−3 7.07× 10−4 5.62× 10−3 1.65× 10−3 1.00× 10−2 1.21× 10−3 4.27× 10−2 3.61× 10−3

b, COVID-19 transmission rate; m, death probability; r, contact reduction; ti , start of intervention policy;1, duration of intervention policy; τ1, incubation period; τ2, period from symptoms

to death; τ3, period from symptoms to recovery; θ , fraction of notified cases. The model parameters were calibrated using 30 days of data. The model was then used to forecast the

following 30 days for Austria, Germany, S. Korea, and Italy.

TABLE 3 | Value of parameters used to predict and to project the pandemic peak considering 5 days before the peak.

Symbol Austria Germany S. Korea Italy

Mean STD Mean STD Mean STD Mean STD

b 2.94× 10−1 2.10× 10−3 3.02× 10−1 1.36× 10−3 5.88× 10−1 5.69× 10−3 4.61× 10−2 1.97× 10−4

r 3.95× 10−1 1.74× 10−2 2.10× 10−1 9.83× 10−3 1.58× 10−1 6.25× 10−3 1.77× 100 1.48× 10−2

ti 9.07× 100 5.62× 10−1 1.32× 101 4.24× 10−1 5.53× 10−2 1.96× 10−1 4.87× 101 1.00× 100

1 1.19× 101 5.88× 10−1 1.78× 101 4.44× 10−1 1.34× 101 3.13× 10−1 2.52× 100 1.70× 100

θ 8.52× 10−1 3.42× 10−2 6.81× 10−1 2.35× 10−2 9.25× 10−1 4.22× 10−2 1.52× 10−1 2.37× 10−2

τ1 1.40× 101 1.66× 10−1 1.40× 101 2.16× 10−1 1.40× 101 1.91× 10−1 3.96× 101 1.36× 100

τ2 1.77× 101 1.33× 100 2.14× 101 1.10× 100 1.97× 101 1.18× 100 5.94× 101 3.02× 100

τ3 1.70× 101 1.92× 10−1 1.69× 101 2.86× 10−1 1.70× 101 1.22× 10−1 2.09× 101 1.82× 100

m 3.39× 10−2 6.41× 10−4 3.38× 10−2 5.69× 10−4 3.35× 10−2 1.87× 10−3 1.01× 10−2 7.36× 10−4

b, COVID-19 transmission rate; m, death probability; r, contact reduction; ti , start of intervention policy;1, duration of intervention policy; τ1, incubation period; τ2, period from symptoms

to death; τ3, period from symptoms to recovery; θ , fraction of notified cases. The model parameters were calibrated using data from the first day with more than 100 cases to 5 days

before the pandemic peak for Austria, Germany, and S. Korea. For Italy the model parameters were calibrated from 08/17/2020 to 5 days before the second peak.
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TABLE 4 | Value of parameters used to predict and to project the pandemic peak considering 10 days before the peak.

Symbol Austria Germany S. Korea Italy

Mean STD Mean STD Mean STD Mean STD

b 3.15× 10−1 1.97× 10−3 3.04× 10−1 1.33× 10−3 5.87× 10−1 4.20× 10−3 4.56× 10−2 9.43× 10−5

r 5.97× 10−1 1.72× 10−2 2.90× 10−1 2.38× 10−2 1.29× 10−1 5.29× 10−3 1.92× 100 7.42× 10−3

ti 4.73× 100 5.58× 10−1 1.46× 101 4.06× 10−1 2.76× 10−2 1.38× 10−1 5.12× 101 4.55× 10−1

1 1.13× 101 5.62× 10−1 1.14× 101 4.50× 10−1 1.40× 101 1.42× 10−1 3.07× 100 8.16× 10−1

θ 9.96× 10−1 1.92× 10−2 9.76× 10−1 2.83× 10−2 8.38× 10−1 3.57× 10−2 1.74× 10−1 3.23× 10−2

τ1 1.40× 101 3.00× 10−1 1.40× 101 2.65× 10−1 1.40× 101 1.91× 10−1 3.93× 101 1.53× 100

