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Coagulase-negative staphylococci (CoNS) are common opportunistic pathogens, but

also ubiquitous human and animal commensals. Infection-associated CoNS from

healthcare environments are typically characterized by pronounced antimicrobial

resistance (AMR) including both methicillin- and multidrug-resistant isolates. Less is

known about AMR patterns of CoNS colonizing the general population. Here we report

on AMR in commensal CoNS recovered from 117 non-hospitalized volunteers in a region

of Germany with a high livestock density. Among the 69 individuals colonized with CoNS,

29 had reported contacts to either companion or farm animals. CoNS were selectively

cultivated from nasal swabs, followed by species definition by 16S rDNA sequencing

and routine antibiotic susceptibility testing. Isolates displaying phenotypic AMR were

further tested by PCR for presence of selected AMR genes. A total of 127 CoNS were

isolated and Staphylococcus epidermidis (75%) was the most common CoNS species

identified. Nine isolates (7%) were methicillin-resistant (MR) and carried the mecA gene,

with seven individuals (10%) being colonized with at least one MR-CoNS isolate. While

resistance against gentamicin, phenicols and spectinomycin was rare, high resistance

rates were found against tetracycline (39%), erythromycin (33%) and fusidic acid (24%).

In the majority of isolates, phenotypic resistance could be associated with corresponding

AMR gene detection. Multidrug-resistance (MDR) was observed in 23% (29/127) of

the isolates, with 33% (23/69) of the individuals being colonized with MDR-CoNS. The

combined data suggest that MR- and MDR-CoNS are present in the community, with

previous animal contact not significantly influencing the risk of becoming colonized with

such isolates.
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INTRODUCTION

Antimicrobial resistance (AMR) in bacteria is an increasing
public health issue jeopardizing many achievements of modern

medicine (1). Accordingly, monitoring the resistance situation in

major human and veterinary pathogens such as enterobacteria,

non-fermenters or Staphylococcus aureus is in the focus of
surveillance programs. Far less attention however is paid to
commensal, low pathogenic and environmental microorganisms,
which may carry AMR genes as well. In this context, commensal
and environmental bacteria are considered to play a role as
putative AMR gene reservoirs that may fuel the resistance
gene pool of more pathogenic bacteria through horizontal gene
transfer (HGT) (2–4). Also, under certain conditions, these
bacteria may be selected and emerge as opportunistic pathogens
in their own right. A prime example for the dual role of
commensals are coagulase-negative staphylococci (CoNS), which
form a significant part of the skin and mucosa microbiota of
warm blooded hosts, but also represent classical opportunistic
pathogens that have been established as common causes of
numerous healthcare-associated infections (5–7). Nosocomial
CoNS are particularly notorious for readily acquiring numerous
resistance traits, resulting in (multidrug-)resistance toward many
commonly used antimicrobials. In addition, some species (e.g.,
Staphylococcus epidermidis) are capable of forming biofilms on
indwelling medical devices, making CoNS infections sometimes
extremely difficult to treat (8). While the detection and spread
of multidrug-resistant (MDR) CoNS in hospital settings is
well-documented (5, 9), we currently have less information
on the resistance situation in CoNS outside of medical
facilities. Previously, we performed a study on AMR in CoNS
recovered from dust and manure samples in pig farms with
a previous history of livestock-associated (LA) methicillin-
resistant S. aureus (MRSA) detection (10). Unexpectedly, we
found high AMR rates in CoNS from environmental samples,
including resistance traits against last resort antibiotics such
as oxazolidinones and lipopeptides. The reason(s) for the
high multidrug-resistance rate in this distinct CoNS collection
remained elusive. So, it was speculated that the selective pressure
by antibiotics, commonly used in industrialized pig farming,
might have favored AMR development. Also, contact of these
dust- and manure-derived CoNS with soil microorganisms and
their intrinsic resistance gene pool was hypothesized to have
facilitated AMR acquisition (10). Finally, it is conceivable that,
regardless of the ecological niche they are residing in, CoNS
might be generally prone to increased AMR carriage. In order
to shed more light on the presence and spread of AMR in CoNS,
we currently aim at investigating CoNS from various ecological
origins. In this report, we focus on the AMR profiles of human
commensal CoNS isolates in non-hospitalized volunteers from
the general population in Germany. The isolates were recovered
from nasal swabs obtained in a previous cohort study on nasal
colonization by important human bacterial pathogens (11, 12).
Using standard microbiological methods, we assessed the species
distribution and AMR profiles of 127 human commensal CoNS
isolates. As the cohort study was performed in a geographic
region of Germanywith high livestock and industrialized farming

