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In the epidemiological literature, the impact of environmental pollution on cardiacmortality

has been well documented. There is, however, a paucity of evidence on the impact

of air pollution exposure on ischemic heart disease (IHD) mortality among the Asian

aged population. In response, this research seeks to investigate the degree of proximity

between exposure to ambient PM2.5, household PM2.5, ground-level ozone (O3), and IHD

mortality in the top seven Asian economies with the highest aging rates. This investigation

is held in two phases. In the first phase, grey modeling is employed to assess the degree

of proximity among the selected variables, and then rank them based on their estimated

grey weights. In addition, a grey-based Technique for Order of Preference by Similarity to

Ideal Solution (G-TOPSIS) is adopted to identify the key influencing factor that intensifies

IHD mortality across the selected Asian economies. According to the estimated results,

South Korea was the most afflicted nation in terms of IHD mortality owing to ambient

PM2.5 and ground-level O3 exposure, whereas among the studied nations India was the

biggest contributor to raising IHD mortality due to household PM2.5 exposure. Further,

the outcomes of G-TOPSIS highlighted that exposure to household PM2.5 is a key

influencing risk factor for increased IHD mortality in these regions, outweighing all other

air pollutants. In conclusion, this grey assessment may enable policymakers to target

more vulnerable individuals based on scientific facts and promote regional environmental

justice. Stronger emission regulations will also be required to mitigate the adverse health

outcomes associated with air pollution exposure, particularly in regions with a higher

elderly population.

Keywords: air pollutants, PM2.5, ground-level ozone, ischemic heart disease, grey modeling, G-TOPSIS, elderly,

Asia

INTRODUCTION

Environmental pollution is evolving as one of the most critical environmental challenges of the
21st century, and its consequences are becoming more visible with time. During the last several
decades, it has had a significant impact on human health and longevity, and it is now considered
among the most major environmental threats to public health (1). More than 5.5 million people
expire prematurely each year as a consequence of diseases induced by inhaling contaminated air. It
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kills nearly six times as many people as malaria and nearly four
times as many as HIV (2). Roughly one of every 10 fatalities
globally is linked to hazardous air pollutants and mitigating the
impact of pollution could save about 13 million lives each year
(3). Air pollution is presently attributable to one-third of all
fatalities from heart diseases, lung cancer, and chronic respiratory
diseases (CRDs). Additionally, theWHO reports that almost 90%
of the population in low- and middle-income countries (LMICs)
do not have access to clean air (2). The problem appears to be
even worse in developing nations, which are home to some of the
world’s fastest growing metropolitan areas (4, 5).

Asia inhibited 60% of the global population, including
several emerging economies. Deaths from ischemic heart diseases
(IHDs) are more in Asia than in Western Europe, the USA,
and Australia (6). As a result of the rising number of aging
populations, Asia is the region particularly affected by the
increasing incidence and mortality from cardiovascular diseases
(CVDs) (7, 8). It has been confirmed that particulate matter
and all air pollutants are causing the risk of increased hospital
admissions for IHDs among the elderly. Exposure to ambient
air pollutants is considered to be riskier for older people and is
more likely to exacerbate cardiac events in older adults than in
the young population (9, 10). As a result of rapid industrialization
and urbanization, Asian economies have seen an increase in their
elderly populations, as well as changes in lifestyle and diet habits
(11–14). Consequently, cardiac risk factors are growing among
Asian people, making them more susceptible to CVDs. There are
ways to minimize the prevalence of this disease by recognizing
and improving risk factors in aging societies.

Several epidemiological pieces of research have confirmed a
substantial link between acute and chronic effects of air pollutants
and CVDs (15–18). In this respect, the WHO and several other
public and private organizations have established health-based
air quality guidelines for particulate matter and surface O3

due to mounting evidence that these pollutants can cause a
variety of adverse health outcomes. Technical assessments of the
advantages of air quality initiatives or public policies governing
pollutant concentrations have become an increasingly essential
element of national decision-making strategies. Particulate
is a combination of solid and liquid nanoparticles and its
chemistry and size can fluctuate; its concentration is a worry
in metropolitan areas. Particulate matter is emitted by mobile
sources such as vehicles, motorcycles, mini-buses, and trucks, as
well as stationary sources such as gas furnaces, power stations,
and industries (19, 20). Ground-level ozone (O3) is one of
the most dangerous toxic constituents of photochemical air
pollution, and it has been linked to an increase in cardiac and
respiratory mortality (21, 22). Despite the fact that air pollution
is a primarily urban concern, various worldwide studies have
shown evidence that reducing air pollution exposure corresponds
to less negative health outcomes (23, 24). This conclusion has
compelled policymakers to address the issue of air pollution at
a time when the significance of sustainable development and its
environmental impact on public health is becoming more widely
recognized across the globe.

