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The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic

disease spillover and spread. Commercial wildlife trade, and associated markets, are

recognized mechanisms for zoonotic disease emergence, resulting in a growing global

conversation around reducing human disease risks from spillover associated with

hunting, trade, and consumption of wild animals. These discussions are especially

relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs,

including those in Arctic and boreal regions. Global policies around wildlife use and

trade can impact food sovereignty and security, especially of Indigenous Peoples. We

reviewed known zoonotic pathogens and current risks of transmission from wildlife

(including fish) to humans in North American Arctic and boreal biomes, and evaluated

the epidemic and pandemic potential of these zoonoses. We discuss future concerns,

and consider monitoring and mitigation measures in these changing socio-ecological

systems. While multiple zoonotic pathogens circulate in these systems, risks to humans

are mostly limited to individual illness or local community outbreaks. These regions are

relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic

animal, and pathogen diversity, and in many cases low density, including of humans.

Hence, favorable conditions for emergence of novel diseases or major amplification of

a spillover event are currently not present. The greatest risk to northern communities
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from pathogens of pandemic potential is via introduction with humans visiting from other

areas. However, Arctic and boreal ecosystems are undergoing rapid changes through

climate warming, habitat encroachment, and development; all of which can change host

and pathogen relationships, thereby affecting the probability of the emergence of new

(and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease

monitoring, prevention and response, is vital from the outset, and would increase the

success of such efforts, as well as ensure the protection of Indigenous rights as outlined

in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with

northern communities and including Indigenous Knowledge Systems would improve the

timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk

assessments to the unique human-wildlife relationships present in northern biomes.

Keywords: wildlife, hunting, zoonotic, pandemic, Arctic, boreal, Indigenous, One Health

INTRODUCTION

Emerging infectious diseases (EIDs) are a significant burden on
public health and economies, and are increasingly recognized
as a global threat (1). EIDs are currently defined by the World
Health Organization (WHO) as those that “have newly appeared
in a population or have existed but are rapidly increasing
in incidence or geographic range (2).” This definition does
not clarify between different categories of emergence or re-
emergence, nor does it clearly differentiate novel diseases with
pandemic potential, such as COVID-19, from those that are
variants of old pathogens, new detections of old pathogens with
novel technologies, or re-emergence of old pathogens in new
regions (2). Thus, the definition does not reflect the very different
drivers and significance between diseases and pathogens in terms
of global vs. local burden, threat and origin (2). The majority of
EIDs (over 60%) are considered zoonotic, with zoonoses defined
as “any infection that is naturally transmissible from vertebrate
animals to humans” (3–7). There is, however, a need to better
differentiate between diseases that originate in animals but are
subsequently independently perpetuated in human populations,
and those that require an animal host for pathogen persistence,
to target research, control, policy and mitigation efforts (2).
Infection of people with zoonotic pathogens occurs through
contact with infected animals via a variety of mechanisms
including: direct contact with bodily fluids (e.g., saliva, blood,
urine, feces); indirect contact with surfaces contaminated with
an animal’s infectious secretions; vector-borne through biting
arthropods; foodborne through consumption of contaminated
raw or undercooked food; and waterborne, via contaminated
drinking water (8). The definition of “risk” usually considers two
dimensions: how likely the uncertainty is to occur (probability),
and what the effect would be if it happened (impact) (9). Both
components are important when establishing the local vs. global
risks of zoonoses and emerging diseases of animal-origin, and in
considering policy or other interventions.

Severe Acute Respiratory Syndrome (SARS)-CoV-2,
considered a novel zoonotic coronavirus, and the causative agent
for COVID-19, emerged in December of 2019 in Wuhan, China
and rapidly spread globally, to devastating effect. Comparative

genomic analysis indicates that SARS-CoV-2 evolved naturally,
with bats the likely ancestral reservoir host (10). Given that the
animal reservoir for SARS-CoV-2 is yet to be identified, others
propose the virus be classified an “emerging infectious disease
(EID) of probable animal origin” rather than a zoonosis (2).
Many, but not all, early cases of COVID-19 were associated with
a market in Wuhan that traded in wildlife (11), and plausible
scenarios have been put forth to explain the origin of SARS-
CoV-2: evolution in bats or an intermediate animal host before
zoonotic spillover to humans in the market or market trade
chain (12, 13); or natural evolution in humans following direct
zoonotic transfer from bats (12), though purifying selection of
SARS-CoV-2 in humans since the start of the pandemic has
been weak compared with the significant positive diversifying
selection that has occurred in bats since SARS-CoV-2 evolved
from its closest known relative RmYN02 (13). SARS-CoV-2
shares some genetic similarity with SARS-CoV, and prevailing
evidence suggests that SARS-CoV spilled over into humans
via an intermediate host–likely masked palm civets (Paguma
larvata)–at a wildlife market in southern China in 2002 (14–17).
The most devastating pandemics in human history, the Black
Death (in the 1300s), Spanish influenza (1918), and HIV/AIDS,
all resulted from an initial zoonotic spillover from wildlife (18).
Of currently defined emerging zoonoses, over 70% originate in
wildlife (6, 19–21) however, very few diseases of wild animal
origin persist with ongoing zoonotic transmission, with most
human infections from such diseases being acquired through
human-human transmission. The frequency of zoonotic disease
spillover into humans is increasing (1, 19, 22, 23). This rise has
been linked to changing human ecology, due to the growing
global human population, and its demand for food, land, and
natural resources (5, 19, 20, 24). Escalating anthropogenic
activities are increasing contact rates between humans, domestic
animals, and wildlife (19, 25–28).

Wild animal consumption-based food systems have been
implicated in the emergence of diseases with zoonotic origins
(including HIV, SARS, Ebola virus disease, Avian Influenza
A), and mounting evidence indicates substantial human health
risks from the trade in live wildlife (29–40). Members of
the WHO team investigating the origins of the SARS-CoV-2
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pandemic recently reported that wildlife farms were the most
likely source (41). The trade of wild-harvested meat for food
fills a continuum from subsistence-based rural consumption, to
extensive commercial trade networks to meet growing urban
and international demand for wild animal meat as a luxury
product (42). There are calls from scientific, health, conservation
organizations, and government officials to end commercial trade
in wildlife for human consumption. Closing wild animal markets
and the trade in wildlife, is viewed as an expedient measure to
reduce the risk of future viral outbreaks, like the COVID-19
pandemic, that threaten human health, well-being, economies,
and security at local, regional, and global scales (43, 44).
Public health organizations, including the WHO, support the
rigorous enforcement of bans on the sale and trade of wildlife
for food (45). However, some populations are dependent on
wild-harvested food to meet basic nutritional requirements.
In the face of disruptions to food supply chains during the
COVID-19 pandemic, harvesting and sharing of local foods has
helped maintain food and nutrition security for isolated boreal
and Arctic communities (46), and harvesting of wildlife, with
secondary use of wildlife by-products (i.e., pelts, claws, skulls),
forms an important part of traditional economies and socio-
economic-cultural well-being of Indigenous Peoples. The World
Organization for Animal Health (OIE) considers wildlife all of:
(a) wild animals (b) free-ranging feral [domesticated] animals,
and (c) non-domestic animals in captivity or farming, though
these different categories and interfaces likely pose quite different
risks for spillover to humans (2). Infection cycles in densely
populated wildlife farms, along trade chains and live markets,
are very different to those in natural, free-ranging populations.
These crowded and stressful environments are much more
likely to facilitate cross-species transmission of pathogens with
pandemic potential (2, 32, 47). Based on past experiences, well-
meaning initiatives aimed at halting the hunting, trapping, and
use of wildlife risk violating the rights of Indigenous Peoples as
outlined in the United Nations (UN) Declaration on the Rights
of Indigenous Peoples (48), and also threaten the subsistence of
non-Indigenous hunter communities.

Indigenous Peoples and local communities across the boreal
and Arctic regions (or “northern communities”) have extensive
and essential relationships with their environments, including
through the harvest and sharing of nutritionally and spiritually
important native plants, and wildlife, also known as traditional
and country foods (49–53). Limited access to traditional and
country foods is a strong predictor of health disparities in
Indigenous Peoples across the North, and is correlated to diseases
such as diabetes, cardiovascular disease and mental illness
(54). Throughout boreal and Arctic ecosystems, subsistence
economies support rich and diverse cultures that include the use,
sharing, and consumption of wildlife. Subsistence is considered
as: the personal consumption of wildlife for food, fuel, shelter,
clothing, tools, or transportation; the barter, trade, or sharing
of wildlife products in their harvested form with relatives, with
others in the local community or with persons in locations
other than the local community with whom local residents
share familial, social, cultural, or economic ties; and the making
and selling of handicrafts from wildlife products, when the

wildlife are harvested for the purposes defined above (55).
Subsistence, together with guided hunting and fishing, by
Indigenous Peoples in the Arctic and boreal is best considered
through the lens of food security and sovereignty, cultural
security, and livelihoods (56, 57). Food security is considered
to exist when “all people, at all times, have physical, social,
and economic access to sufficient, safe, and nutritious food to
meet their dietary needs, and food preferences, for a healthy
and active life” (58). Food sovereignty refers to the “ability and
right of people to define their own policies and strategies for
sustainable production, distribution, and consumption of food
that guarantees the right to food for the entire population” (59).
The rights of Indigenous Peoples to determine and maintain
these relationships with the environment are embedded in
the UNDRIP (48), in the Canadian Constitution (60), and in
the Truth and Reconciliation Commission of Canada’s Calls
to Action (61), but have received less formalized protections
within the United States. The relationships between Indigenous
Peoples in North America and the environment, particularly
the harvest and use of wildlife, are the basis for historic
numbered Treaties, and modern land claim agreements in
Canada and the United States, Native to Native agreements,
and Indigenous advisory and co-management institutions (see
Table 1 for specific examples). Such agreements however, have
not been as effective in addressing the needs of Indigenous
Peoples and local communities as they are forced to adapt to the
impacts of biodiversity loss and climate change within historically
colonial approaches to environmental management (62). The
use of wildlife by non-Indigenous local communities are largely
managed through legislation and regulations developed, and
enforced, by governments and regional authorities.