intensity, we also asked the question whether or not contact with
animals may represent a risk factor for individual AMR-CoNS
carriage. Together, the analysis revealed that AMR is widespread
among human commensal CoNS, many of which detected as
MDR resistant isolates, with animal contact not significantly
influencing individual AMR carriage.

METHODS

Sample Isolation, Isolate Recovery, and
Species Identification
For the analysis, we referred to a previous cohort study in
which 1,878 nasal swabs were obtained from non-hospitalized
volunteers from the German general population (11, 12).
Recruitment was done by asking persons for their agreement to
voluntarily participate in the study; written informed consent was
obtained prior to enrolment and ethical clearance was granted
by the institutional review board of the Westphalian Wilhelms-
University Münster (no. 2006-268-f-S) (11). For CoNS recovery,
65 nasal swabs from persons without animal contact and 52 with
animal contact (five veterinarians, 11 farmers and 36 pet owners)
were randomly selected for the analysis. Samples were recovered
through enrichment in LB broth for 6 h at 37◦C. Dilutions of
the cultures were plated onto Columbia colistin-aztreonam blood
agar (CAP, Oxoid, Germany) and incubated for 24 h at 37◦C to
select for Gram-positive bacteria and to obtain single colonies.
The next day, six randomly selected colonies from each nasal
swab were picked and patched onto chromogenic medium to
differentiate between methicillin-resistant (MR) and methicillin-
susceptible (MS) CoNS (CAMSA/MPK, Medco Diagnostika,
Germany). Species identification of the isolates was done by
16S rDNA locus sequencing after PCR amplification using the
primers listed in Supplementary Table 1. By this approach, a
total of 176 CoNS arising from 69 nasal swabs were obtained for
further analysis.

Antimicrobial Susceptibility Testing
MICs for oxacillin (OXA), gentamicin (GEN), levofloxacin
(LEV), erythromycin (ERY), clindamycin (CLI), linezolid (LNZ),
daptomycin (DAP), teicoplanin (TEC), vancomycin (VAN),
tetracycline (TET), tigecycline (TIG), fosfomycin (FOS), fusidic
acid (FUS), rifampicin (RIF), trimethoprim/sulfamethoxazole
(TMP-SMX) were determined using the VITEK2 system
(bioMérieux Deutschland GmbH, Nürtingen) according to
standard procedures provided by the manufacturer (Vitek Card
AST-P654). MIC results were evaluated through the Advanced
Expert System (AESTM) according to EUCAST guidelines1 and
clinical breakpoints for CoNS. Isolates arising from the same
nasal swab, which were the same species and had the sameVITEK
antibiogram were considered as duplicates and only one isolate
was included into further analyses. Antibiotic susceptibilities
for apramycin (APR), spectinomycin (SPC), florfenicol (FFC),
chloramphenicol (CM) and quinupristin-dalfopristin (QD) were
performed by agar disk diffusion assays using disks with 15, 100,
30, 30, and 15 µg of the respective antimicrobial agent according

1http://www.eucast.org.
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to EUCAST guidelines. As no interpretive criteria applicable to
staphylococci are available for APR, SPC, and FFC, inhibition
zone distributions were determined. Isolates displaying reduced
zone diameters were further tested by molecular analysis for the
presence of the respective resistance genes (see below). Isolates
which harbored a respective resistance gene were considered as
resistant, even in absence of available interpretive criteria for
the antibiotic.