In view of the importance, a plethora of research and analytic
approaches are being used throughout the world to evaluate

the association between disease mortality and air pollution
exposure. However, there is a scarcity of evidence connecting
to air pollution exposure and the risk of IHD mortality in the
older population in Asian countries with higher aging rates.
The scant evidence has made determining the real situation
in these areas extremely challenging. With this in mind, the
present research attempts to fill literature gaps by investigating
the relationship between exposure to ambient PM2.5, ground-
level O3 exposure, household PM2.5 exposure, and IHDmortality
in the elderly population of the top seven Asian nations (Japan,
South Korea, Thailand, China, Sri Lanka, India, and Nepal)
with the highest aging rate. However, by considering all of
these regions together with a wide variety of air pollutants
associated with IHD mortality, we may be able to present a more
comprehensive spectrum of the relationships. To investigate this
connection, we utilized an advancedmathematical grey relational
analysis (GRA) modeling of grey system theory (GST), which
included Deng degree of GRA, absolute degree of GRA, and the
second synthetic degree of GRA. The GRAmodels provide many
advantages when contrasted with standard statistical models.
For instance, they exhibit a greater precision and may yield
reliable outcomes even with small sample size. In addition,
this study also employed a grey-based Technique for Order of
Preference by Similarity to Ideal Solution (G-TOPSIS) to identify
the key influencing factor that intensifies cardiac mortality across
the selected Asian nations. The proposed methodologies are
more appropriate when contrasted with other techniques for
convincing outcomes and assisting with avoiding endogeneity
issues. The suggested model provides a significant tool and a
source of additional pragmatic insights for policymakers and
decision makers in drawing rational decisions to reduce air
pollution and mortality in these regions.

MATERIALS AND METHODS

Data Source
For the present analysis, the annual time series data for the
period of 2010–2019 are utilized. Information on IHD mortality
(reference sequence) against each selected Asian country was
extracted from the Global Burden of Disease study, harmonized
by the Institute for Health Metrics and Evaluation (IHME),
and is publicly accessible online (25). In addition, data on
the population-weighted exposure (comparative sequence)
to ambient PM2.5 concentrations (µg/m3), ground-level
(tropospheric) O3 concentrations (ppb) exposure, and household
PM2.5 concentrations exposure (µg/m3) were taken from the
State of Global Air report (2010–2019) (26). These parameters
are estimated as the national population’s average exposure
levels (urban and rural regions) to mean annual concentrations
of PM2.5 and O3, separately. To evaluate PM2.5 exposures, the
GBD scientist combines the number of people living in a specific
region and PM2.5 concentrations to which they are exposed. O3

exposures were evaluated by combining the number of people
living in a specific region and the surface O3 concentration
to which they are exposed. This method determines human
exposure to air pollutants in terms of the population-weighted
average seasonal 8-h daily maximum concentrations for a
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specific region. All data analyses are executed in SPSS (v26,
IBM, NY, USA), while the graphical representation and study
framework are handled in Microsoft Excel (2019) and Microsoft
Visio (2019), respectively.

Grey Relational Decision Analyses
Grey relational analysis methods are one of the core area subjects
of GST, which was introduced by Deng Julong, a Chinese scholar,
in 1982 (27) to manage dubious systems with limited input.
GST belongs to the category of uncertainty theories, which also
incorporates rough set theory, fuzzy theory, interval theory,
and other related theories. Additionally, GST, as led by its
methodology, addresses the vulnerability in a manner distinct
from previous vulnerability speculations. GST categorizes the
world’s systems into three different groups, which are white,
black, and grey. If there is no information provided, it refers
to black data. Whereas, if complete information is accessible,
it is described as white data or structure. Thusly, a GS turns
into a framework that is partially known and rather cryptic
(28–30). GST and its related models are well known for their
potential to predict and make choices based on smaller sample
sizes and poor and inadequate data. The GRA models attempt
to grasp unclear correlations between GST features. The general
concept behind GRA is the degree of proximity (correlation) of
the geometrical framework of the data series suggests that the
structure parameters may be used to predict the proximity of a
link among the system variables. This proximity is referred to as
a correlation in the literature. Deng’s GRA (D-GRA), absolute
GRA (A-GRA), and second synthetic GRA (SS-GRA) are the
three components of the GRA model. In essence, the D-GRA
model assesses the effect of one variable reflected by a data set on
the other, whereas the A-GRA model evaluates the relationship
between the two. Moreover, the SS-GRA model estimates an
overall measure of the relationship among the parameters under
consideration. A comprehensive review of GRA models can be
found in the work of Liu et al. (31). The algorithms involved with
the grey methods are explained in the following sections.

Deng’s GRAModel
Let Yi =

(

yi(1), yi(2), · · · , yi(m)

)

be the basic/reference
sequence addressing a dependent variable and Yj =
(

yj(1), yj(2), · · · , yj(m)

)

be the arrangement of comparative
sequences addressing independent variables, in the wake of
going through initialing an operator, then, at that point grey
relational gradient (GRG), the real number degree addressing
the output of GRA model is depicted as γij or γ

(

Yi , Yj

)

and can
be accompanied by:

γ
(

Yi , Yj

)

=
1

m

m
∑

h=1

γ

(

yi(h), yj(h)

)

where

γ

(

yi(h), yj(h)

)

=
minkminh

∣

∣

∣
yi(h) − yj(h)

∣

∣

∣
+ ζ maxkmaxh

∣

∣

∣
yi(h) − yj(h)

∣

∣

∣

∣

∣

∣
yi(h) − yj(h)

∣

∣

∣
+ ζ maxkmaxh

∣

∣

∣
yi(h) − yj(h)

∣

∣

∣

.