Indigenous Peoples in the Arctic and boreal are often at
the forefront of protecting wild food systems, livelihoods, and
cultural values (63, 64), and concerns have been raised about
potential impacts to Indigenous rights and food sovereignty
due to policy initiatives focused on hunting, consumption,
sharing, and local trade of wildlife (55, 65–70). Negative
impacts have occurred when socio-economic, cultural, and
nutritional dimensions of Indigenous subsistence practices were
not considered. For example, previous culturally insensitive and
poorly developed communication outreach efforts regarding
health and traditional and country foods (on contaminants)
resulted in negative health consequences for affected populations
from avoidance of traditional foods altogether, given limited
healthy alternatives (71, 72). Zoonotic health risks and concerns
are also relevant to local communities of hunters, trappers, and
fishers across the region. This paper was written to respond
to some of the issues related to northern food sovereignty,
and to apprehension expressed by researchers and veterinarians
working with these northern communities around potential
routes for introduction of emerging zoonoses, such as COVID-
19, into remote Indigenous and local communities where
subsistence based on traditional and mixed economies remains
a vital necessity. The manuscript aims to (i) review zoonotic
pathogens of wildlife origin in Arctic and boreal systems,
in the context of wildlife use by northern communities; (ii)
provide a reference for northern communities, and wildlife
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TABLE 1 | Examples of formal agreements and co-management institutions protecting the rights of Indigenous Peoples in Arctic and boreal biomes across North

America regarding land, hunting, and use of wildlife.

Type of agreement Specific examples of agreements

Agreements with federal government of

Canada

Inuvialuit final agreement; Nunavut land claims agreement; James Bay and Northern Québec agreement and the

Northeastern Québec agreement; Nunavik inuit land claims agreement; Eeyou marine region land claims agreement;

Labrador Inuit land claims agreement; Umbrella final agreement (Yukon first nations), Historic treaties and agreementsa

across the boreal, including Treaty No. 5 (Manitoba), Treaty no. 8 (Alberta, Northwest Territories, British Columbia), James

Bay treaty–treaty no. 9 and adhesions made in 1929 and 1930 (Ontario), Treaty no. 10 (Saskatchewan)

Agreement with national government of the

United States

Alaska native claims settlement act

Indigenous Nation to Nation agreements Inuvialuit-Inupiat polar bear management agreement (IIA); Alaska and inuvialuit beluga whale committee (AIBWC)

Indigenous advisory and wildlife

co-management institutions (not exhaustive)

Alaska: alaska eskimo whaling commission (AEWC); Alaska beluga whale committee (ABWC); Iceseal committee (ICS);

Alaska nannut co-management council (ANCC); Eskimo walrus commission (EWC); Indigenous people’s council for

marine mammals (IPCoMM); Association of traditional marine mammal hunters of chukotka (ATMMHC); Wildlife

management advisory council; kitikmeot regional wildlife board

Canada: Nunavut wildlife management board, Inuvialuit game council, Fisheries joint management committee, Hunting

fishing trapping coordinating committee, Nunavik marine region wildlife board, Eeyou marine region wildlife board,

Torngat wildlife & plants co-management board, Sahtu renewable resources board, Gwich’in renewable resources

board, Wek’eezhii renewable resources board, wildlife management advisory council (NT, NS), Yukon fish and wildlife

management board, makavik corporation

ahttps://www.rcaanc-cirnac.gc.ca/eng/1100100028574/1529354437231.

disease and public health researchers, to consider and compare,
the potential community and broader health implications of
zoonoses transmissible via traditional use of wildlife; (iii)
examine zoonotic pathogen spillover, amplification, epidemic or
pandemic spread, and relevant dynamics in northern biomes;
(iv) describe some future zoonotic concerns; and (v) discuss
considerations for current and future monitoring, surveillance
and risk reduction approaches. The results section, with Table 2,
addresses aims 1 and 2, and the remaining aims are addressed in
the discussion.

MATERIALS AND METHODS

We carried out a qualitative literature review to identify
publications focused on zoonotic diseases in Arctic and boreal
biomes with a potential wildlife origin. The review focused
on zoonoses associated with the hunting, trapping, butchering,
sharing, use, and trade of wildlife (including fish), and only
considered agricultural or domestic species if related to a sylvatic
cycle. Given this focus, vector-borne zoonoses were not included
in the review, but are considered in the discussion. In addition,
we asked for the contributions of experts on the topics. Only
published materials were included. Our search included articles,
reviews, proceedings papers, reports and book chapters in the
English language. The Web of Science database and Google
Scholar search engine were utilized to conduct the search in late
April, 2020. Publications from any year were considered.

To gain an overview of the literature pertaining to existing
zoonotic disease reports for communities in Arctic and boreal
regions associated with consumption and/or hunting of wildlife,
search terms were conducted using the following keywords
and phrases:

➢ “zoonoses” OR “zoonotic”

➢ AND “wildlife” OR “fish” OR “hunter” OR “hunting”
OR “hunted” OR “subsistence” OR “country food” OR
“traditional food” OR “Indigenous”

➢ AND “Arctic” OR “boreal” OR “Alaska” OR
“northern Canada”

Based on the titles and abstracts of the identified studies, we
excluded those publications considered irrelevant to part one of
our review, including those for which the full manuscript was
not available, publications pertaining to vector-borne zoonoses in
Northern regions; those describing zoonoses in other regions, or
for which hunting, consumption, use or sharing of wildlife have
not been reported to facilitate transmission; and those referring
to experimental rather than natural infections. Relevance was
attributed if the publications discussed case studies of zoonotic
diseases transmitted to humans via the hunting, consumption,
preparation or sharing of wildlife in northern regions of North
America; or if they described the ecology and epidemiology
of zoonoses with one or more wild hosts and potential
transmission to humans through the hunting, consumption,
preparation or sharing of wildlife in North American Arctic and
boreal biomes; details on these relevant aspects were recorded
in a table.

Ninety five publications were identified for inclusion in
the review. The lead author read each full article and
extracted relevant information for inclusion in the manuscript.
The other authors reviewed this selection and recommended
additional papers, where available, that met inclusion criteria
described above. All authors then considered together how the
review findings combine with risk factors for zoonotic disease
emergence, amplification and pandemic spread, and key cultural,
socio-economic, political and ecological factors in Arctic and
boreal regions, to inform on the risks of zoonotic disease
emergence and amplification from Northern wildlife use and
trade, and how such risks are being and could be better addressed.
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TABLE 2 | Zoonotic pathogens of Arctic and boreal systems that can be transmitted to humans through hunting, consumption or other use of wildlife, noting pathogen potential for local outbreak clusters,

human-to-human transmission, and epidemic/pandemic spread.

Type of

pathogen

Disease/Pathogen Wild Host(s)* in arctic

and boreal biomes

Route of infection to humans Disease in humans Local outbreak clusters

possible?

Human to human

transmission?

Epidemic or

pandemic

potential?

Parasites Anisakidosis/

Roundworms of genus

Anisakis (73, 74)

Definitive host: Bearded

seals, ringed seals and

beluga whale

Intermediate: Fish and squid

Consumption of raw fish Gastritis with ulcerative lesions of stomach

wall

Possible through

consumption of shared

contaminated product

No No

Fluke infection

Cryptocotyle lingua

(fish trematode) (75, 76)

Intermediate host: Fish

Reservoir hosts: Fish-eating

birds and mammals

including foxes, gulls, terns,

and herons

Ingestion of raw or improperly

cooked fish from fresh and

brackish water

Liver and intestinal damage Possible through

consumption of shared

contaminated product

No No

Cystic Echinococcosis/

Echinococcus

canadensis (22, 77–83)

Definitive host: Wolf, coyote

(dog)

Intermediate host: Mainly

caribou/reindeer and moose

(also muskox, elk, bison,

and white-tailed and

mule deer)

Canids: Ingestion of viscera of

infected intermediate host.

Humans: Via accidental ingestion

of eggs shed in canid feces (e.g.,

from fur during fox skinning), or

from a water or food source

(e.g., plants, berries)

contaminated with eggs

Relatively benign cyst formation in liver

and lung

Possible through

contaminated water source

No No

Alveolar

Echinococcosis/

Echinococcus

multilocularis

(79, 84, 85)

Definitive host: Fox, felid,

wolf, and coyote (also dog)

Intermediate host: rodents

e.g., vole, deer mice,

lemming, muskrat (ground

squirrels and shrews on St.

Lawrence Island)

Canids: Ingestion of viscera of

infected intermediate host.

Humans: Accidental ingestion of

eggs shed in canid or felid feces

(e.g., from fur during fox

skinning); or from contaminated

water or food source (e.g.,

plants, berries)

Alveolar hydatid disease with parasitic

tumor growth in liver, lungs, brain, and

other organs and much higher mortality

than for Echinococcus canadensis

infection

Possible through

contaminated water source

No No

Tapeworms/

Diphyllobothrium latum

& Diphyllobothrium

dendriticum &

Diphyllobothrium

nihonkaiense (73, 86)

Diphyllobothrium latum:

Fish-eating mammals (e.g.,

bear, wolf, otters, and mink)

Diphyllobothrium

dendriticum: Fish,

fish-eating mammals, and

birds

Diphyllobothrium

nihonkaiense: Wild salmon

Consumption of undercooked

fish meat or livers

Asymptomatic or causes mild chronic

intermittent diarrhea

Possible through

consumption of shared

contaminated product

No No

Toxocariasis/Toxocara

canis (primarily) &

Toxocara cati**

(79, 82, 83, 87–90)

Toxocara canis: Wolves,

coyotes, and foxes (small

mammals), (dog)

Toxocara cati: Felids (e.g.,

lynx) and rodents

Mainly through accidental

ingestion of eggs from

contaminated; possible via

consumption of uncooked meat

of small mammal paratenic hosts

Ocular and visceral larval migrans Possible through

contaminated water source

No No

(Continued)
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TABLE 2 | Continued

Type of

pathogen

Disease/Pathogen Wild Host(s)* in arctic

and boreal biomes

Route of infection to humans Disease in humans Local outbreak clusters

possible?

Human to human

transmission?

Epidemic or

pandemic

potential?