τ2 2.18× 101 7.73× 10−1 2.16× 101 9.60× 10−1 1.67× 101 1.26× 100 5.90× 101 3.10× 100

τ3 1.70× 101 2.44× 10−1 1.69× 101 3.97× 10−1 1.70× 101 2.84× 10−1 2.21× 101 1.53× 100

m 2.97× 10−2 1.01× 10−3 3.36× 10−2 1.57× 10−3 3.37× 10−2 1.20× 10−3 1.02× 10−2 1.03× 10−3

b, COVID-19 transmission rate; m, death probability; r, contact reduction; ti , start of intervention policy;1, duration of intervention policy; τ1, incubation period; τ2, period from symptoms

to death; τ3, period from symptoms to recovery; θ , fraction of notified cases. The model parameters were calibrated using data from the first day with more than 100 cases to 10 days

before the pandemic peak for Austria, Germany, and S. Korea. For Italy the model parameters were calibrated from 08/17/2020 to 10 days before the second peak.

FIGURE 2 | Total number of cases, active cases and deaths for Austria, Germany, South Korea, and Italy. Available data is represented by •. The solid lines indicate

the expected value obtained numerically after parameters have been fitted, shaded regions indicate the 95% confidence interval (CI) region. The x-axis is representing

days in dd/mm format.

prediction is within the calculated interval of confidence. Note
the particular valley shape captured by the forecast for Germany.
Table 2 presents the results of the calibration process.

3.3. A Shared Weakness: Forecasting the
Peak of COVID-19
As mentioned in the introduction, a literature review shows that
many models fail to forecast the peak of the pandemic (26–28),
regardless if they are based on SEIR models (26), SIRD (25)
extensions of SEIR with more compartments (28), statistical (33,
34), agent-based (35), machine-learning (36), or chaos-based
theory models (27).

The same happens with our model. The following experiment
was performed: the parameters were adjusted again using

data available for active cases until 10 days before achieving
the pandemic peak. Then, we tried to predict the number
of active cases in the next days. The same experiment was
then performed adjusting the data available until 5 days
before achieving the pandemic peak. We chose to calibrate
the models up to 5 or 10 days before the peak to show
that even when it is very close to occurring, forecasts may
fail. A summary of the results of the inverse UQ analysis is
presented in Tables 3, 4, presenting the mean and standard
deviation of the estimated PDFs of the parameters adjusted
for the three countries using data until 5 and 10 days,
respectively, before the pandemic peak. Figure 4 presents the
forecasts. As one can observe, even in the case where the
model was adjusted using data available 5 days before the
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FIGURE 3 | Total number of cases, active cases and deaths for Austria, Germany, South Korea, and Italy. Short forecasts of the dynamics of the pandemic for four

countries. Available data is represented by • and ⋆. • represent the days used for fitting (before the vertical dotted line) and ⋆ represent the data that was not

considered for fitting (after the vertical dotted line). The solid lines indicate the expected value obtained numerically after parameters have been fitted, shaded regions

indicate the 95% confidence interval (CI). The x-axis is representing days in dd/mm format.

FIGURE 4 | Forecasting the dynamics of the pandemic for four countries based on fitting the model to active cases data available until (A) 5 days before the peak (B)

10 days before the peak. Available data is represented by • and ⋆. • represent the days used for fitting (before the vertical dotted line) and ⋆ represent the data that

was not considered for fitting (after the vertical dotted line). The solid lines indicate the expected value obtained numerically after parameters have been fitted, shaded

regions indicate the 95% confidence interval (CI). The x-axis is representing days in dd/mm format.

peak, the calibrated model was not able to correctly predict
the peaks.

3.4. The Main Source of Error:
Misestimation of Transmission Rates Near
the Peak
In this section we investigate the possible sources of errors when
forecasting the peaks of COVID-19. First, by comparing the
inverse uncertainty quantification results presented in Tables 1,
3, 4 we can observe that the main difference between the
simulations that capture the peaks (Figure 2) and those that
do not (Figure 4) lies on the estimation of the parameters that

describe the time-varying transmission rate (a(t)): ti, r, and
1. When the peak is well capture by the model, a(t) reduces
significantly near the peak.