Here, ζ ǫ (0, 1) represents a distinguishing coefficient, and its
value is generally considered to be ζ = 0.5. The implementation
of the D-GRA model for evaluating the effect of one
parameter/variable on another has been highlighted in the
literature (32–34).

A-GRAModel
If Yi =

(

yi(1), yi(2), · · · , yi(m)

)

and Yj =
(

yj(1), yj(2), · · · , yj(m)

)

are the two data sequences representing two variables associated
with a system, then the algorithm to calculate the bidirectional
absolute grey relational gradient (A-GRG) is listed as follows:

ǫij =
1+ |ri| +

∣

∣rj
∣

∣

1+ |ri| +
∣

∣rj
∣

∣ +
∣

∣ri − rj
∣

∣

,

where

ri =

m
∫

1

Y0
i dt, rj =

m
∫

1

Y0
j dt, ri − rj

=

m
∫

1

(

Y0
i − Y0

j

)

dt

Y0
i =

(

y0i(1), y
0
i(1) , · · · , y

0
i(m)

)

Y0
j =

(

y0j(1), y
0
j(1) , · · · , y

0
j(m)

)

Y0
i(h) = yi(h) − yi(1) and Y0

i(h)
= yi(h) − yi(1)

h = 1, 2, · · · ,m.

SS-GRAModel
The SS-GRA model is an approach to estimate second synthetic
grey relational gradient (SS-GRG) and can be acquired by
utilizing the accompanying equation.

℘ = ϑǫij + (1− ϑ) γij ϑǫ [0, 1]

where ℘ stands for the SS-GRA, ′′ǫ′′ for the A-GRA, and ′′γ ′′

for the D-GRA between the two grey data sets Yi and Yj. When a
decisionmaker desires a holistic assessment that evenly integrates
the benefits of both ′′ǫ′′and ′′γ ′′ without preferring one over the
other and may keep ϑ at 0.5 (35). In the case of preferring is
fundamental, then, at that point, the value of ′′ϑ ′′ can be adjusted.
In the event that one desires to prefer ′′γ ′′, then ′′ϑ ′′ can be
diminished, and assuming one desires to prefer ′′ǫ,′′ then ′′ϑ ′′ can
be increased. In the present investigation, we thought of ϑ = 0.5.

Grey Numbers
A grey number represents an interim with unspecified
information but a well-defined range of possibilities, which
is depicted by a sign ⊗. In the GST, there are multiple forms
of grey numbers; however, the present study introduces the
following three forms:

Description 1: If ⊗E represents a grey number whose lower
limit can only be evaluated, it is termed as a grey number with a
lower limit only and is expressed as⊗E = [E,∞).

Description 2: If ⊗E is a grey number whose upper limit can
only be evaluated, it is termed as a grey number with an upper
limit only and is expressed as⊗E = (∞, Ē].
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Description 3: If ⊗E represents a grey number whose lower
and upper limits can only be evaluated, it is termed as an interval
grey number, which is expressed as⊗E = (E, Ē].

Let⊗ E =
[

E, Ē
]

and⊗H =
[

H, H̄
]

are the two grey numbers,
then arithmetic operations ought to be composed in a manner
as follows:

⊗E+⊗H =
[

E+H,E− H̄
]

⊗E−⊗H = ⊗E+ (−⊗H) =
[

E− H̄, Ē− H̄
]

⊗E×⊗H =
[

Min
{

EHĒH̄ĒHEH̄
}

Max
{

EHĒH̄ĒHEH̄
}]

⊗E

⊗H
= ⊗E×⊗H−1 =

[

Min

{

E

H

E

H̄

Ē

H

Ē

H̄

}]

Max

{

E

H

E

H̄

Ē

H

Ē

H̄

}

The length of the grey number ⊗E =
[

E, Ē
]

is introduced in the
following equation:

R (⊗E) = Ē− E

If there are two grey numbers⊗E =
[

E, Ē
]

and⊗H =
[

H, H̄
]

, the
degree of grey synthetic assessment between these two numbers
can be estimated by utilizing the following expression:

P {⊗E ≤ ⊗H} =
Max

{

0,R∗ −Max
(

0, Ē,H
)}

R∗
,

where R∗ = R (⊗E) + R (⊗H) .

