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The aim of this study is to make a comparative study on the reproduction

number R0 computed at the beginning of each wave for African countries

and to understand the reasons for the disparities between them. The study

covers the two first years of the COVID-19 pandemic and for 30 African

countries. It links pandemic variables, reproduction number R0, demographic

variable, median age of the population, economic variables, GDP and CHE

per capita, and climatic variables, mean temperature at the beginning of

each waves. The results show that the di�usion of COVID-19 in Africa was

heterogeneous even between geographical proximal countries. The di�erence

of the basic reproduction number R0 values is very large between countries

and is significantly correlated with economic and climatic variables GDP and

temperature and to a less extent with the mean age of the population.
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1. Introduction

On January 30, 2020, theWorld Health Organization (WHO) declared COVID-19 as

a Public Health Emergency of International Concern1 and by March 11, 2020, declared

the first pandemic caused by the coronavirus. Up to July 2021, COVID-19 has affected

over 187 million people with more than 4 million associated deaths and in addition, has

induced catastrophic public health and socio-economic affliction globally (1).

The first cases in Africa to be reported by WHO were respectively, on February 14,

18, and 25, 2020, in Egypt, Algeria, and Nigeria. These first cases have nearly coincided

with those in Europe, which is likely the original source of pathogen introduction in

Africa.2 Since then, the virus has spread quite quickly (see Figure 1) (2). Up to June 6,

2020, most African countries have crossed the threshold of 1, 000 cases and the whole

1 https://www.who.int/director-general/speeches/detail/who-director-general-s-statement-

on-ihr-emergency-committee-on-novel-coronavirus-(2019-ncov)

2 https://www.afro.who.int/news/covid-19-cases-top-10-000-africa, https://covid19.ncdc.gov.

ng/
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FIGURE 1

Spread of COVID-19 in Africa.

continent had 175, 423 cumulative cases and 4, 862 reported

deaths. The WHO had predicted that 29 to 44 million Africans

would be infected with COVID-19 during the first year of the

pandemic, and 83 to 190 thousand Africans would had die if they

don’t uphold containment measures.3

The high levels of poverty, weak health systems, and

a large number of crowded urban areas, make the virus

particularly devastating in African countries.4 However, the

warmer climate, the population youth, and the boosted

immunity by long exposure to previous endemic pathogens,

would allow the continent to mitigate the risk of the pandemic

(3). In this context, the diversity of COVID-19’s dynamics

throughout Africa and its relationship to socioeconomic and

3 https://www.afro.who.int/news/new-who-estimates-190-000-

people-could-die-covid-19-africa-if-not-controlled

4 https://africacenter.org/spotlight/mapping-risk-factors-spread-

covid-19-africa/

environmental factors can help us better understand the

epidemic’s determinism.

Like European countries (4), at the beginning of the COVID-

19 epidemic, most African countries implemented strict Non-

Pharmaceutical intervention (NPI) to limit the spread of this

pandemic (5–7). This has included: the obligation to mask

wearing and social distancing measures at the individual

level, frontier closure, the closure of schools, universities, and

public places, the closure of mosques and churches, and the

prohibition of movement between cities and provinces. These

measures have contributed in reducing the spread of the

pandemic (8, 9). However, considering the socio-economical

heterogeneity of the African countries (10), the response to these

measures differed from one country to another as evidenced

by the disparities between regions in infected cases and wave

numbers (11).

To date, few studies have analyzed how the pandemic

spread in Africa and how its intensity varied over time (12–

16). Moreover, to our knowledge, no study has been conducted
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FIGURE 2

Flowchart diagram to explain the di�erent steps of the methodology.

to analyze what are the determinants that could explain the

geography of the pandemic.

This study aims at analyzing the Spatio-temporal evolution

of the COVID-19 infection across 30 African countries and for

each wave until March, 2022. And to provide demo-economical

and environmental factors that can better explain the regional

heterogeneity of the basic reproduction rate, R0. To this end,

we calculate R0 at the early beginning of each wave, in order

to avoid taking into account the NPI measure. We then make

a correlation analysis between R0 and collected demographic,

economic, and climatic data so as to assess how these factors may

account for the regional variations of the pandemic.

The document is organized as follows: In Section 2, the

material and method are presented. In Section 3, results and

discussion are given. Finally, the conclusion is given in Section 4.

2. Materials and methods

In order to comprehend the differences between African

countries, we collected epidemiological data from 45 African

countries. Due to the quality of the data, this list was reduced

to 30 countries distributed between North, South, East and

West Africa. These countries are: Algeria, Angola, Burkina Faso,

Cameroon, Chad, Ivory Coast, Egypt, Ethiopia, Guinea, Guinea-

Bissau, Kenya, Libya, Madagascar, Mali, Mauritania, Morocco,

Mozambique, Namibia, Niger, Nigeria, RDC, Rwanda, Senegal,

Somalia, South Africa, Sudan, Tanzania, Tunisia, Zambia,

and Zimbabwe.