We continue this investigation by performing a sequence
of four backward projection experiments, named E1 to E4. To
describe these experiments, let P denotes the day of the peak
in the corresponding country considered in this study. The first
experiment (E1) calibrates the model parameters up to 5 days
before the peak, as performed before, but focusing near the peak,
from P − 10 to P − 5 days. For the second experiment (E2),
we expand the model calibration toward the peak, from P − 10
to P. We continue expanding the window surrounding the peak
in the third experiment (E3), performing the adjustment from
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FIGURE 5 | Backward projection of the pandemic’s peak for Austria: active cases (top) and transmission rate a(t) (bottom). Fitting the model to active cases data

until (E1) 5 days before the peak, (E2) the peak, (E3) 10 days after the peak, and (E4) 15 days after the peak. The x-axis is representing days in dd/mm format.

FIGURE 6 | Backward projection of the pandemic’s peak for Italy: active cases (top) and transmission rate a(t) (bottom). Fitting the model to active cases data until

(E1) 5 days before the peak, (E2) the peak, (E3) 10 days after the peak, and (E4) 15 days after the peak. The x-axis is representing days in dd/mm format.

P − 10 to P + 10 days. Finally, in the last experiment (E4), the
last calibration is performed from P−10 to P+15 days. Then we
compare all the parameters to check those that varymost between
the different calibrations, which include the one we used before
that failed forecasting the peak (E1, P − 10 to P − 5) and the
one that captures the peak (E4). Once again, the main difference
between the different experiments’ estimated parameters was on
those that describe the time-varying transmission rate (a(t)): ti, r,
and 1.

Figure 5 presents the experiments E1-E4 for Austria and each
corresponding estimated a(t). In this case, we note that from the
adjusted and experimental data of E1 (active cases), there is little
to no indication that we are slowing down and reaching the peak.
Also, by comparing the shapes of the estimated a(t), we observe
that only 10 days after the peak (E3), the crucial information on
how the transmission rate evolves before the peak converges [the
shapes of a(t) obtained in E3 and E4 are nearly the same].

Figure 6 presents the experiments E1-E4 for Italy and each
corresponding estimated a(t). In this case, we note that even

from the adjusted and experimental data of E2 (active cases from
P − 10 to P), there is little to no indication that we are slowing
down and reaching the peak. Again, by comparing the shapes
of the estimated a(t), we observe that only 15 days after the
peak (E4), we can correctly estimate the shape of a(t) before
the peak.

3.5. Projections Considering Different
Scenarios of Transmission Rate Reduction
The last experiment makes projections considering different
scenarios of transmission rate reduction. Again, the parameters
were adjusted using data available for active cases until 5 and 10
days before achieving the peak (in the active cases) for the four
countries. The idea here is to evaluate the impact of different
shapes of ap(t) after the calibration, i.e., different scenarios of
transmission rate reduction.

Since the projection is done considering the same dates
used for the forecasts, the values in Tables 3, 4 are the
same for both experiments. In the projections we consider
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FIGURE 7 | Projections considering different isolation policies for Austria, Germany, S. Korea, and Italy are considering data until 5 days before the peak (A) and 10

days before the peak (B). All projections considered 1f = 7 days. Projections in blue and red considered a final contact reduction of 10% and 5%, respectively. •

represents the days used for fitting (before the vertical dotted line), and ⋆ represent the days that were not considered for the fitting (after the vertical dotted line). The

solid lines indicate the expected value obtained after parameters were fitted; shaded regions indicate the 95% confidence interval (CI). The x-axis represents days in

dd/mm format.

FIGURE 8 | Projections considering different isolation policies for Austria, Germany, S. Korea, and Italy are considering data until 5 days before the peak (A) and 10

days before the peak (B). All projections considered 1f = 14 days. Projections in blue and red considered a final contact reduction of 10% and 5%, respectively. •

represents the days used for fitting (before the vertical dotted line), and ⋆ represent the days that were not considered for the fitting (after the vertical dotted line). The

solid lines indicate the expected value obtained after parameters were fitted; shaded regions indicate the 95% confidence interval (CI). The x-axis represents days in

dd/mm format.

two distinct values for rf , 0.10 and 0.05, i.e., two different
final values for ap(t), and two distinct values for 1f , 7 and
14. All projections considered ti = 0. Therefore, were are
considering different scenarios where transmission rate reduces
after the calibration ap(t), decreasing to 0.10 or 0.05, after
1 or 2 weeks.