Toxoplasmosis/

Toxoplasma gondii

(79, 84, 91–101)

Definitive host: Felids (e.g.,

lynx)

Intermediate hosts: many

northern animals including

caribou, walrus, birds

and seal

Consumption of raw or

undercooked meat; or via water

or soil contaminated with felid

feces containing infective

oocysts

Often asymptomatic, possible association

with mental health issues e.g., depression;

severe disease in immune- compromised

individuals (e.g., encephalitis/

chorioretinitis); fetal morbidity and mortality

during pregnancy

Possible through

consumption of shared

contaminated product

No No

Trichinellosis/Trichinella

native (30, 73, 79, 82,

84, 102–106)

Walrus, seal, bear (polar,

black and grizzly), fox, wolf,

and wolverine

Ingestion of raw or undercooked

meat

From asymptomatic to nausea, diarrhea,

vomiting, abdominal pain, muscle pain,

fever swelling of eyes, weakness/fatigue,

headache, and (rarely) fatality if heart

affected

Possible through

consumption of shared

contaminated product

No No

Giardiasis (Giardia spp.)

& Cryptosporidiosis

(Cryptosporidium spp.)

(107)

Mammals including beaver,

muskrats, muskoxen, and

others

Via water contaminated with

feces containing infective

oocysts

Diarrheal disease Possible through

contaminated water source

No No

Bacteria Anthrax/Bacillus

anthracis (108–111)

Wild ungulates (e.g.,

white-tailed and mule deer,

bison, moose, and reindeer)

Ingestion or inhalation, or

contamination of wounds by,

bacterial spores

Cutaneous: skin sores

Inhalational: chest pain, shortness of

breath, cough, nausea, vomiting, stomach

pains, headache, sweats, fatigue, body

aches

Gastrointestinal: Fever, swelling of neck

glands, sore throat, nausea, vomiting and

diarrhea, headache, fainting, swelling of

abdomen.

All types have potential, if untreated, to

spread throughout body, causing severe

illness and even death

Possible through shared

contaminated water or food

source. Rarely direct

human-to- human

transmission

Very rare reports

from cutaneous

form. Not

considered

contagious

No

Brucellosis/Brucella

spp. (81, 84, 112, 113)

Wild mammals including:

caribou/reindeer, elk,

muskoxen, bison,

white-tailed and mule deer,

goats, sheep, moose, wolf,

fox, rodents, hares, mink,

and marine mammals

Handling of carcasses, fetuses,

and newborn calves from

infective animals; or

consumption of raw (including

frozen or dried) meat and

marrow

Dogs: Consumption of

uncooked infected tissue

Systemic bacterial disease (acute or

insidious): intermittent fever with

headache, weakness, sweating, chills,

joint pain and weight loss; also cerebral

forms; can be fatal

Possible, through

consumption of shared

contaminated product

Extremely rare

(e.g., through

breastmilk)

No

Botulism/Clostridium

botulinum*** (114–119)

Fish (especially salmon) and

many mammals

Main source in north is

marine mammals, especially

seals and whales

Consumption of raw or parboiled

seal meat, fish, seal oil, or other

wild meat that has undergone

faulty fermentation or aging

Multiple clinical symptoms including:

blurred vision, nausea, vomiting, paralysis

of the motor nerves, and respiratory

paralysis in fatal cases

Possible, through

consumption of shared

contaminated product

No No

(Continued)
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TABLE 2 | Continued

Type of

pathogen

Disease/Pathogen Wild Host(s)* in arctic

and boreal biomes

Route of infection to humans Disease in humans Local outbreak clusters

possible?

Human to human

transmission?

Epidemic or

pandemic

potential?

Erysipelas/Erisipelothrix

rhusiopathiae

(56, 120–128)

Terrestrial and aquatic

mammals including

muskoxen, white-tailed and

mule deer, caribou, birds,

fish, and arthropods

Exposure to infected animals or

fish or animal products via skin

wounds or via ingestion;

environmental sources of

infection also reported

Localized skin infections; or severe cases

with diffuse cutaneous or systemic

disease, septicemia, endocarditis;

infrequently pneumonia, abscesses,

meningitis, arthritis

Unlikely No No

Leptospirosis/

Leptospira interrogans

(129–131)

Beavers, coyotes,

white-tailed and mule deer,

foxes, opossums, otters,

raccoons, skunks, and

Northern fur seals

Direct contact with contaminated

urine or animals

From no symptoms, to kidney damage,

meningitis, liver failure, respiratory distress,

and death

Possible through

contaminated water source

No No

Lyme disease/Borrelia

burgdorferi (132, 133)

Seabirds, song birds, and

wild ungulates

Bites from ticks that have fed on

an infected animal

Fever, rash, facial paralysis, arthritis Possible if infected host and

tick densities high

No No

Pasteurellosis/

Pasteurella multocida;

Bisgaardia

hudsonensis (others)

(134–137)

Pinnipeds, including seals

and walruses, many

terrestrial mammals, birds,

and reptiles

Animal bites or contact with

nasal secretions of infected

animal

Skin and soft tissue infections: rapidly

spreading edema, erythema and

tenderness at site of the bite or scratch;

abscessation; enlarged local lymph nodes

No No No

Q fever/Coxiella burnetii

(138–140)

Northern fur seals and sea

birds

Inhalation of dust contaminated

by infected animal feces, urine,

milk, or birth products;

contaminated water source; or

ingestion of infected animal

products e.g., milk or cheese

Mild: Fever, fatigue, headache, muscle

aches, vomiting, diarrhea, chest or

stomach pain, weight loss, cough

Severe: pneumonia or hepatitis. Infection

during pregnancy can cause miscarriage,

stillbirth, pre-term delivery, low infant

birth weight

Occasionally, through

shared contaminated water

or food source, or

human-to-human

transmission

Rare: although

highly

transmissible from

animal-human it is

not highly

transmissible from

human-human

No

Seal finger/

Mycoplasma spp.

(114, 134, 141)

Seals and whales Marine mammal bites; or broken

skin contact with infectious

material from marine mammal

Swollen, painful, and suppurative lesion on

finger; rarely systemic, with fever and

lymphangitis

No No No

Tuberculosis and

Mycobacteriosis/

Mycobacterium bovis,

M. tuberculosis, M.

pinnipedii & others

(114, 142–144)

Marine mammals: Wild

seals (more commonly) and

cetaceans (rarely)

Terrestrial mammals: bison,

elk, moose, white-tailed

deer, mule deer and wolves

Multiple routes: inhalation,

ingestion of raw/undercooked

meat or unpasteurized milk

products, and direct contact with

breaks in the skin e.g., when

dressing infected ungulates

Pulmonary (cough, shortness of breath)

and cutaneous (localized skin infections)

disease

Possible, through

consumption of shared

contaminated product and

direct human- to-human

transmission

Yes Yes

Tularemia/Francisella

tularensis

(84, 145–148)

Muskrats, beavers, hares,

voles, squirrels, wolves,

bears, and other northern

wildlife

Consumption of insufficiently

cooked meat or contaminated

water and dust; or through bites

from infected vectors such as

mosquitoes and ticks; and

through direct contact i.e.,

skinning; touching hare

carcasses

Skin lesions or ulcerations,

lymphadenomegaly, vomiting, diarrhea,

abdominal pain, conjunctivitis, pneumonia,

septicemia, and hepatosplenomegaly

Rare, but possible through

consumption of shared

contaminated product or

contaminated water source

or vector abundance

No No

(Continued)
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TABLE 2 | Continued

Type of

pathogen

Disease/Pathogen Wild Host(s)* in arctic

and boreal biomes

Route of infection to humans Disease in humans Local outbreak clusters

possible?

Human to human

transmission?

Epidemic or

pandemic

potential?

Yersiniosis****/Yersinia

pseudotuberculosis &

Y. enterocolitica

(94, 142, 149–151)

Reservoirs in rodents

(beaver, muskrat, ground

squirrels), lagomorphs

(snowshoe hare), and

outbreaks in muskoxen

Ingestion of raw or undercooked

meat, or water contaminated

with infected fecal matter

Fever, abdominal pain, and diarrhea Possible through

consumption of shared

contaminated product or

contaminated water source

Very rarely; not

highly

transmissible

Viruses Avian influenza/

Influenza A viruses

(114, 152–155)

Wild birds, especially

waterfowl

During preparation of infected

birds for eating (plucking,

cleaning, butchering) or

consumption of raw meat from

infected bird

Mild to severe illness, sometimes death.

Fever, chills, cough, sore throat,

congestion, body aches, headache,

fatigue; vomiting, and diarrhea in children

Yes Yes Yes

Caliciviruses/(marine

caliciviruses: serotypes

of vesicular exanthema

of swine virus)

(114, 156)

Arctic marine mammals,

including fur seals, elephant

seals, walrus, and whales

(including bowhead and

gray)

Broken skin contact with

infectious animal or their

secretions

Fluid-filled blisters on the extremities Rare, but possible through

handling same animal

Possible but rare,

through broken

skin contact with

blister fluid

Not for

marine

serotypes

Sealpox/Parapox virus

(114, 157, 158)

Harbor and gray seals Direct contact via pox lesions on

infected mammals

Painful, nodular lesions Rare, but possible through

handling same animal

No No

Orf/Parapox virus

(157–159)

Muskoxen, mountain goats,

Dall’s sheep, caribou and

white-tailed, and mule deer

Direct contact via pox lesions on

infected mammals

Painful, nodular lesions Rare but possible through

handling same animal or if

multiple animals infected in

herd

No No

Rabies

(38, 81, 160–170) Principle reservoir hosts:

Arctic foxes, red foxes,

wolves, and bats

Less commonly: Caribou,

beaver, black and polar

bears, racoons, lynx,

and wolverine)

Humans and domestic dogs: via

bites from infected wildlife

Almost always fatal if untreated. Affects

central nervous system: general weakness

or discomfort, fever, headache; prickling

sensation at site of the bite, anxiety,

confusion, agitation, delirium,

hallucinations, hydrophobia (fear of water),

and insomnia

Possible through rabid

animal in community

Extremely rare:

through bite or

organ transplant

No

Hepatitis E***** N.B.

transmission from

wildlife to humans not

yet confirmed in Arctic

or boreal regions, but

suspected (171–173)

Free-ranging deer, possibly

caribou

Humans via undercooked meat

or food contaminated with feces

from infected animal

Acute viral hepatitis, mortality a concern in

pregnant women

Possible through

consumption of shared

contaminated undercooked

meat or shared

contaminated water source

Rare: mainly via

maternal-infant

transmission

Outbreaks

possible via

fecal

contamination

of drinking

water source

Fungal None as yet Future concern in warming

Arctic and boreal systems.