Up to March, 2022, With the exception of Tanzania,

Madagascar, Chad, and Burkina Faso, which had three waves,

and Kenya, Algeria, Tunisia, and Zambia, which had five waves,

nearly all of the thirty African countries analyzed had four

waves. For all countries, the Omicron variant generated the most

recent wave.

We took into account six epidemiological, demo-economical

and climate factors for each country:

• Epidemiological variables are: The basic reproduction

numbers, R0, of each wave, used to analyze the temporal

evolution of the COVID-19 wave by wave at each country.

The second one is themean value of R0 over waves, denoted

by MeanR where MeanR =
1

n

n
∑

i=1

Ri0, R
i
0 is the R0 of the

wave i and n is the number of waves. the MeanR is used to

for an inter-countries comparison.

• Economic variables: The current health expenditure

(CHE), and the gross domestic product (GDP) were

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1039925
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Na�eti et al. 10.3389/fpubh.2022.1039925

FIGURE 3

Frequency distribution and histogram of MeanR of all waves.

TABLE 1 Distribution ofMeanR by Country.

MeanR Country

Group 1 [2.49, 3.22] Senegal, Zimbabwe, South Africa,

Angola, Zambia, Ethiopia

Group 2 [1.99, 2.43] Mali, RDC, Guinea, Sudan, Algeria

Kenya, Nigeria, Mauritania, Libya

Guinea-Bissau, Namibia, Morocco

Rwanda, Côte d’Ivoire, Tunisia

Mozambique, Tanzania

Group 3 [1.69, 1.907] Madagascar, Niger, Egypt, Somalia,

Chad, Burkina-Faso, and Cameroon

collected from World Bank data.5 It has been shown that

these variables have an impact on the propagation of the

pandemic in several countries (17–19).

• Climate variable: Mean of the country’s temperature at the

periods of the beginning waves.6,7

• Demographic variable: The median of ages of the

population population (see text footnote 5) as older patients

are at higher risk of developing severity (20).

For each wave and each African country, basic reproduction

rate, R0, was computed using the method developed in (21).

This method is based on a SIR model, which is an Ordinary

Differential Equations (ODE) that describes a structured

population through three classes: S (susceptible), I (infected:

5 https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS

6 http://www.climatemps.com/

7 https://climateknowledgeportal.worldbank.org/country/central-

african-republic/climate-data-historical

reported and unreported), and R (removed: recovered or die).

For more detail about the system of ordinary differential

equations, parameters identification and how to determine the

R0 values see Appendix. As it is difficult to estimate the impact

of control policies in the calculation of R0, we chose to calculate

R0 with data from the first days of each wave. Indeed, we assume

that at the beginning of each wave the control policies are very

little applied or non-existent, so the growth of the pandemic

is exponential.

To measure the degree of the relationship between variables,

we use the Pearson correlation defined by (22).

For the clustering countries with similar data variables,

we use an “unsupervised learning” method, the hierarchical

clustering (23).

In this method, it is not necessary to specify an initial

number of clusters to run the algorithm. Dendrogram was used

to visualize the partitioning of the data.

Impact data variables were summarized and visualized using

Principal Component Analysis (PCA) (24).

Data set implementation and analysis is described in

Figure 2.

3. Results and discussion

In this section, we perform inter-country and intra-

country analyses integrating economic, climatic, and

demographic factors.

3.1. Inter-country analysis

Based on the mean of R0, MeanR, distribution across waves

(see Figure 3), we divided countries into three groups (see

Table 1 and Figure 4).

We observe thatmore than 50% of the countries haveMeanR

values in [1.99, 2.37], mainly located in north Africa. Moreover,

25% of the other countries show higher values ofMeanR and are

located especially in South Africa.

3.2. Intra-country distribution

When comparing the first three waves, we can see that the R0

values for waves 4 and 5 have significantly grown (see Table 2).

This makes sense given how quickly the Delta and Omicron

variants have spread.

Based on the values of R0 and for each wave, we clustered

the countries into three groups (see Table 3 and Figure 5). We

observe that countries with the highest MeanR, corresponding

to Group 1, had experienced a strong first or second wave

(countries in Group 1 for the first or second wave).
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FIGURE 4

Distribution of MeanR among 30 countries in Africa.

TABLE 2 Mean R0 over countries by waves.

First wave Second wave Third wave Fourth wave Fifth wave

R0 1.87 2.04 1.91 2.95 3.53

Low R0 waves were experienced by the countries with the

lowest MeanR Group (Group 3 for the MeanR). Indeed, some

of the least affected countries (belonging to Group 2 or 3),

have experienced three weak waves, such as Kenya and Guinea

(Group 3, for the three waves) or a medium wave as Libya

(Group 3 for waves 1 and group 2 for wave 2) RDC (Group 3

for waves 1 and 2 and Group 2 for wave 3) and Mauritania and

Cameroon (Group 3 for waves 1 and 3).