Figure 8 presents the projections for the four countries with
1f = 7. The peaks becomes visible when projecting a more
significant reduction in the transmission rates, i.e., with r = 0.05.
Figure 7 presents the projections with 1f = 14. The results
are similar to the previous projections. The main difference is
that the peaks are higher and occur further ahead. These results
support that the fastest way to control the pandemic is with strict
mitigation policies that can significantly reduce the transmission
rate in a short period.

4. DISCUSSION

First of all, one should observe that the model used in this work

can reproduce the dynamics of COVID-19 for distinct countries.
The pandemic peak for all countries considered here was utterly

determined since the adjusted model captures both the day in
which the peak occurs as well as its maximum value, as shown in

Figure 2. Figure 3 also shows that the model can be very useful
in forecasting the dynamics of COVID-19.

There is, however, one main weakness of this model: forecasts

near the pandemic peak usually fail. In Figure 4, the same
method was applied to adjust the parameters of the model, but
this time we did not use the entire dataset. The model was
adjusted using data until 5 and 10 days before the peak of
the pandemic. As can be observed in Figure 4, the forecasts
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overestimate the number of active cases and mispredict the peaks
by more than a month.

In this work, we have used many sophisticated tools base
on forward and inverse UQ to identify the source of this
problem. First, we compared the inverse UQ results presented
in Tables 1, 3, 4 and observed that the main difference between
the simulations that capture the peaks (Figure 2) and those that
do not (Figure 4) lies on the estimation of the parameters that
describe the time-varying transmission rate (a(t)): ti, r, and 1.
When the peak is well-captured by the model, a(t) reduces
significantly near the peak. This reduction in the transmission
rate is key in forecasting the pandemic peak. Long forecasts of the
pandemic peak are therefore undermined by the lack of models
that can forecast changes in the transmission rate, i.e., how a
particular society behaves, changes of mitigation policies, or how
society chooses to respond to them.

In addition, we performed a sequence of four backward
projection experiments, named (E1) to (E4). The first experiment
(E1) calibrates the model parameters up to 5 days before
the peak. The second one (E2) calibrates it up to the peak,
(E3) up to the peak plus 10 days, and (E4) up to the peak
plus 15 days. Then we compared all the parameters to check
those that vary most between the different calibrations. Once
again, the main difference between the different experiments’
estimated parameters was on those that describe the time-varying
transmission rate, a(t). Figures 5, 6 show also that the shape of
the estimated a(t) only converges to the correct one when using
epidemic data that includes many days after the peak. These
results clearly show a delay between changes in the transmission
rate and their impact on the curve of active cases, which is
about 15 days. This is intrinsic to the phenomenon and how it
affects epidemic data: a new case is usually only reported after an
incubation period followed by a delay associated with the test.

The presence of this delay suggests that the challenging task of
forecasting the pandemic peak might require additional data and
constant monitoring to capture the transmission rate better.

The aforementioned results clearly show how inverse UQ and
backward projections can provide important information on the
dynamics of the COVID-19 pandemic. Finally, we have also
performed forward projections to assess different scenarios of
transmission rate reduction. Figures 7, 8 show how significant

changes in the transmission rate impacts the dynamics and
influences the location of the peaks. In addition, these results
support that the fastest way to control the pandemic is with strict
mitigation policies that can significantly reduce the transmission
rate in a short period.

In summary, our results highlight how mathematical
models can help the fight against the COVID-19 pandemic:
by characterizing important parameters that dictate the
dynamics of the pandemic, as performed before in our
previous work (20); and via projections, when different
scenarios can be tested and used for decision-making.
In addition, they suggest that forecasting the peaks of
COVID-19 can be quixotic due to the challenges that
involve a precise estimation of how the transmission
rate evolves.
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