Dearth of data for fish (174)

Future concern in warming Arctic

and boreal systems

N/A N/A N/A No

(Continued)

F
ro
n
tie
rs

in
P
u
b
lic

H
e
a
lth

|w
w
w
.fro

n
tie
rsin

.o
rg

8
M
a
y
2
0
2
1
|
V
o
lu
m
e
9
|A

rtic
le
6
2
7
6
5
4

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Keatts et al. Zoonoses and Northern Wildlife Use

T
A
B
L
E
2
|
C
o
n
tin

u
e
d

T
y
p
e
o
f

p
a
th
o
g
e
n

D
is
e
a
s
e
/P

a
th
o
g
e
n

W
il
d
H
o
s
t(
s
)*
in

a
rc
ti
c

a
n
d
b
o
re
a
l
b
io
m
e
s

R
o
u
te

o
f
in
fe
c
ti
o
n
to

h
u
m
a
n
s

D
is
e
a
s
e
in

h
u
m
a
n
s

L
o
c
a
l
o
u
tb
re
a
k
c
lu
s
te
rs

p
o
s
s
ib
le
?

H
u
m
a
n
to

h
u
m
a
n

tr
a
n
s
m
is
s
io
n
?

E
p
id
e
m
ic

o
r

p
a
n
d
e
m
ic

p
o
te
n
ti
a
l?

P
rio

n
D
is
e
a
se

s
C
h
ro
n
ic
W
a
st
in
g

D
is
e
a
se

(C
W
D
)*
**
**
*

(1
7
5
,
1
7
6
)

W
ild

c
e
rv
id
s:

M
o
o
se

,

w
h
ite
-t
a
ile
d
a
n
d
m
u
le
d
e
e
r,

e
lk
a
n
d
re
in
d
e
e
r
in

F
e
n
n
o
sc

a
n
d
ia
(p
o
te
n
tia
lly

c
a
rib

o
u
)

N
o
d
o
c
u
m
e
n
te
d
tr
a
n
sm

is
si
o
n
to

h
u
m
a
n
s
a
s
ye
t,
b
u
t
e
xp

e
rim

e
n
ta
l

e
vi
d
e
n
c
e
o
f
C
W
D
tr
a
n
sm

is
si
o
n

to
n
o
n
-h
u
m
a
n
p
rim

a
te
s.

O
th
e
r

T
S
E
s
h
a
ve

sp
re
a
d
fr
o
m

a
n
im

a
ls

to
h
u
m
a
n
s
vi
a
c
o
n
su

m
p
tio

n
o
f

in
fe
c
te
d
o
ff
a
l,
so

p
u
b
lic

h
e
a
lth

o
ffi
c
ia
ls
st
ill
a
d
vi
se

c
a
u
tio

n

N
/A

P
o
te
n
tia
lly

p
o
ss
ib
le
th
ro
u
g
h

c
o
n
su

m
p
tio

n
o
f
sh

a
re
d

c
o
n
ta
m
in
a
te
d
p
ro
d
u
c
t

N
/A

N
o

*D
e
fin
it
iv
e
o
r
fin
a
lh
o
s
t
=
h
o
s
t
o
rg
a
n
is
m
in
w
h
ic
h
a
p
a
ra
s
it
e
re
a
c
h
e
s
m
a
tu
ri
ty
(a
d
u
lt
s
ta
g
e
)
a
n
d
re
p
ro
d
u
c
e
s
s
e
xu
a
lly
;
In
te
rm
e
d
ia
te
h
o
s
t
=
h
o
s
t
o
rg
a
n
is
m
th
a
t
h
a
rb
o
rs
th
e
s
e
xu
a
lly
im
m
a
tu
re
p
a
ra
s
it
e
a
n
d
is
re
q
u
ir
e
d
b
y
th
e
p
a
ra
s
it
e
to
u
n
d
e
rg
o

d
e
ve
lo
p
m
e
n
t
a
n
d
c
o
m
p
le
te
it
s
lif
e
c
yc
le
;
R
e
s
e
rv
o
ir
h
o
s
t:
p
ri
m
a
ry
h
o
s
t
th
a
t
m
a
in
ta
in
s
a
p
a
th
o
g
e
n
in
a
s
ys
te
m
a
n
d
th
a
t
s
e
rv
e
s
a
s
a
re
s
e
rv
o
ir
o
f
in
fe
c
ti
o
n
fo
r
o
th
e
r
s
p
e
c
ie
s
.

**
To
xo
c
a
ra
c
a
ti
is
ra
re
ly
zo
o
n
o
ti
c
.

**
*N
o
t
s
tr
ic
tl
y
a
zo
o
n
o
s
is
,
b
u
t
o
f
c
o
n
c
e
rn
in
In
d
ig
e
n
o
u
s
c
o
m
m
u
n
it
ie
s
a
n
d
c
o
n
tr
a
c
te
d
vi
a
ra
w
/f
e
rm
e
n
te
d
w
ild

m
e
a
t.

**
**
Y
e
rs
in
ia
p
e
s
ti
s
d
is
c
u
s
s
e
d
in
A
p
p
e
n
d
ix
1
a
s
a
fu
tu
re
c
o
n
c
e
rn
;
n
o
t
ye
t
re
p
o
rt
e
d
fr
o
m
h
u
m
a
n
s
in
th
e
A
rc
ti
c
.

**
**
*T
h
e
re
is
c
u
rr
e
n
tl
y
n
o
c
o
n
fir
m
e
d
tr
a
n
s
m
is
s
io
n
o
f
H
e
p
a
ti
ti
s
E
vi
ru
s
fr
o
m
w
ild
lif
e
to
h
u
m
a
n
s
in
th
e
A
rc
ti
c
a
n
d
b
o
re
a
lr
e
g
io
n
s
,
h
o
w
e
ve
r
o
n
e
s
tu
d
y
fo
u
n
d
s
e
ro
lo
g
ic
a
le
vi
d
e
n
c
e
o
f
H
E
V
in
fe
c
ti
o
n
in
3
%
o
f
th
e
o
b
s
e
rv
e
d
C
a
n
a
d
ia
n
In
u
it
p
o
p
u
la
ti
o
n

( 1
7
1
).

**
**
**
A
s
ye
t,
th
e
re
h
a
s
b
e
e
n
n
o
d
o
c
u
m
e
n
te
d
tr
a
n
s
m
is
s
io
n
o
f
C
W
D
to
h
u
m
a
n
s
,
b
u
t
c
a
u
ti
o
n
is
s
ti
ll
a
d
vi
s
e
d
:
o
th
e
r
P
ri
o
n
d
is
e
a
s
e
s
h
a
ve

s
p
re
a
d
fr
o
m
a
n
im
a
ls
to
h
u
m
a
n
s
e
.g
.
B
o
vi
n
e
S
p
o
n
g
ifo
rm

E
n
c
e
p
h
a
lo
p
a
th
y/
M
a
d
C
o
w
D
is
e
a
s
e
,
a
n
d
h
a
ve

a
ve
ry
p
ro
lo
n
g
e
d
in
c
u
b
a
ti
o
n
p
e
ri
o
d
in
p
e
o
p
le
;
e
xp
e
ri
m
e
n
ta
lr
e
s
e
a
rc
h
h
a
s
s
h
o
w
n
p
o
te
n
ti
a
lf
o
r
tr
a
n
s
m
is
s
io
n
to
n
o
n
-h
u
m
a
n
p
ri
m
a
te
s
a
n
d
a
b
ili
ty
o
f
C
W
D
to
c
o
n
ve
rt
h
u
m
a
n
p
ri
o
n
p
ro
te
in
to
a
m
is
fo
ld
e
d
s
ta
te
;
C
W
D
is
a
n
e
m
e
rg
in
g
d
is
e
a
s
e
a
n
d

m
o
re
lo
n
g
it
u
d
in
a
lr
e
s
e
a
rc
h
is
w
a
rr
a
n
te
d
( 1
7
6
).

RESULTS

Our review identified 25 zoonotic bacterial (n = 12), parasitic (n
= 9), and viral (n= 4) diseases described across Arctic and boreal
regions of Canada and Alaska that can be transmitted to humans
through the hunting, consumption, preparation, or other use of
wildlife (22, 56, 73, 75–84, 86–95, 97, 99, 102–110, 112–117, 120–
125, 129–134, 138–142, 145, 149–154, 157–170, 177–193).
Table 2 summarizes the diseases, their causative agents, wild
hosts, modes of transmission, and potential for local, epidemic
or pandemic spread, with additional details given in the
Appendix 1. Potential wild species hosts of these 25 zoonoses
include many subsistence species important to northern
Indigenous Peoples and local communities. These come
from various taxa, including carnivores, ungulates, rodents,
birds, marine mammals, and fish. In contrast to the global
overrepresentation of viruses as emerging and pandemic human
pathogens (21, 194–196), viruses comprise the lowest proportion
of northern zoonoses. Of the 25 zoonotic diseases reported,
12 were identified as having potential to cause local outbreak
clusters through the sharing of contaminated wild animal meat,
or other products for consumption (anisakidosis, trematodosis,
tapeworms, toxoplasmosis, trichinellosis, anthrax, botulism,
brucellosis, mycobacteriosis including tuberculosis, Q fever,
tularemia, yersiniosis); 8 have potential for human to human
transmission, [anthrax, brucellosis (via breastmilk), influenzas,
Q fever, tuberculosis/mycobacterial disease, yersiniosis,
caliciviruses, and rabies]; and only 2 of these [influenzas
and tuberculosis/mycobacterial disease] are considered as
having true epidemic or pandemic potential. Many of these
pathogens can threaten human health directly as zoonoses, but
also indirectly via food and economic insecurity, by causing
mortality events and declines in wildlife, or reduced quality of
wildlife products on which northern Indigenous Peoples and
local communities depend (120, 178, 179, 193). Thus, these
zoonotic diseases are of local significance, even where EID risk
of more global significance is low.

A study of 36 Inuit communities for 4 zoonotic parasites,
found highest levels of exposure to Toxoplasma gondii (27.2%)
and trichinella (18.6%), with overall seropositivity related to age,
education, and consumption of marine mammals and seafood
(180). Serological surveys of hunters and trappers in Cree
communities in northern Québec (Eastmain, Wemindji, and
Mistissini) found 44% to be positive for at least one zoonotic
pathogen, with risk correlated to hunting, fishing, and trapping
activities, as well as consumption of smoked game, and domestic
dog ownership (91, 181). Free-ranging domestic dogs serve not
only as sentinels for disease, but also as a conduit for diseases
from wildlife to people e.g., for rabies and zoonotic parasites
which dogs acquire from wild meat (78, 87, 182–184). The role
of dogs as potential sources or amplifying hosts for zoonotic
diseases highlights the importance of integrating improved
domestic animal management and healthcare alongside that for
humans in northern communities (197).