Molecular Analysis of Resistance
CoNS displaying a resistant phenotype based on the VITEK
or disk diffusion analyses were tested by PCR for presence of
the respective resistance genes [oxacillin: mecA, mecB, mecC;
chloramphenicol: cat194, cat221, cat223; florfenicol: fexA and
fexB; spectinomycin: spc, spd and spw; apramycin: apmA;
fusidic acid: fusB, fusD, fusC; gentamicin; aac(6’)/aph(2”) and
aadD; erythromycin: ermA, ermB and ermC; tetracycline:
tetK/L and tetM], using the primers and conditions listed
in Supplementary Table 1. Thus, isolates were cultured on
CAP sheep blood agar and DNA was extracted using the
NucleoSpin Tissue Kit (Macherey-Nagel, #740952) according
to the manufacturer’s protocol with the addition of 15 µl of
lysostaphin (2 mg/ml) to the lysis buffer. Primers used for 16S
rDNA amplification were included in each PCR reaction as a
control for gDNA template integrity.

Statistical Analysis
Whenever appropriate, contingency analyses were performed
using Fisher’s exact test by employing the GraphPad Prism
software package. Differences with p < 0.01 were considered
statistically significant.

RESULTS

CoNS Recovery and Species
Determination
For CoNS recovery, 65 nasal swabs from persons without animal
contact and 52 with animal contact (five veterinarians, 11 farmers
and 36 pet owners) were randomly selected for the analysis.
176 CoNS (arising from 69 nasal swabs) were initially picked
from selective media as described in Methods. Next, species and
antibiograms of the 176 CoNS isolates were assessed. Isolates
arising from the same nasal swab and displaying identical species
and resistance profiles were considered as duplicates, with only
one isolate being subjected to further analysis. This led to a final
pool of 127 CoNS isolates obtained from 69 nasal swabs. In 34
swabs growth of only one CoNS isolate was detectable, while
35 samples exhibited simultaneous growth of more than one
CoNS isolate (18 swabs displayed two CoNS isolates, 12 swabs
showed three CoNS isolates, four swabs had four CoNS isolates
and in one swab we found five different CoNS isolates). Species
determination by 16S rDNA locus sequencing identified 75% of
the isolates as S. epidermidis (95/127). The remaining 32 isolates
represented five additional species (Figure 1). S. epidermidis was
detected in the majority of swabs (61/69; 88%). In the 35 nasal
swabs in which more than one CoNS isolate was recovered, at
least one S. epidermidis isolate was present in the majority of

FIGURE 1 | Species distribution among the CoNS isolates as identified by

16S rDNA locus sequence analysis.

samples (32/35; 91%), while the species was absent in only three
swabs (3/35; 9%).