G-TOPSIS Method
Huang and Yun proposed the TOPSIS idea in 1981, in which “n”
alternatives are evaluated using an “m” number of criteria. The
main goal of the TOPSIS method is to find +ve and -ve ideal
solutions (variants) to a situation that have the greatest relative
proximity to the pattern (+ve) and the least relative proximity to
the anti-pattern (-ve). The+ve ideal solution portrays an increase
in the response variable, while the -ve ideal solution portrays
a decline in the response variable. Because data are not always
precise in reality, the grey theory (GT) is employed to account
for ambiguities. As new techniques emerge, the TOPSIS method
continues to evolve. We employed this approach in conjunction
with grey numbers from the GST in the current investigation.
This technique is solved using the steps listed as follows (36–38).

Stage 1: Initially, grey numbers with the accompanying values
are assigned to verbal judgments of criteria significance by the
decision-makers: highly insignificant [0.0, 0.2], insignificant [0.2,
0.4], moderately significant [0.4, 0.6], significant [0.6, 0.8], and
highly significant [0.8, 1.0] (39).

Stage 2: We use the arithmetic mean technique to aggregate
the results after determining the level of significance of the
decision-making criteria (h) by assuming the number of decision
makers as p:

⊗wh =
1

p

[

⊗w1
h +⊗w2

h + · · · + ⊗w
p

h

]

,

where :⊗w
p

h
=

[

wip , w̄
p

h

]

.

Stage 3: To establish the state of each of the criteria, the linguistic
variables ought to be employed. The score of alternative k in the
criteria h is determined by the accompanying relation, presuming
that the frequency of decision makers is p:

⊗Rkh =
1

p

[

⊗R1kh +⊗R2kh + · · · + ⊗R
p

kh

]

where ⊗R
p

kh
,
(

k = 1, 2, · · · , n; h = 1, 2, · · · ,m
)

is an estimation
of the criterion by the pth decision maker, which is displayed in a

structure by a grey number:⊗R
p

kh
=

[

R
p

kh
, R̄

p

kh

]

.

Stage 4: In the fourth stage, constructing the grey decision
matrix in the following structure:

⊗R =











⊗R11 ⊗R11 · · · ⊗R1m
⊗R21 ⊗R11 · · · ⊗R2m
...

...
. . .

...
⊗Rn1 ⊗Rn2 · · · ⊗Rnm











.

Stage 5: Established the normalized grey decisionmatrix in the
accompanying structure:

⊗R∗ =











⊗R∗11 ⊗R∗12 · · · ⊗R∗1m
⊗R∗21 ⊗R∗22 · · · ⊗R∗2m
...

...
. . .

...
⊗R∗n1 ⊗R∗n2 · · · ⊗R∗nm











.

If the variable attribute is beneficial, the normalization equation
is as follows:

⊗R∗kh =

[

Rkh
Rmax
h

,
R̄kh

Rmax
h

]

, and Rmax
h = max

1≤k≤m

{

R̄kh
}

.

And, on the off chance that the variable attribute
is non-beneficial, the data are normalized using the
accompanying equation.

⊗R∗kh =

[

Rkh
Rmin
h

,
R̄kh

Rmin
h

]

, and Rmin
h = min

1≤k≤m

{

R̄kh
}

The grey matrix’s range will remain within [0, 1]
after normalization.

Stage 6: Assemble the weighted normalized grey decision-
making matrix in the accompanying structure:

⊗R∗ω =











⊗C11 ⊗C12 · · · ⊗C1m

⊗C21 ⊗C22 · · · ⊗C2m
...

...
. . .

...
⊗Cn1 ⊗Cn2 · · · ⊗Cnm











, whereCkh = ⊗ R∗kh ×⊗ωh.

Stage 7: Determine the ideal solution based on the
assumption that given the set of “n” prospective alternatives
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TABLE 1 | Grey assessment between ischemic heart disease (IHD) mortality and

exposure to household PM2.5.

Indicators Deng GRA Absolute GRA SS-GRA

Japan 0.7515 0.7601 0.7558

South Korea 0.7894 0.8104 0.7999

Thailand 0.6764 0.6788 0.6776

China 0.8004 0.8224 0.8114

Sri Lanka 0.8428 0.8444 0.8436

India 0.8817 0.9001 0.8909

Nepal 0.6999 0.7013 0.7006

Ranking

sequence

India > Sri Lanka > China > South Korea > Japan > Nepal >

Thailand

TABLE 2 | Grey assessment between IHD mortality and exposure to ambient

PM2.5.

Indicators Deng GRA Absolute GRA SS-GRA

Japan 0.8336 0.8340 0.8338

South Korea 0.8899 0.9119 0.9009

Thailand 0.5999 0.6019 0.6009

China 0.8501 0.8709 0.8605

Sri Lanka 0.6798 0.7014 0.6906

India 0.7969 0.8005 0.7987

Nepal 0.7296 0.7532 0.7414

Ranking

sequence

South Korea > China > Japan > India > Nepal > Sri Lanka >

Thailand

V = {V1, V2, V3, · · · , Vn} , that pattern Vmax should be
identified as follows:

⊗Vmax =
{

⊗Cmax
1 ,⊗Cmax

2 , · · · ,⊗Cmax
m

}

where,Vmax =

{

[

max
1≤k≤n

C
−
k1
, max
1≤k≤n

C̄k1

]

,

[

max
1≤k≤n

C
−
k2
, max
1≤k≤n

C̄k2

]

, · · · ,

[

max
1≤k≤n

C
−
kn
, max
1≤k≤n

C̄kn

]

}

.