While wildlife use in Arctic and boreal biomes is not currently
considered a major concern in terms of being the source of
an epidemic or pandemic, zoonotic diseases of wildlife remain

Frontiers in Public Health | www.frontiersin.org 9 May 2021 | Volume 9 | Article 627654

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Keatts et al. Zoonoses and Northern Wildlife Use

important for northern communities in the Arctic and boreal
biomes: changes in quality and quantity of wildlife, access to
traditional and country foods, and potential for disease risk, can
create public health, food safety, and food security concerns.
Indigenous and local communities in northern and remote areas
of these biomes also tend to have limited access to health
care services, along with suboptimal housing, infrastructure
such as potable water, and sewage treatment facilities. These
underlying factors contribute to the cumulative impact of
additional stressors like zoonoses on the community (198).

DISCUSSION

Zoonotic Pathogen Spillover, Amplification,
Epidemic or Pandemic Spread, and
Relevant Dynamics in Northern Biomes
Spillover and amplification of novel diseases is a rare, dynamic,
and complex process with multiple factors at play (25, 47, 199–
203). Zoonotic disease emergence events can result in dead-
end “spillover” infections in which the pathogen is unable
to establish stable onward transmission in the novel (human)
host (27, 204). Despite this, spillover events are thought to
be under-reported, as they can occur in remote regions where
people have limited access to healthcare and reporting, with
a lack of surveillance and diagnostic test services, and limited
infrastructure, while also living in relative isolation from other
human populations (47). Novel diseases are likely often mis-
diagnosed, or not diagnosed at all in mild cases that resolve
without treatment (47). The risk of pathogen spillover from
reservoir hosts to humans, or other animals, depends upon the
intensity of infection within reservoir host populations, and
human contact with the reservoir population, and is affected by
a cascade of events involving multiple factors associated with
hosts (reservoir, intermediate/vector, recipient), the environment
and the pathogen itself (205–208). This includes release of
infectious material from reservoir hosts, pathogen survival in
the environment, behaviors that drive exposure of a novel host,
and biologically driven susceptibility of that host (199, 209).
For a spillover event to result in epidemic or pandemic spread,
it may need to overcome multiple barriers (210), and the
pathogen must adapt to efficiently spread between individuals
of the recipient population, with genetic, physiological and
immunological attributes of the recipient host, together with dose
and route of exposure, affecting the susceptibility to infection
(206, 211). The pathogen can then be considered as transformed
from a zoonotic EID to a pathogen specific for the recipient
population (2). High densities, and gregariousness/sociability of
the recipient host species can then facilitate pathogen exposure
and transmission. Similarly, connectivity through travel, and
trade networks facilitate regional, international, and global
pandemic spread of pathogens in humans and domestic animals
(212, 213).

Of human pathogens with potential for widespread
transmission and global dissemination i.e., pandemic potential, a
disproportionate number are viruses (20, 21, 26, 194–196, 214).
Viruses transmitted to humans during practices that facilitate

mixing of diverse animal species have significantly higher
host plasticity, and higher pandemic potential (201). Zoonotic
viruses capable of infecting a more diverse range of host species
have higher pandemic potential in humans than those with a
narrower host specificity: they are more likely to be amplified
by human-to-human transmission, and spread on a global
scale (201, 215). Host traits play a role in transmission, and
the proportion of zoonotic viruses per mammal species has
been linked with phylogenetic relatedness to humans, host
taxonomy, host biomass and density, and opportunities for
human contact (194, 211, 216–219). Certain mammalian groups
(bats, rodents, primates) have been suggested as more likely to
host zoonotic viruses (194, 215); though recent analysis suggest
bats and rodents host high numbers of zoonoses simply due
to the high degree of species richness within these orders, not
as a result of intrinsic or ecological differences (220). Whilst
wildlife are described as the source of the majority of emerging
zoonotic diseases, the term “wildlife” is defined by OIE as “all
free-roaming wild animals, feral animals and captive or farmed
wildlife” (2). It is valuable to differentiate spillover risk posed by
free-roaming wildlife, vs. captive-managed “farmed” or traded
wildlife that may have wild origins, but have either been caught
and maintained, or bred in captivity. Wildlife trade chains and
markets that trade and process live animals or fresh meat from
wildlife frequently represent high-risk interfaces due to high
wildlife-human contact rates, and large numbers of admixed
species (including mixing of wild and domestic animals), with
their potential to shed and share viruses for extended periods
prior to on-site slaughter or onward sale (221, 222). The
proportion of wild rodents testing positive for coronaviruses
has been shown to significantly increase along the live animal
supply chain from local traders (21%), to large markets (32%),
and to restaurants (56%) (32). Environmental and physiological
stressors, such as the poor transportation and holding conditions
along wildlife trade chains, impact animal immune function,
and can lead to increased shedding and amplification of viruses
(210, 223–225).

The risk of spillover of zoonotic diseases from wildlife
increases when wildlife-human, and wildlife-domestic animal-
human contact rates increase (19–21, 25, 42). Ecosystem
degradation, land-use change for agricultural intensification or
other industrial expansion, wildlife trade, and wildlife markets,
all contribute to increasing contact rates, and therefore increase
risk of disease emergence, particularly when they occur in areas
of high biodiversity (19–21, 25, 47, 226–241). A higher diversity
of zoonotic agents is found where the diversity of host animals
is higher (239, 242). Although higher animal host and pathogen
species diversity is associated with an increased risk of disease
emergence (243), complex host, environmental and pathogen
relationships ultimately determine spillover risk (206, 244). A
high level of biodiversity can serve as a source of pathogens,
but can also serve as a regulating factor (termed the “dilution”
effect), where by loss of habitat specialists and predators due
to habitat disturbance or hunting, can allow more generalist
reservoir host species, such as some rodent species, to proliferate
(240, 245). Zoonotic viral richness correlates strongly with
mammalian species diversity and abundance (2), and domestic
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species harbor, on average, 19.3 zoonotic viruses compared to
an average for free-ranging wildlife of 0.23 (2). Wildlife make
up <1% of the world’s non-human mammal biomass, thus,
whilst wildlife is of concern as a source of uncommon but
significant animal-origin EIDs, land-use change for agricultural
intensification to supply human food systems, particularly for
livestock, is of concern as a significant driver of EID risk
(19, 24, 238). Higher biodiversity tends to be observed along
ecosystem edges (e.g., along roads built into pristine ecosystems,
or fragmented forest edges) where differing ecological systems
meet, resulting in increased contact opportunities between a
wider range of different host and pathogen species, and increased
potential pathways for spillover (237, 246, 247). In biodiverse
areas, livestock can become intermediate or amplifier hosts in
which pathogens can evolve and spill over into humans (238)
and over three-quarters of livestock pathogens are capable of
infecting multiple host species (219).

Wildlife Use, Spillover and Emerging
Zoonotic Diseases in North American
Arctic and Boreal Regions: Social, Cultural,
Political, and Ecological Considerations
Arctic and boreal socio-ecological systems are currently less
predisposed for novel zoonotic disease emergence, due in part
to a relatively low species diversity; low population density of
human and livestock; limited and less intensive land uses, such as
for commercial forestry and agriculture; and a lack of live wildlife
markets, which are not a part of the cultural values of northern
communities (19, 25, 206, 220, 239, 248–252). In addition, cold
temperatures, photoperiod extremes, and geographic isolation
restrict the diversity of pathogens, and often require specialized
pathogen adaptations in order to persist in these environments
(250, 253) (Figure 1). Recent mapping of global hotspots of
relative risk for zoonotic EID events based on demographic,
environmental, and biological correlates found Arctic and boreal
biomes to be within the lowest risk index (25). Low human
density, and reduced connectivity among human populations,
also decrease the likelihood of onward pandemic spread of any
newly emerged pathogen (28, 213).

Commercialization of wildlife for food has been, and
continues to be promoted in northern communities and regions.
The type, and context, of sharing and trade of wildlife for
food in northern communities is entirely different in character
from the commercial trade in wildlife for human consumption,
including wildlife markets, in parts of Asia and Africa. The
trade is also not characterized by the same mixing of species
carrying potential pandemic zoonotic pathogens as commonly
occurs in wildlife trade chains throughout tropical regions. As an
example, a NunavutWildlife Harvest Study found only 86 records
(from over 145,000, and after removing the separately-monitored
commercial harvest of muskoxen (Ovibos moschatus) and sales to
fish or meat plants) indicating a harvest was sold commercially,
vs. for personal use (254). Larger-scale commercial trade of
wildlife from Arctic and boreal biomes is highly regulated, and
falls under similar food safety inspection as meat from domestic
animals, which not only lowers the risk of zoonotic disease

transmission, but also protects the food and economic security
of Indigenous and local communities who rely on wildlife (255–
257).Whilst commercial trade still forms only a small component
of wildlife use, the dual roles of wildlife harvesting in northern
subsistence and mixed economies, including sport hunting,
remain important (258–260). Maintaining and strengthening
current surveillance systems for wildlife health and zoonoses,
based on populations with the highest contact rates with
wildlife, is an important component of an improved health
infrastructure across the North. These systems can help detect,
define, and control local human emergence of zoonoses while still
geographically confined.

Risk for emergence of zoonotic-origin pandemic pathogens
from wildlife use in Arctic and boreal biomes is currently
minimal, indicating that new policies restricting these traditional
and subsistence activities in the name of pandemic prevention
would be unfounded at the current time.