Antibiotic Susceptibility and Resistance
Genes Detection
The resistance phenotypes and AMR genes detected among the
127 CoNS isolates are summarized in Figure 2 and Table 1.
Methicillin (oxacillin) resistance occurred in 7% (9/127) of the
isolates (seven S. epidermidis and two S. hominis), with all
isolates carrying the methicillin resistance conferring mecA gene
(Table 1). None of the MR-CoNS harbored mecB or mecC.
The most abundant resistance phenotypes in the collection
were found toward tetracycline (39%; 49/127), fosfomycin
(35%; 45/127), erythromycin (33%; 42/127) and fusidic acid
(17%; 22/127) (Figure 2A). Gentamicin resistance occurred in
five isolates (4%) all harboring the aminoglycoside resistance-
mediating aac-aph gene. Except for one isolate, tetracycline
resistance was conferred either by tetK/L (44/49) or tetM (4/49)
(Table 1). With respect to erythromycin, all 42 resistant isolates
harbored at least one of the macrolide resistance genes tested.
The most abundant gene was ermA (24/42), followed by ermC
(17/42) and ermB (11/42) (Table 1). Interestingly, eight isolates
carried more than one of the macrolide resistance genes. Among
the 22 fusidic acid resistant isolates, 19 tested positive for fusB and
three for fusC (Table 1). For the antibiotics listed in Figure 2B,
agar disk diffusion tests were performed. Based on zone
diameter breakpoint definitions for quinupristin-dalfopristin
(i.e., R <18mm), all isolates were found to be susceptible to
the streptogramin combination (Figure 2B). For spectinomycin,
florfenicol, and apramycin no clinical interpretive criteria are
currently defined for CoNS. Therefore, inhibition zone diameter
distributions were determined and isolates displaying reduced
inhibition zones were tested for resistance gene presence
(Figures 2C–E). For spectinomycin, one isolate displayed no
inhibition zone and carried the spectinomycin resistance-
mediating spc gene (Table 1). Of the two isolates with reduced
zone diameters toward florfenicol (<20mm) one was found to
harbor fexB (Table 1). Four isolates with reduced zone diameters
(<19mm) toward apramycin, were analyzed for the presence of
apmA, but all lacked the resistance gene (Figure 2E). Finally,
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FIGURE 2 | CoNS resistance profiles assessed by VITEK2 (A) or by agar disk diffusion (B). Inhibition zone diameter distributions for spectinomycin (C), florfenicol (D)

and apramycin (E) with 100, 30, and 15 µg of the respective antimicrobial agent, respectively, according to EUCAST guidelines.

seven isolates displaying reduced chloramphenicol inhibition
zone diameters (≤18mm) were tested for the cat genes,
revealing the detection of cat194 in all isolates (Table 1). Between
individuals with and without animal contact, no statistically
significant differences were recorded regarding AMR-CoNS
carriage, although a slightly increased tendency for the detection
of fosfomycin resistant isolates was observed in persons with
reported animal contacts (Figure 3A).

CoNS Multidrug-Resistance
Multidrug-resistance (defined as insusceptibility toward at least
three antimicrobial classes) is a known hallmark and major
issue particularly in nosocomial and infection-associated CoNS
(5, 9). Analysis of our community-obtained commensal CoNS
collection revealed that 20% (26/127) of the isolates were fully

susceptible to all antimicrobials tested, while 57% (72/127)
exhibited resistance toward one (43/127) or two (29/127) of
the antibiotics tested (Figure 3B). Multidrug-resistance was
recorded in 23% (29/127) of all isolates, fromwhich 15% (19/127)
displayed resistance against three and 6% (8/127) against four
antibiotics. Two isolates were simultaneously resistant to six
and seven of the antibiotics, respectively (Figure 3B). As shown
in Figure 3C, previous animal contact of the volunteers did
not significantly influence individual multidrug-resistant CoNS
carriage (Figure 3C).

Individual Colonization by Resistant CoNS
Among the 69 CoNS-carrying individuals (40 with no and 29
with animal contact), seven (10%) were colonized by at least
one mecA-positive MR-CoNS. The carriage rates were 5/40 and
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TABLE 1 | Antimicrobial resistance gene detection among phenotypically resistant CoNS isolates.

AMR resistance

phenotype

Number (% of resistant isolates) Species as for 16S (number of resistant isolates) AMR PCR gene detection in resistant

isolates

Oxacillin (*) 9/127 (7%) S. epidermidis (7)

S. hominis (2)

mecA (9/9)

mecB (0/9)

mecC (0/9)

Tetracycline (*) 49/127 (39%) S. epidermidis (37)

S. hominis (7)

S. haemolyticus (1)

S. warneri/S. pasteuri (4)

tetKL (44/49)

tetM (4/49) (4 S. epidermidis)

Erythromycin (*) 42/127 (33%) S. epidermidis (34)