Stage 8: Determine the anti-ideal solution based on the
assumption that given the set of “n” prospective alternatives
V = {V1, V2, V3, · · · , Vn}, the anti-pattern Vmin should be
identified as follows:

⊗Vmin =
{

⊗Cmin
1 ,⊗Cmin

2 , · · · ,⊗Cmin
m

}

where Vmin =

{

[

min
1≤k≤n

C
−
k1
, min
1≤k≤n

C̄k1

]

,

[

min
1≤k≤n

C
−
k2
, min
1≤k≤n

C̄k2

]

, · · · ,

[

min
1≤k≤n

C
−
kn
, min
1≤k≤n

C̄kn

]

}

.

TABLE 3 | Grey assessment between IHD mortality and exposure to ground-level

ozone (O3).

Indicators Deng GRA Absolute GRA SS-GRA

Japan 0.8350 0.8522 0.8436

South Korea 0.8731 0.8875 0.8803

Thailand 0.7387 0.7505 0.7446

China 0.8022 0.8206 0.8114

Sri Lanka 0.6425 0.6777 0.6601

India 0.7028 0.7214 0.7121

Nepal 0.5898 0.6112 0.6005

Ranking

sequence

South Korea > Japan > China > Thailand > India > Sri Lanka >

Nepal

TABLE 4 | Definition of the decision parameters.

Criteria (Countries) Notations Alternatives (risk

factors)

Notations

Japan P1 Exposure to

ambient PM2.5

RF-1

South Korea P2 Exposure to

ground-level

ozone (O3)

RF-2

Thailand P3 Exposure to

household PM2.5

RF-3

China P4

Sri Lanka P5

India P6

Nepal P7

Stage 9: Estimate the distances between the alternatives under
consideration, as well as the ideal (Vmax) and anti-ideal (Vmin)
solutions, employing the following formulas:

D+
h
=

m
∑

h=1

D
(

Ckh, C
max
h

)

and D−
h

=

m
∑

h=1

D
(

Ckh, C
min
h

)

for h = 1, 2, · · · , m;

where D (⊗CA,CB) =

√

1
2

[

(CA − CB) +
(

C̄A − CB

)]

.

Stage 10: Create a synthetic assessment metric for variations Dk

based on the relative proximity of variant evaluations to the ideal
and anti-ideal solutions:

Dk =
D−
k

D+
k
+ D−

k

, k = 1, 2, 3, · · · , n.

The closer the value of the measure is to 1, the minimal the
interval of the assessment of the variant away from the ideal
solution (D+

k
), and, simultaneously, the maximum the interval

away from the anti-ideal solution
(

D−
k

)

.
Stage 11: Then, in decreasing order, generate a rating for

“n” alternatives based on linear streaming synthetic assessment
metrics. The alternative with the lowest degree of grey synthetic
evaluation will end up contributing more adversely to the
response variable.
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FIGURE 1 | Grey relational assessment of ischemic heart disease (IHD) mortality and exposure to household PM2.5.

FIGURE 2 | Grey relational assessment of IHD mortality and exposure to ambient PM2.5.

RESULTS

The current study utilized the grey relational methodologies to
assess the degree of proximity between exposure to household
PM2.5, ground-level O3 exposure, exposure to ambient PM2.5,

and IHD mortality for 2010–2019 in the selected regions
(Japan, South Korea, Thailand, China, Sri Lanka, India, and
Nepal) for the elderly populace. Tables 1–3 demonstrate the
findings of grey relational models, namely, the D-GRA, A-
GRA, and the SS-GRA for IHD mortality with associated
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FIGURE 3 | Grey relational assessment of IHD mortality and exposure to ground-level ozone (O3).

FIGURE 4 | The ranking order of selected Asian countries is based on grey relational analysis (GRA).

factors. The A-GRA and the SS-GRA models have a scale
ranging from [0, 1], while D-GRA has a scale ranging
from [0.5, 1]. If the estimated value is close to 1, it is
considered significantly associated and if it diverges from 1,
it is considered to be weak. Table 4 shows the notations

for the decision parameters. Figures 1–3 show a graphical
representation of the GRA assessment between the studied
variables and the air pollutants exposure. In addition, the
ranking sequence based on GRA assessment can be seen in
Figure 4.
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Table 1 summarizes the relationship between IHD mortality
in the elderly and exposure to household PM2.5 in the selected
nations using GRA models. According to D-GRA findings,
the measure of influence is seen to be stronger in the case
of India with an estimated weight of 0.8817 due to exposure
to household PM2.5, followed by Sri Lanka and China. Given
the determined weights for A-GRA, though the same sequence
appeared to be yet the measure of association was shown up
exceptionally high for India (0.9001) when compared with the
rest of the countries. Notwithstanding, Thailand (0.6788) and
Nepal (0.7013) are viewed as the less significant nations under
grey relational assessment of exposure to household PM2.5 on
IHD mortality among the selected regions. Overall, the strength
of the relationship is significantly more grounded for India with
the grey relational weight of 0.8909, suggesting that exposure to
household PM2.5 has a considerable influence on IHD mortality
in its elderly population, followed by Sri Lanka (0.8436) and
China (0.8114).