Our review did find that endemic zoonotic concerns persist
in northern communities (Table 2, Appendix 1), and increased
risk is associated with consumption of raw meat, the practice
of meat and fish fermentation (e.g., igunaq, muktuk), and
exposure to the bodily fluids of animals through methods of
harvesting and butchering (56, 118). For many Indigenous
cultures around the Arctic, wildlife as food, and food sharing,
are fundamental components of a cultural value system that
emphasizes generosity, reciprocity, and cooperation, and usually
operates within networks related to kinship and family social
groups within the community (261–267). Alaska prohibits the
sale of most wildlife hunted by Alaska Natives to non-Alaska
Natives, but, across Canada, different jurisdictions recognize
different Indigenous rights and responsibilities with respect to
disposition of country food. For example, in Nunavut, an Inuk
has the right to dispose freely to any person any wildlife lawfully
harvested (268). Food exchanges are important because of the
nutritional value of the items exchanged, and also because they
carry cultural and economic values (53, 269, 270). Local sharing
of foods can facilitate community zoonotic disease outbreaks
(e.g., trichinella or botulism, as noted in Table 2); however, the
limited potential for human-to-human transmission of current
pathogens spread via sharing, and the low human population
density, makes the likelihood of epidemics and pandemics
originating from such activities very low. While this traditional
way of sharing remains, there also exist other broader networks
of sharing practices established to support urban hubs such
as Anchorage, and others, across the United States (265, 266).
Although low levels of consumption and sharing of traditional
foods by Indigenous Peoples in urban centers in Canada have
been previously reported (64, 271), relatively new sharing
networks have emerged as a result of social media (272, 273)
that facilitate the broader distribution of country food, often
at the expense of local and traditional sharing practices and
values (274), and potentially facilitating the spread of pathogens
across larger geographic regions. Zoonotic disease risk is lowered
through tight regulation of legal trade of wildlife and wildlife
products from northern regions, however international spread of
a zoonosis has been associated with sport hunting and the illegal
export of wild meat (275).
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FIGURE 1 | Transmission of Zoonoses of Wildlife Origin in Arctic and Boreal Regions: Characteristics That Lower Risk for Novel Pathogen Emergence and Pandemic

Spread (Created with BioRender.com).

Despite the perceived current low risk for zoonotic EID
events, Arctic and boreal biomes are undergoing rapid ecological
change. As the earth warms, and permafrost thaws, concerns
have been raised for the potential release of dormant pathogens
and contaminants that could affect wildlife and humans.
Climate change, migration, introduction of industrial land-
use, alongside increasing connectivity of people through
development of tourism, travel and trade networks, will alter
pathogen dynamics and could facilitate the future spread of
emerging pathogens both to and from Arctic and boreal
biomes (28, 213, 276, 277). These trends are already reflected
in range expansion of existing pathogens (278, 279), and
could promote reemergence of past diseases, novel host-
pathogen relationships, and the emergence of new zoonotic
diseases including vector-borne diseases (121, 185, 277, 280–
282). Novel pathogens have recently emerged in northern
regions: A second case of Alaskapox virus was reported
in Fairbanks in October, 2020, with suspected, but as yet
unknown, zoonotic origin (283), and Erysipelothrix has emerged
as an apparently new disease causing agent in muskoxen in
Canada, with a genotype distinct from strains found in other
regions (121).

The greatest risk for pathogens of pandemic potential being
introduced into northern communities is currently from people
coming into the region from more densely populated southern
areas (e.g., via cruise ship passengers). Travel and tourism
were found to be the most significant and frequent drivers of
epidemic events in Europe, and during the ongoing COVID-
19 pandemic (284, 285). The current COVID-19 outbreak is an
excellent example of travel-related introduction into northern
regions, and subsequent community spread of a suspected
wild-origin EID maintained by human-human transmission
(286). As a result, many remote northern communities,
who experienced impacts from previous epidemics such as
influenzas, smallpox, and tuberculosis (287), have imposed strict
travel restrictions and prohibited outsiders from entering their
communities during the current pandemic (288). Northern
residents traveling to and from regional hubs for medical
procedures and other essential activities should be considered in
future risk scenario planning, particularly during a pandemic.
Severe Acute Respiratory Syndrome (SARS) like coronaviruses
have not been identified in any wild animals in Arctic and
boreal biomes. Natural and experimental infection indicates that
SARS-CoV-2 appears to have the ability to infect a broad range
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of distantly related mammals (289). Analysis of Angiotensin-
converting enzyme 2 (ACE2) receptors, suggests that some
cetacean species are hypothetically susceptible, including beluga
(Delphinapterus leucas) and narwhal (Monodonmonoceros) (261)
which are hunted by northern communities. However, entry
of a virus into a cell is a complex biochemical process, with
multiple other factors at play beyond the binding to a receptor,
and actual infection of marine mammals is undocumented.
Marine mammals are not deemed a risk based on current
knowledge. Other coronaviruses have previously been identified
in marine mammals, but there has been no evidence of zoonotic
transmission from these animals to humans (290–293).

Reverse zoonotic transmission of human pathogens to non-
human animals (anthropozoonoses), including wildlife, occurs
more frequently than previously thought (294), and this
directional flow of infection for SARS-CoV-2 from humans to
wildlife is currently more likely than the reverse in Arctic and
boreal biomes. A recent assessment found a non-negligible risk
of transmission of SARS-CoV-2 from humans to bats (295),
and, whilst the COVID-19 pandemic is ongoing, suspension
of field work that involves direct interaction with bats has
been recommended (296). Preventing human-to-wildlife SARS-
CoV-2 transmission is important for protecting animals from
disease, but also to avoid establishment of reservoirs in wild
animals (e.g., bats), complicating disease control efforts, with
potential for future spillover to other wildlife (e.g., Mustelidae)
and spillback to humans (297, 298). Both anthropozoonotic,
and zoonotic transmission of SARS-CoV-2 has been reported on
mink (Mustela vison) farms across Europe, and the United States
(299, 300). Mustelids are highly susceptible to SARS-CoV-
2, an important consideration given that trapping of marten
(Martes americana) and wolverine (Gulo gulo) forms a critically
important industry in many northern communities (301).
Contaminated wastewater and refuse from human settlements,
commercial vessels, and cruise ships could theoretically pose a
risk of transmission of SARS-CoV-2 from humans to marine
mammals in the Arctic (261, 302). However, it is unclear if
the virus remains viable under these varying environmental
conditions and risk likely remains low (303), and is further
attenuated by the current ban on cruise ships in the Artic.

Future Zoonotic Disease Concerns
The circumpolar North is uniquely vulnerable to the health
impacts of climate change, including, but not limited to,
alterations in the distribution and ecology of infectious diseases,
expansion of zoonotic disease vectors, changing migration
patterns, impacts on food security, limited resources of northern
communities to respond to medical emergencies, and changes in
water availability and quality (65, 227).

Climate change can impact distribution, life cycle, and
physiological status of hosts, pathogens, and vectors, and can
drive novel cross-species viral transmission (276, 304, 305).
For example, a marked increase in leptospirosis was observed
in Ontario following the warmest and third wettest autumn
in a decade (186). Leptospirosis has not yet been recorded
in humans in the Arctic, but serosurveys of Alaskan wildlife
found antibodies to Leptospira serovars in caribou (Rangifer

tarandus), moose (Alces alces), and bears (Ursidae) (186). The
cumulative impacts of environmental and climatic changes may
be increasing the susceptibility to the bacteria Erysipelothrix
rhusiopathiae in certain wild animal host populations, including
multiple unusual mortality events of muskoxen in Nunavut,
the Northwest Territories, and Alaska, and of moose and
caribou in British Columbia (120–122). In addition to the
health risk for people who interact with these animals or their
environments, there is potential for reduced food security for
northern communities, through the direct loss of animals from
E. rhusiopathiae (56, 120, 123). Climate change is already and
will lead to further changes in wildlife community dynamics,
including range shifts and increasing overlap between marine
and terrestrial ecosystems as a result of sea ice loss and other
climate-related changes. Yersinia pestis, a bacterium that persists
in rodent-flea communities and causes plague in humans, is not
yet reported in the Arctic, though it has been identified twice
from wildlife in Canada [in bushy-tailed woodrats (Neotoma
cinerea) and a Prairie dog (genus Cynomys)] (149), and appears
to occur enzootically in southern Alberta, Saskatchewan, and
British Columbia (150). If warming leads to northern expansion
of rodent reservoirs, the disease could affect Arctic and more
boreal communities in the future. Northward expansion in
mammal ranges are already noted, for example in beavers (Castor
canadensis) increasingly colonizing the north. Such expansion
impacts zoonotic disease ecology, with beavers, for e.g., capable
of carrying tularemia, and amplifying and maintaining Giardia
(249). Migratory terrestrial and marine intermediate hosts
have been implicated in the introduction of other zoonoses
to northern regions. For example, human seroprevalence for
the protozoan parasite Toxoplasma gondii is high in some
parts of the Canadian Arctic, with infection associated with
consumption of under-cooked country foods (306). The parasite,
thought originally to be of South American origin, but now
ubiquitous around the globe, has felids as the only known
definitive host. However, seropositive wildlife species have been
detected in the Arctic, where wild felids do not occur, and
hypotheses for arrival in the region include spread via migratory
waterfowl or marine mammal intermediate hosts (306, 307). As
environmental conditions change, bacterial infections routinely
reported from direct contact with, or ingestion of, fish in
more southern regions may also become a greater concern
for northern communities who depend on fish for subsistence
and as part of their food sovereignty (126). While there are
currently no known zoonotic viruses of fish origin, there are
many viruses among fish that share evolutionary history with
modern human viral pathogens, and viruses have been shown to
readily jump between species in the aquatic environment (308).
The possibility of some diseases decreasing in relevance warrants
consideration when assessing future potential risks from climate
change (187, 253, 309).

Thawing of permafrost has already contributed to changing
patterns of traditional food consumption, and forced some
northern communities to abandon the use of traditional ice
cellars and increasingly utilize preservation methods such as
smoking, pickling, and salting, and other ways to store traditional
and country foods (281).
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If pathogens emerge from thawing permafrost, ice patches,
glaciers, or graves, wildlife may be the first to be affected. Wildlife
may be both important sentinels and amplifying hosts, and a
food safety concern (281). In 2016 in the Russian Arctic, one
fatality from anthrax occurred among native reindeer herders,
and several were hospitalized. One proposed explanation for
the outbreak was that warm temperatures melted permafrost,
exposing the corpses of reindeer that had died of anthrax
almost a 100 years earlier, and releasing infectious Bacillus
anthracis spores into nearby waterways. However, another
valid explanation is the large increase in reindeer herd sizes,
discontinuation of routine anthrax vaccination of reindeer (110),
loss of Indigenous Knowledge among herders, and lack of
veterinary experience to recognize signs of the disease in reindeer
(111). Certain zoonotic disease agents survive particularly well
in cold northern climates, including spore-forming bacteria,
Mycobacterium species, protozoan cysts/oocysts, some helminth
eggs, prions, non-enveloped viruses, and pox viruses (281).
Some fungi can survive in permafrost for extended periods, and
nematodes can be viable after long-term cryobiosis in Arctic
permafrost (310). Most viruses are rapidly inactivated outside
host cells: while RNA from the 1918 influenza strain was detected
from buried Arctic peoples almost 100 years after their death
(18), the material was non-infectious. Giant viruses appear to
be more resilient: a giant virus trapped for around 30,000
years was recently isolated from Siberian permafrost (311), and
two plant viruses recovered from 700-yr-old caribou feces still
demonstrated infectivity (312). In addition to revealing dormant
pathogens, climate warming also leads to release of persistent
environmental pollutants, heavymetals, carbon and other natural
elements from soils and rocks (313). These have cumulative
effects on the immune systems and health of wildlife and humans,
increasing susceptibility to diseases, particularly when combined
with additional climate-related stressors such as reduced or
altered habitat and food availability for wildlife, and, in turn, for
humans (186).