S. hominis (6)

S. haemolyticus (1)

S. warneri/S. pasteuri (1)

ermA (24/42) (19 S. epidermidis, 5 S. hominis)

ermC (17/42) (14 S. epidermidis, 2 S. hominis,

1 S. warneri/S. pasteuri)

ermB (11/42) (8 S. epidermidis, 2 S. hominis,

1 S. haemolyticus)

Fusidic acid (*) 30/127 (24%) S. epidermidis (18)

S. hominis (8)

S. warneri/S. pasteuri (4)

fusB (20/30)

fusC (3/30) (3 S. hominis)

Gentamicin (*) 5/127 (4%) S. epidermidis (3)

S. hominis (1)

S. haemolyticus (1)

aac(6’)/aph(2”) (5/5)

aadD (0/5)

Chloramphenicol (**) 7/127 (6%) S. epidermidis (5)

S. hominis (1)

S. schleiferi (1)

cat194 (7/7)

cat221 (0/7)

cat223 (0/7)

Florfenicol (**) 1/127 (<1%) S. epidermidis (1) fexB (1/1)

fexA (0/1)

Spectinomycin (**) 1/127 (<1%) S. hominis (1) spc (1/1)

spd (0/1)

spw (0/1)

The resistance phenotype was assessed by VITEK (*) or by agar disk diffusion assay (**). For spectinomycin and florfenicol, strains were considered resistant in the presence of

the respective AMR genes (see text for details). Species identification was performed by 16S rDNA loci sequencing; AMR genes were detected by PCR using the primers listed in

Supplementary Table 1.

2/29 for individuals with no or with animal contact, respectively
(Fisher’s Exact Test, p = 0.69, ns). Carriage of fully susceptible
and of strains resistant to 1–2 antibiotic classes occurred in 12
(17%) and 34 (49%) of the 69 persons, respectively, from which 4
(6%) and 16 (23%) had previous animal contact (Fisher’s Exact
Test, p = 0.51, ns). Colonization by MDR-CoNS was overall
detected in 23 individuals (33%). Among these, there were 9/29
individuals with animal contact vs. 14/40 without animal contact
(Fisher Exact Test, p= 0.80, ns). The combined data suggest that
MR- and MDR-CoNS are widely disseminated in the community
with animal contact not significantly influencing the risk of
becoming colonized by such isolates.

DISCUSSION

AMR in bacterial pathogens continues to represent a major
challenge for infection control. In order to tackle the problem
holistically, the One Health concept, which takes humans,
domestic and wild animals and the environment equally into
account, is currently being pursued. Across these sectors, the
approach also includes commensal and environmental bacteria
to assess the risk factors for AMR development in pathogens
(13). CoNS are typical skin and mucosa commensals which
share the same ecological niche in the human anterior nares
with S. aureus and many other bacteria (5, 7, 11), providing

CoNS ample opportunity for horizontal gene transfer and the

exchange of resistance genes (14). Indeed, CoNS have been

identified as reservoirs and source of resistance traits that are
transferred across the Staphylococcaceae family (15), including
resistance genes against last resort antibiotics such as linezolid or
daptomycin (10, 16). Across the geographic regions and infection
sites, high resistance rates are common and typical among CoNS
from health care settings (9, 17–20). In this report, we show
that methicillin- and multidrug- resistant CoNS are also present
in the community in healthy non-hospitalized volunteers. In
staphylococci, methicillin/oxacillin resistance is of particular
interest. It is mainly mediated by mecA (encoding an alternative
penicillin-binding protein) located on transferrable SCCmec
genomic elements whose genetic origins have been associated
with Staphylococcus sciuri (now Mammaliicoccus sciuri) (21–
24) and macrococcal species (25). SCCmec elements readily
integrate other mobile genetic elements, and in addition to beta-
lactam insusceptibility, they may therefore confer resistance to
unrelated antibiotic classes too (15), making mecA-carriage a
marker for multidrug- resistant isolates as well. Moreover, co-
selection processes may favor the manifestation of multidrug
resistance. In our study,mecA detection among the CoNS isolates
was low (i.e., 7%) and only seven of the 69 individuals tested
(10%) were colonized by at least oneMR-CoNS isolate. These low
mecA detection rates are in good agreement with previous reports
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FIGURE 3 | (A) Comparison of the number of resistant isolates arising from nasal swabs of individuals with animal contact (white bars) or without animal contact (gray