Moreover, as indicated by D-GRA model findings, a more
grounded measure of influence between exposure to ambient
PM2.5 and IHD mortality in the elderly populace of South Korea
(0.8899) is observed whereas the most fragile level of influence is
seen for Thailand (0.5999). The higher impact measure portrays
that the factors are unequivocally interconnected with one
another if there should arise an occurrence of IHD mortality.
Then again, the same succession showed up from the findings
of the A-GRA model. The degree of correlation is found to
be much higher in the case of South Korea for IHD mortality
against ambient PM2.5 exposure with an estimated weight of
0.9119 when contrasted with the rest of the countries. At a more
aggregate level, as per SS-GRA findings, exposure to ambient
PM2.5 concentration is distinguished as a major contributor in
accelerating IHD mortality in the elderly populace of South
Korea. The greater degree of inclusive proximity between IHD
mortality and the risk factor ambient PM2.5 concentrations
portrays a significant association of those variables with each
other (Table 2). Next to South Korea, the elderly population of
China appeared to be more affected due to exposure to ambient
PM2.5 concentrations with an estimated weight of 0.8605, and
ranked second, trailed by Japan (0.8338) and India (0.7987) with
comparatively less intensity.

Exposure to ground-level (surface) O3 concentration
potentially exacerbates a multitude of health complications,
including cardiovascular illnesses. Ground-level O3

concentrations are expected to rise in many regions of the
world, resulting in an upsurge in O3-related deaths and
morbidities (40). As per D-GRA findings, South Korea (0.8731)
has appeared with the strongest influence between ground-level
O3 exposure and mortality related to IHD, while the weakest
influence is viewed for Nepal (0.5898). South Korea (0.8875)
acquired the highest association led by Japan (0.8522) and China
(0.8206) based on the results of A-GRA (Table 3). Again, the
most fragile measure of correlation was found in Sri Lanka and
Nepal, which demonstrate that these countries have the least
share of disease burden due to ground-level O3 concentrations
within the selected regions. Overall, the estimates from the
SS-GRA model uncovered that among the selected economies,

South Korea (0.8803) gives off an impression of being the culprit
for increased IHD mortality attributable to ground-level O3

exposure in its elderly populace trailed by Japan and China.

G-TOPSIS Analysis
We implemented G-TOPSIS to measure and rank the intensity
of the explanatory variables (exposure to household PM2.5,
exposure to ground-level O3, exposure to ambient PM2.5) on
mortality from stroke and IHD for all the selected countries.
We transformed the decision criteria into grey numbers through
linguistic variables and then built a standardized grey decision
matrix against each of the explanatory factors across all regions
independently. After evaluating the weights for each criterion
(countries), we then built a weighted normalized grey decision
matrix (Table 5). Based on that, we determined the patterns for
the ideal (RFmax) and anti-ideal (RFmin) solutions.

Using the findings in Table 5, we computed distances of the
alternatives (RF-1, RF-2, and RF-3) from ideal and anti-ideal
patterns against each criterion (countries), which are presented
in Table 6.

Based upon the calculated distances (Table 6), we established
grey synthetic assessment measures of the risk factors (RF-1, RF-
2, and RF-3) for mortality from stroke and IHD (Table 7) and
then created a ranking pattern in a descending order, which can
be seen in Table 7.

Based on the outcomes of the G-TOPSIS synthetic assessment,
an interesting ranking sequence appeared for IHD mortality.
Therefore, it is concluded that exposure to household PM2.5

(0.40) gives off an impression of being the worst factor in
escalating mortality associated with IHD trailed by ground-level
O3 exposure (0.52) and ambient PM2.5 exposure (0.57). The use
of multi-criteria decision analysis (MCDA) approaches in the
current study will support public health policymakers in making
decisions on the best strategy to reduce cardiac mortality in the
targeted regions by focusing on the worst factors. The graphical
representation of grey based TOPSIS assessment can be seen in
Figure 5.

DISCUSSION AND CONCLUSIONS

To confront the environmental impact on public health, the
present study takes a step forward in investigating the degree
of proximity between exposure to ambient PM2.5, household
PM2.5, ground-level O3, and IHD mortality among the top seven
Asian countries with the highest rate of the elderly population,
employing the time-series data for the period 2010–2019. This
research has been carried out using three grey relation models D-
GRA, A-GRA, and SS-GRA models, which may be implemented
as a viable alternative to conventional data analysis approaches.
According to GRA findings, South Korea appeared to be one of
themost affected Asian regions due to exposure to ambient PM2.5

and ground-level O3 in terms of IHDmortality. In contrast, India
showed up as the biggest contributor of IHD mortality among
the studied economies owing to household PM2.5 exposure. In
addition, the findings of G-TOPSIS highlighted that, among the
chosen parameters (risk factors), exposure to household PM2.5
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TABLE 5 | Building a grey decision matrix for cardiac mortality.