In terms of pathogens of epidemic or pandemic potential,
climate-driven changes that influence wild Arctic water bird
habitat use, distribution, and migration could be a factor in
the global distribution of avian viral agents, and possibly the
emergence of a new pandemic influenza strain (186). Several
recent studies provide evidence that migratory birds serve as
effective long-distance vectors of wildlife and zoonotic pathogens
to the Arctic (282), with boreal regions providing stop-over sites
for many migratory species (314–316).

Most vector-borne disease agents have limited pandemic
potential, as their spread tends to be restrained by geographically
and climatologically restricted vector habitats (317). However,
with warming environmental temperatures, and changing
precipitation levels, vector-borne pathogens will become of
increasing concern for epidemics in Arctic and boreal biomes,
as vector ranges expand. Such viruses include those spread
through mosquito bites like West Nile virus and Sindbis
virus, which are maintained in wild birds; California serogroup
viruses, such as Jamestown Canyon virus (antibodies to which
have been found in bison (Bison bison), Dall’s sheep (Ovis
dalli), snowshoe hare (Lepus americanus), and Arctic fox

(Vulpes lagopus) in Alaska); and Snowshoe hare virus which
is maintained in mammalian hosts including rodents, deer,
and hares (186, 276). Tick borne-encephalitis virus can also
infect multiple hosts including ungulates, birds, rodents, and
carnivores, and is spread from animals to humans through
tick bites. In the Russian Arctic, climate associated increases
in mosquito and tick populations, and rodent-borne infections
transmitted by arthropods are already having an impact on
population health (281). Insect repellent and avoidance of tick
bites will likely become increasingly important for people living
in northern communities.

As existing agricultural regions are threatened by climate
change, warming of high latitude regions, and increasing
food demands may lead to northward expansion of global
agriculture (318). Agriculture is associated with the emergence
of more than 50% of zoonotic infectious diseases in humans
(319), and future rates of zoonotic disease emergence and/or
reemergence are predicted to be closely linked to the evolution
of the agriculture–environment nexus (42, 202, 238, 320). As
opportunities for agriculture, and other industries, increase
with warming of Arctic and boreal biomes, there is potential
for disruption and dramatic change of these ecosystems from
an influx of people, domestic livestock, and pets, and the
disease agents they harbor (226, 243, 321). Beyond prospective
increases in infectious disease emergence, climate-driven
agricultural expansion will have major impacts on biodiversity,
on downstream water resources, and on carbon storage (322).
Multiple links exist between human health and anthropogenic
environmental degradation. Land-use modifications that lead to
the loss of ecosystem integrity, and increased human-domestic
animal-wildlife contact rates can increase susceptibility to
emerging zoonoses directly, but also indirectly via impacts
on the immune system, mental health issues, environmental
contaminants, and endemic diseases, paired with reduced
access to fundamental services such as timber, freshwater, wild
foods, medicines, and decreased air quality (248). A systematic,
interdisciplinary, and holistic approach to understand and
address environmental health, zoonotic, and other disease
concerns around agricultural and other developments are key to
mitigating negative impacts (323–325).

Current and Future Considerations for
Monitoring, Surveillance, and Risk
Reduction Approaches
Given the changing socio-ecological, -economic, and -
political systems of Arctic and boreal biomes, future
research would be beneficial to understand how the
increasing anthropogenic impacts across northern
regions are altering ecological processes, and thereby
potentially converting microbial hazards in naturally
occurring pathogen diversity into risks to human health
(277, 326, 327).

Human health monitoring for zoonotic diseases in Arctic and
boreal biomes is typically coordinated through relevant local
health authorities and health surveys (e.g., Inuit Health Survey).
Outbreaks can lead to new sampling programs, such as the
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sampling of walrus (Odobenus rosmarus) meat before sharing and
distribution in the community (189). In general, there has been
minimal research on the risks associated with traditional and
country food preparation practices, despite awareness of zoonotic
pathogens found in harvested wildlife and a clear need for risk
reduction (118). Good hygiene during butchering and skinning,
and thorough cooking of food can prevent transmission of
many of the endemic zoonotic pathogens reported (118). Most
health status measures and outcomes are consistently poorer
for Indigenous Peoples in comparison to the rest of the
North American population (63, 328) and investing in health
infrastructure across Arctic and boreal biomes is critical to meet
the broader needs of these populations. These investments would
enhance emerging infectious disease surveillance, contribute
toward a better understanding of the patterns of exposure
and immunity, and reduce risks from both endemic and
emerging zoonoses (79, 248, 329). Ensuring ownership of health
initiatives by local communities in general, and specifically in
the necessary prioritization process, is essential, with ample
evidence demonstrating that failure to engage and build trust
with local political and thought leaders, Elders, traditional health
workers, and community groups in disease detection and control,
will delay both diagnosis and response for emerging diseases
(330). Identifying priority pathogens is a valuable starting point
given present-day perceived financial constraints (281), though
broader monitoring systems capturing syndromic trends may be
more sensitive to detect emerging pathogens. Furthermore, every
community has location-specific, individual risk profiles that
will help determine the discrete approaches needed. To provide
timely, accurate, and pertinent information on zoonotic disease
risks across northern regions, the current capacity for northern
communities to establish or continue disease monitoring and
diagnosis needs to be expanded (186, 193, 331).

National, regional, state and territorial level veterinarians
and programs monitor the health of wildlife across North
American Arctic and boreal biomes. These programs range
from highly standardized to less formal efforts, and vary in
their objectives, from basic data collection, to in-depth species
specific research. Recommendations regarding the reduction of
disease risk from wildlife are detailed in a variety of local
guidance publications (see Table 3). Furthermore, many groups
publish regular or as-needed health updates throughwebsites, co-
management meetings, and scientific gatherings. The Canadian
Wildlife Health Cooperative (332) forms a cross-Canada network
of collaborators dedicated to wildlife health and a national
surveillance program for wildlife diseases, but the approach to
date has been essentially reactive to emerging issues. A new
“Pan-Canadian Approach to Wildlife Health” was initiated in
2018 (333), and represents a deliberate transition to proactive
health promotion; however, increased funding commitments,
and jurisdictional collaboration and coordination, are necessary
to enable its execution. In Alaska, the U.S. Geological Survey’s
NationalWildlife Health Center (NWHC) (334) supports wildlife
disease detection, control, and prevention, and conducts wildlife
disease outbreak investigations as part of a national, general
surveillance program. The Alaska Department of Fish and
Game has a longstanding wildlife disease monitoring program

and wildlife health monitoring also occurs at local levels: the
North Slope Borough Department of Wildlife Management has
multiple harvest monitoring programs for subsistence species
[e.g., bowhead whale (Balaena mysticetus), beluga, ice seals
(Phocidae), walrus, polar bears (Ursus maritimus)], and has
a well-developed wildlife health research program for these
mammals. This program, and an increasing number of other
programs in northern regions, are community-based, and work
with hunters and communities to answer questions about health
and diseases in wildlife in a changing Arctic environment. Some
examples of current monitoring institutions and efforts regarding
health of wildlife and traditional foods are shown in Table 4.

Community-based monitoring, Indigenous Knowledge,
participatory epidemiology, and citizen science have become
increasingly relevant as ways of centering research on community
needs and priorities, and obtaining invaluable information on
health and the environment (190, 193, 197, 201, 331, 335–338).
Rich knowledge, including on preventing certain food-borne
illness, results from the long-standing relationships of Indigenous
Peoples and local communities with their environment,
including their harvesting of nutritionally and spiritually
important native plants, fish, and wildlife (56, 57, 118, 339, 340).
Indigenous knowledge; the prevention, monitoring, and
surveillance of zoonotic agents; and education are considered the
most important methods to reduce human health risks associated
with the consumption of traditional and country foods (118).
Many wildlife harvesters in Arctic and boreal biomes are
keenly aware of concerns regarding wildlife health and food
safety. In general, parasites, lesions (discoloration, tracts, fungal
growths, etc.), or abnormal behavior of hunted animals are often
observed by Indigenous and local communities. Indigenous
Peoples were some of the first to draw attention to traditional
and country food safety concerns related to environmental
contaminants, because of changes they detected in quality of
the animals and fish they hunted (118). Community-based
monitoring programs contribute valuable information. For
example, the Nunavik Trichinellosis Prevention Program
provides rapid carcass-side testing for trichinella in country
foods for Nunavik communities (341), giving community
members control to obtain the information they need to make
informed decisions about food preparation, consumption,
and carcass disposal to prevent further transmission. Recent
working groups assessing Unusual Mortality Events (UMEs)
for marine mammals and other species around Alaska include
Indigenous perspectives and observations (191, 342) and, across
Canada, several Indigenous-led Guardians Programs monitor
ecological health, maintain cultural sites, and protect sensitive
areas and species, while also playing a vital role in creating
conservation plans, and supporting Indigenous Protected and
Conserved Areas (343). Table 3 lists some examples of the
existing monitoring efforts for wildlife health, and country and
traditional foods. Ongoing academic-government-community
collaborative partnerships have resulted in several successful
community-based wildlife health surveillance programs that aim
to address community concerns about wildlife health and food
safety while simultaneously addressing key research questions
about wildlife ecology and dynamics (193, 197, 338).
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TABLE 3 | Examples of Existing Guidance on Safety for Hunters.