bars). (B) Analysis of multidrug-resistant isolates. The number of resistant isolates is plotted against the simultaneous resistance toward 0–7 antibiotic classes. (C)

Comparison of the number of multidrug-resistant isolates arising from nasal swabs of individuals with animal contact (white bars) or without animal contact (gray bars).

Contingency analysis in (A,B) was performed using Fisher’s Exact Test by employing the GraphPad Prism software package.

on community-acquired commensal CoNS in Europe (26–28);
but numbers may vary considerably in studies conducted in
other geographic regions, with MR-CoNS rates ranging between
16 and 50% (29–33). We also noticed relatively high resistance
rates toward tetracycline (39% 49/127) and erythromycin (33%;
42/127) in the sample (Figure 2). Macrolides are among the
antibiotics most frequently prescribed on an outpatient basis and
tetracyclines are commonly used in veterinary medicine. It is
therefore well conceivable that the frequent detection of these
resistances might be associated with a high selective pressure
imposed by these antibiotics. However, as we lack concrete data
on antibiotic consumption, this is currently mere speculation.
We further found that the majority of isolates (i.e., 77%) are
either completely susceptible to the tested antibiotics (20%,
26/127) or show resistance to a maximum of two antibiotic
classes (57%, 72/127) (Figure 3B). Of note, however, in about

a quarter of the strains (i.e., 23%), we detected multidrug-
resistance toward three or more antibiotics, with two isolates
even displaying simultaneous resistance against six and seven
antibiotics, respectively (Figure 3B). Fortunately, we did not
find any resistance to newer antibiotics such as linezolid or
daptomycin in our sample, as described earlier in CoNS from
animal and human sources (10, 16). Our results are supported
by other studies reporting co- and multidrug-resistance not
only in CoNS from humans but also among isolates from
animals and the environment (34–41). We interpret these
findings as an alarming signal for the continued introduction
of (multidrug) resistant CoNS isolates into habitats outside of
hospitals. Since the selective pressure by antibiotics is the main
driving force behind the emergence and maintenance of resistant
bacteria, it is tempting to speculate that the ubiquitous use
of antimicrobial agents in human and veterinary medicine as
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well as in agriculture is the key factor behind this worrying
development. In addition to their accepted role as resistance
gene reservoirs for the more pathogenic S. aureus (15, 42, 43),
MDR-CoNS selected in the community may pose a risk as
opportunistic pathogens in immunocompromised patients when
such strains are transferred into hospitals, highlighting the need
for effective AMR surveillance also outside of the medical sector.
In this respect, both farm and wild animals as well as pets
are increasingly recognized as so far neglected source of MDR
bacteria, including CoNS (40, 41, 44–50). Another question that
we therefore wanted to answer with the study addressed the
possible influence of animal contact on colonization rates with
MDR-CoNS isolates. Interestingly, the data suggest that animal
contact (both to farm and companion animals) did not increase
the risk of becoming colonized by such isolates. However, our
study was carried out in a region in northwest Germany with high
livestock density and a previously proven LA-MRSA prevalence
(11). It is well conceivable that the general population in this area
is already increasingly exposed to resistant CoNS from animal
husbandry, which would make it more difficult to reveal putative
animal contact effects. A comparison of the CoNS resistance
situation in a comparable region without extensive livestock
husbandry would be helpful in order to finally answer this
question. Together, the study shows that CoNS, including MDR

strains, are present in the community, irrespective of a history of

animal contact.
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