P1 P2 P3 P4 P5 P6 P7

IHD mortality

Normalized grey decision matrix

RF-1 [0.45,0.83] [0.26,0.90] [0.40,1.00] [0.64,0.96] [0.44,0.88] [0.47,1.00] [0.42,0.92]

RF-2 [0.30,0.75] [0.25,0.75] [0.62,1.00] [0.59,1.00] [0.48,1.00] [0.55,0.88] [0.44,0.82]

RF-3 [0.37,1.00] [0.44,0.85] [0.50,0.88] [0.53,0.78] [0.29,0.65] [0.36,0.77] [0.76,1.00]

Weighted normalized grey decision matrix

RF-1 [0.28,0.66] [0.15,0.65] [0.28,0.88] [0.44,0.79] [0.30,0.77] [0.33,0.88] [0.31,0.74]

RF-2 [0.19,0.60] [0.15,0.54] [0.43,0.88] [0.40,0.82] [0.33,0.88] [0.39,0.77] [0.33,0.66]

RF-3 [0.23,0.80] [0.26,0.61] [0.35,0.77] [0.36,0.64] [0.20,0.57] [0.25,0.68] [0.56,0.80]

Ideal and anti-ideal patterns

RFmax [0.28,0.80] [0.26,0.65] [0.43,0.88] [0.44,0.82] [0.33,0.88] [0.39,0.88] [0.56,0.80]

RFmin [0.19,0.60] [0.15,0.54] [0.28,0.77] [0.36,0.64] [0.20,0.57] [0.25,0.68] [0.31,0.66]

TABLE 6 | Estimated distances of the alternatives (RFh) from the ideal and anti-ideal pattern.

D+

RF-1 0.07 0.06 0.08 0.02 0.07 0.03 0.16

RF-2 0.15 0.11 0.00 0.02 0.00 0.06 0.19

RF-3 0.03 0.02 0.10 0.13 0.22 0.17 0.00

D−

RF-1 0.08 0.06 0.06 0.12 0.15 0.14 0.04

RF-2 0.00 0.00 0.13 0.11 0.22 0.12 0.01

RF-3 0.12 0.09 0.04 0.00 0.00 0.00 0.20

TABLE 7 | Estimated grey degree of synthetic assessment.

Parameters
∑

D+

k

∑

D−

k

∑

D+

k
+

∑

D−

k
D(Ah) =

∑

D−

k
∑

D+

k
+

∑

D−

k

Optimal solution

IHD

RF-1 0.49 0.65 1.14 0.57 Max

RF-2 0.53 0.59 1.12 0.52

RF-3 0.67 0.45 1.12 0.40 Min

Ranking Exposure to ambient PM2.5 > Exposure to ground-level ozone (O3) > Exposure to household PM2.5

concentrations is the most potential risk factor in raising IHD
mortality across the selected Asian economies.

Given the rapid growth in the aging population of South
Korea, the morbidity and mortality associated with IHD in
the elderly are escalating (41). In our analysis, exposure to
ambient PM2.5 and ground-level O3 appeared as a potential
contributor to IHD mortality in the population of South Korea
when compared with the rest of the selected Asian nations.
The outcomes of our study are both consistent and conflicting
with previous epidemiological studies, which investigated these
associations using traditional statistical approaches, but our study
differs from amethodological standpoint in that we evaluated the
degree of proximity among the selected variables while keeping
endogeneity issues in mind. The assessment of the degree of
proximity is higher for the elderly in South Korea. Particulate air
pollutants (PM2.5, PM1, or PM10) provide the most compelling
evidence for the influence of air pollutants on mortality. In a

study conducted in Singapore, PM2.5 had a substantial influence
on cardiac mortality in the elderly but not in the non-elderly
when compared to other air pollutants such as carbon monoxide
(CO), nitrogen dioxide (NO2), and surface O3 (42). Significant
correlations between particulate matter exposure and different
short- and long-term cardiac health outcomes for the elderly
were revealed in the review research conducted between 1991 and
2016. The American Heart Association (AHA) emphasized the
clinical relevance for academics and healthcare practitioners in
a much more extensive analysis of the recent findings associated
with particulate matter exposure to CVD. Long-term exposure
to PM2.5 has been demonstrated in studies to induce IHD-
related mortality and nonfatal incidents and may exacerbate
the detrimental effects on microvascular functioning and an
increased risk of IHD mortality (43, 44). Reduced particulate
matter concentrations, however, are related to reductions in IHD
mortality in as little as a few years. In this view, the improvement
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FIGURE 5 | Grey-based Technique for Order of Preference by Similarity to Ideal Solution (G-TOPSIS) assessment of IHD-related risk factors.

in quality of life and related health outcomes owing to lower
concentrations of air pollutants might be seen by the population
in a few years, essentially leading to the adoption of more
rigorous policy choices on air quality in most parts of the world
(9, 13, 45).