Hunter guidance document and

source

Reference and website for accessing document

Safety manual for harvesters of fish

and wildlife in nunavut

Canadian Wildlife Health Cooperative and Government of Nunavut. (2011). Safety Manual for Harvesters of Fish and Wildlife in

Nunavut: An Illustrated Guide to Common Diseases and Parasites.

https://www.gov.nu.ca/sites/default/files/files/Safety%20Manual%20for%20Harvesters%20of%20Fish%20&%20Wildlife%20in

%20Nunavut.pdf (accessed March 10, 2021)

Disease precautions for hunters American Veterinary Medical Association (2021).

https://www.avma.org/resources/public-health/disease-precautions-hunters#protecting (webpage only) (accessed March 10,

2021)

Diseases you can get from wildlife Government of British Columbia (2017). Diseases You Can Get From Wildlife: A Field-guide for Hunters, Trappers, Anglers and

Biologists.

https://www2.gov.bc.ca/assets/gov/environment/plants-animals-and-ecosystems/wildlife-wildlife-habitat/wildlife-health/

wildlife-health-documents/diseases_you_can_get_from_wildlife_field_guide_2017.pdf (accessed March 10, 2021)

A field guide to common wildlife

diseases and parasites in the

northwest territories

Government of Northwest Territories (2017). A Field Guide to Common Wildlife Diseases and Parasites in the Northwest

Territories’; 6th Edition, March 2017.

https://www.enr.gov.nt.ca/sites/enr/files/field_guide_wildlife_diseases.pdf (accessed March 10, 2021)

Common wildlife parasites and

diseases Alaska Department of Fish and Game (2021). Common Wildlife Parasites and Diseases.

Available online at: https://www.adfg.alaska.gov/static/home/library/pdfs/wildlife/brochures_newsletters/common_wildlife_

parasites_diseases.pdf

and

https://www.adfg.alaska.gov/index.cfm?adfg=disease.main (webpage only) (accessed March 10, 2021)

TABLE 4 | Examples of current health monitoring institutions and efforts for health of wildlife and traditional foods (not intended to be comprehensive).

Institution Website

Alaska Native Tribal Health Consortium https://anthc.org/what-we-do/traditional-foods-and-nutrition/

North Slope Borough Department of Wildlife Management http://www.north-slope.org/departments/wildlife-management/studies-and-research-projects/health-

assessment-of-subsistence-resources

Unusual Mortality Events (UMEs) https://www.fisheries.noaa.gov/insight/understanding-marine-mammal-unusual-mortality-events

Community-Based Monitoring https://www.inuitcircumpolar.com/wp-content/uploads/2019/01/cbm_report_final.pdf

LEO Network https://www.leonetwork.org/en/#lat=60.71611&lng=-135.05375&zoom=7

Canadian Wildlife Health Cooperative http://www.cwhc-rcsf.ca/

US Geological Survey (USGS) National Wildlife Health Center https://www.usgs.gov/centers/nwhc

US National Oceanic and Atmospheric Administration (NOAA) https://www.fisheries.noaa.gov/national/marine-life-distress/marine-mammal-health-and-stranding-

response-program

USGS Alaska Science Center https://www.usgs.gov/centers/asc/science-topics/wildlife-disease

Inuit, Métis, First Nations, and Alaskan Native societies
across the Arctic and boreal biomes (and globally) maintain vast
and holistic Indigenous Knowledge Systems, across generations,
about the natural environment and how it is changing. Such
awareness and presence of eyes-in-the-field is irreplaceable
for the early detection of changes in wildlife populations,
and the environment. Combining Indigenous Knowledge
with scientific understanding improves wildlife surveillance,
fosters reconciliation, and advances Indigenous Peoples’ self-
determination in research, while creating mutual health and
conservation benefits (331, 344–348). However, a history
of colonialism, relocations, residential schools, and loss of
Indigenous languages has led to generational changes in
diet, life-style and relationships with the environment for
many Indigenous communities. Loss of transgenerational
“hands-on” and oral transmission of knowledge, especially
regarding harvesting, butchering, food safety and zoonoses, may
increase zoonotic risk, increase meat wastage, and limit the

ability to engage with “two-eyed-seeing” within participatory
epidemiology (331). In addition to fostering reconciliation
with Indigenous Peoples, programs that assist Elders to
pass on Indigenous Knowledge to Indigenous youth, and
brings communities together to prepare and share country
and traditional foods, contributes to future monitoring of
wildlife, human and environmental health, and supports a
conservation economy focused on the land and wildlife. The
participation and leadership of men and women involved in
the harvest and preparation of wild foods, and youth in
wildlife and community health monitoring and research, builds
trust between researchers and local communities, particularly
when focused on community-raised concerns and priorities
(197, 331). Continued investment in existing community-
based wildlife and human health monitoring efforts, paired
with consistent and well-conveyed methodologies, would be
a valuable approach to tracking wild harvest use and trade,
zoonotic and other emerging pathogens, host species, and
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environmental impacts from the changing climate across
northern communities.

Early recognition and intervention during an emerging
infectious zoonotic disease event is essential to limit spread
(349). Wild animals, and domestic dogs, can serve as sentinels
for zoonotic diseases and other health concerns such as
contaminants and it appears essential that existing veterinary
and wildlife surveillance systems for zoonotic pathogens are
closely integrated with public health surveillance, to better
control such pathogens before they affect human health.
Surveillance would benefit from the exploration and cooperative
development with local and Indigenous leaders of practical ways
to integrate and share surveillance-generated information for
humans, domestic animals and wildlife. This would ensure that
the surveillance systems are risk-based, spatially and temporally
targeting species and geographic locations with the highest risk
for spillover, and guaranteeing that the information gathered
can be used by the local communities to deploy interventions
in a timely manner. Expansion of regional, transdisciplinary
One Health networks that involve community members and
diverse stakeholders and collate real-time multifactorial data
and explicit observations, (e.g., the Echo Network for health
and conservation, the Circumpolar Climate Change and
Infectious Diseases Workgroup, or the LEO network1) (350) and
integration with public health networks such as the International
Circumpolar Surveillance (ICS) project (192), can facilitate early-
warning systems, rapid response, and mitigation for health
threats to animals, humans, and the environment, while also
advancing our understanding of endemic, and emerging zoonotic
health risks for these communities.

It is important that the desire to increase awareness of
the potential risk of zoonotic infections be balanced with the
unintended consequences on other determinants of health. Past
experience with poorly designed communication strategies and
materials with respect to country and traditional foods, such as
contaminants in wild-caught foods, provides stark lessons on
the need to avoid provoking unnecessary fear when addressing
food safety risk in Indigenous and local communities (71,
72). For example, scientific communication to Nunavut Inuit
communities in the late 1980s that women’s breast milk had high
levels of polychlorinated biphenyls (PCBs), failed to consider
broader understanding of contamination issues in the region,
and failed to include the Inuit directly on messaging (72). The
resulting alarm and confusion across Inuit and other northern
communities led many women to stop breastfeeding, and
stopped consumption of country and traditional foods, leading
to other more insidious health issues, poor nutrition, and food
insecurity (72). Similar issues were associated with the research

1The LEO Network collates and shares information on unusual events, climate
and other drivers of environmental change. The online platform is multi-lingual,
including Indigenous languages, and was designed to be accessible from remote
locations, in order to gather input from local community members, using holistic
observational data, and welcoming diverse knowledge systems. The network
facilitates connectivity between communities, environmental and public health
experts, and allows researchers and agencies to use data as a surveillance system for
local updates on emerging issues and vulnerabilities, and to provide event specific
consultations.

and communication of contaminants in wildlife in Alaska.
Participation in subsistence activities, including the practice
of hunting by Indigenous Peoples, is considered a protective
mental health factor for Indigenous circumpolar youth (351),
and there are different and pertinent health concerns associated
with the consumption of store-bought, processed, imported
market foods increasingly eaten by younger generations. Such
foods are often low in nutritional value, high in sugar, and
sometimes harbor contaminants including microplastics and
pesticides (56, 352–354). In Alaska, the introduction of modern
materials such as plastic bags, plastic pails and glass jars in the
preparation of rendered and aged foods (muktuk and igunaq)
actually increased outbreaks of botulism (118). Indigenous and
non-Indigenous health professionals promoted the return to
traditional methods thereby reducing fatality rates by leveraging
knowledge from community members, Elders, and survivors of
botulism. Communications andmanagement approaches around
zoonotic disease risk from traditional and country foods are
better co-developed with Indigenous and other hunting/trapping
communities, with mindfulness that hunters and their families
are keenly aware of changes in the behavior of wildlife or
condition of wildlife products; these foods are usually the most
cost-effective and healthy sources of nutrition in northern and
remote communities; and country and traditional foods have
important cultural, spiritual, and social values to northern
communities (355, 356).

Combining diverse approaches and ways of knowing,
including Indigenous Knowledge, provides a more complete
understanding of the socio-ecological system than applying
Western science alone. Working together can help bridge gaps
in scientific monitoring, and bring the best available knowledge
to more effectively monitor, and respond to, the impacts of
disease and climate change on the health of Arctic and boreal
inhabitants (338).

CONCLUSION

An essential connection exists between subsistence activities,
and well-being and resilience within Indigenous Peoples and
local communities across the Arctic and boreal biomes in
North America. The current threat of pandemic zoonotic disease
emergence from hunting, consumption, and use of wildlife in the
North American Arctic and boreal biomes is low, and policies
restricting these traditional and subsistence activities in the name
of pandemic prevention would be greatly misplaced. Health
threats from endemic zoonotic diseases in northern biomes
remain, with plausible hypotheses that environmental alterations
from development, and climate change could alter epidemic and
pandemic risks. Whilst commercialization of trade in wild food
and products, and agricultural expansion have been identified
as factors important in developing resilience in the North (351,
356, 357), they will bring a different set of challenges around
zoonotic disease emergence, and disruption of ecosystems (238,
323). Co-development of any future policies and interventions
with Indigenous Peoples and local communities may more
effectively address zoonotic disease emergence in these rapidly
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changing northern regions. Combining Indigenous Knowledge
Systems with science provides a more holistic understanding
of zoonotic risks in Arctic and boreal ecosystems, informs
opportunities for mitigation and monitoring, and improves
disease risk communications, while avoiding potentially negative
repercussions (331, 356, 358, 359). Monitoring, research, and
response efforts would all benefit from employing more inclusive
One Health approaches that draw on all knowledge systems and
types of expertise, and proactively incorporate the complexity
and interrelatedness of the environmental, biological, economic,
political, cultural, and social dimensions of zoonotic disease
emergence in northern biomes.
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