Few studies have been undertaken to assess the impact of
ground-level O3 on population-based comparative research in
the elderly in the selected Asian countries. Exposure to another
pollutant, which is surface O3 a constituent of the photochemical
air pollution combination, might exacerbate the negative health
impacts of particulate matter. Some epidemiologic studies have
confirmed that O3 exposure has a major impact on human health
(42, 46, 47). A few of the health impacts of O3 include vascular
system inflammation, a variation in heart rates, and a drop in
the capacity of blood clots to disintegrate, all of which are the
risk factors for heart disease (48). All of these consequences can
increase vulnerability to infections and, in the end, result in a
cardiac catastrophe. According to a European study, an elevation

of 10 g/m3 within 1–8 h surface O3 level exposure increases
the risk of mortality by 1.13 and 0.33% on the overall daily
number of fatalities related to respiratory and cardiac deaths,
respectively (49). In this study, a higher degree of proximity is
observed in the population of South Korea, implying the need for
improved public policies to address air quality in this region. In
South Korea, the two major causes of air pollution are emissions
from fossil fuel combustion and vehicular emissions (50). South
Korea’s economy grew at a 10% annual rate in the 1980s and
1990s. In 2015, South Korea had been the world’s 11th highest
gross domestic producer; however, this was achieved through
polluting coal-fired power plants and dirty vehicular emissions
(51, 52). To persuade individuals to leave their automobiles at
home and travel by public transportation, an effective public
transportation framework is essential. Clean, renewable energy
and power generation can be used to operate modern buses.
Many trains are also powered by electricity. When utilized within
borders, delivery vehicles may be limited to using exclusively
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electric power. Electricity generation does not have to rely solely
on fossil fuels. Cleaner technology, such as renewable energy,
combined with energy storage and greater energy efficiency, can
contribute toward a more sustainable energy infrastructure with
a minimal environmental impact (53, 54).

According to the GRA, household exposure of PM2.5 appeared
to be an intensified risk factor in the dense population
of India with a greater degree of proximity. In addition,
the G-TOPSIS outcomes also showed exposure to household
PM2.5 as the potential risk factor for IHD-related mortality
among the selected Asian regions. In India, industries have
grown at an exponential rate; thusly, urbanization degrades
environmental quality indirectly via industrialization (55, 56).
Furthermore, due to the poor public transit infrastructure in
India’s urban regions, inhabitants opt for private transportation,
which has led to massive automobile emissions that contribute
to environmental deterioration. Consequently, urbanization in
India causes environmental pollution and worsens population
health over the long haul (57). As per the IQAir report,
India’s air quality is unhealthy; the most current statistics
show that the country’s annual mean concentration exceeds
the recommended level of 10 g/m3 (58). The most significant
contributors to air pollution in metropolitan areas have been
inadequate energy consumption, a spike in the number of
vehicles driven regularly, an increase in uncontrolled industrial
emissions, and the combustion of waste and plastic. Thusly, for
a synergistic reduction of air pollution, a holistic management
framework integrating health, energy, climate, and environment
sectors should be designed to mitigate IHD mortality.

Individually, the amount of fuel burned in a household
might be significantly less than the amount used in industries.
However, its influence on population health is far stronger
because of its pervasive and continuous existence in the internal
environment and the maximum time spent inside humans. This
issue is quite possibly the most ignored area of the disease
burden in these nations. It is indeed not hard to establish
a tight connection between smoke (biomass fuel combustion)
exposure and health risks in humans. To minimize household
PM2.5 concentrations during culinary activities, a variety of
treatments are available. Changes in energy technology and
boosting public awareness about the severity of household
PM2.5 concentrations caused by cooking are required at regional
levels. Appropriate measures tending to a wide variety of issues
related to cooking through awareness, economic development,
and renewable energy resources can be extremely beneficial
in reducing the possible cardiac health concerns produced by
biomass fuel smoke.

In conclusion, these findings have considerable implications
for public health strategy and decision makers in perspectives
of the sustainable development goals (SDGs) of good health
and a sustainable environment. We must acknowledge that the
health industry is only one of the many aspects to attain a
health goal with a CVD focus. Environmental sustainability
will be influenced by agricultural, environmental, public transit,
and economic policy changes as well as international trade
agreements. We should cooperate and work in collaboration
across regions and disciplines to advance and insinuate a
profitable return of interest in heart wellbeing; only this
way we could convince economies and businesses to make
contributions to our mutual objectives, which are critical to
the global population health and wellbeing. Ultimately, Asian
governments should work collaboratively, empower and focus
on the strategies that can mitigate the growing burden of CVD
via planned urbanization and industrialization, acceptance of
clean and renewable energy resources, increased educational
attainment, improved and better living standards, managed
to improve access to healthcare services, and spending on
public health to reduce the risk of air pollutants and their
associated CV mortality. We believe that raising knowledge
about CV risk factors, prevention, treatment, and care in the
Asian region would need a multi-sectoral partnership including
all stakeholders.
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