We note that, in general, countries in the first Group

for the first wave (except for Senegal, Tanzania, and Sudan)

experienced a weaker second and third wave. Conversely,

countries that experienced a weaker first wave (Groups

2 and 3), experienced a stronger second or third wave

(Group 1). Indeed, in Tunisia, the first and third waves

(belonging to Group 1), were significant, but the second

wave was less so (belonging to Group 3). Senegal experienced

three major waves (belonging to Group 1). Finally, South

Africa, Chad, Morocco, and Algeria had a powerful first

wave (belonging to Group 1), a moderate second wave

(belonging to Group 2), and a weak third wave (belonging

to Group 3).

3.3. Impact of economic factor

Next, we looked at the relationship between

the mean R0 values, MeanR, and the Gross

Domestic Product (GDP), and the Current Health

Expenditure (CHE) (see Table 4 and data in the

Appendix).

It is revealed that the MeanR is highly positively correlated

to GDP and is moderately positively correlated to CHE.

Indeed, countries with the highest GDPs in Africa (GDPs

above US$3000 per capita), especially South Africa and

some North African countries like Tunisia, Morocco, and

Algeria, experienced a significant first wave (see Table 5).

These countries were the first to be impacted by the

epidemic because of their degree of development, which

makes them more accessible to international trade (see

Figure 6).

The lower relationship between R0 and CHE may be

explained by two facts: Firstly, we measured R0 at the start

of the wave when public health interventions were either

not yet in place or were poorly in place. Secondly, the
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TABLE 3 Distribution of the country between a Group of R0 for each wave.

First wave Second wave Third wave Fourth wave Fifth wave

[R0] Country [R0] Country [R0] Country [R0] Country [R0] Country

Group 1 [1.95, 3.25] Guinea-Bissau [2.19, 3.72] Madagascar [2.26, 2.57] Mozambique [4.05, 5.4] Angola, Zimbabwe [4.23] Zambia

Mali Burkina Faso Guinea Ethiopia, Côte d’Ivoire

Senegal Nigeria Tunisia

Chad Mauritania Zimbabwe

Sudan Sudan Rwanda

Namibia Mozambique Senegal

Algeria Senegal Libya

Tanzania Egypt

Tunisia Zambia

Morocco Tanzania

South Africa Zimbabwe

Group 2 [1.54, 1.8] Rwanda [1.74, 2.06] Algeria [1.96, 2.13] Côte d’Ivoire [2.64, 3.47] Guinea-Bissau, Mauritania [3.34, 3.72] Tunisia

Nigeria Chad Namibia Senegal, Rwanda Kenya

Somalia Ethiopia RDC Mozambique, Nigeria

Côte d’Ivoire Mali Somalia South Africa, Niger

Ethiopia Rwanda Zambia Libya, RDC, Namibia

Madagascar Libya Mali Morocco, Zambia, Guinea

Niger Namibia Ethiopia

Zimbabwe Morocco Tanzania

Burkina Faso Cameroon

South Africa

Group 3 [1.34, 1.46] Angola [1.41, 1.7] Somalia [1.14, 1.86] Mauritania [1.51, 1.46] Somalia, Kenya, Mali [2.85] Algeria

Kenya Niger Nigeria Algeria, Tunisia

Libya Guinea-Bissau Egypt Cameroon, Sudan, Egypt

Mauritania Côte d’Ivoire Sudan

Zambia Tunisia Algeria

Mozambique RDC Guinea-Bissau

Guinea Kenya South Africa

RDC Angola Kenya

Cameroon Guinea Morocco

Madagascar

Cameroon

Angola

Burkina-Faso

Niger

Chad

Groups 1, 2, and 3: Are the respectively the classes of the highest, the average and the lowest values. [R0]: Is the interval of the R0 values at each class.
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FIGURE 5

(Continued)
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FIGURE 5

Distribution of the R0 of 30 countries in Africa for each wave.

CHE plays a role in terms of preparedness and impact to

improve the public health policy between waves in terms

of screening capacity. A country with a high CHE has the

material, human and technological resources to perform the

volume of diagnostic tests and thus has the capacity to rapidly

identify confirmed cases. This implies a strong dependence

between the number of tests and CHE (17). It was noted that

countries with low health system investment, CHE, often have

a low testing capacity which makes it difficult to assess the

true extent of COVID-19. For example, as of mid-April 2020,

the Democratic Republic of the Congo was only performing

about 200 tests per day (25), Senegal about 300 tests per

day, and Ethiopia about 400 tests per day while the number

of tests was 3493 in South Africa.8 For these countries, the

question of the quality of the data and the reality of the virus

circulation arises.

3.4. Impact of demographic factors

According to Table 4, there is a correlation between the

demographic factors, i.e., the median age and MeanR. We

observe (see Figure 5), that most countries with a median age

8 https://ourworldindata.org/grapher/daily-tests-per-thousand-

people-smoothed-7-day
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TABLE 4 Results of correlation analysis.

Country Correlation

coefficients

MeanR vs. GDP

Mozambique, Mauritania, Nigeria Libya, Madagascar,

Kenya, South Africa,

0.722

RDC, Chad, Côte d’Ivoire, Sudan, Mali, Niger,

Guinea-Bissau, Morocco,

Tunisia, Somalia, Namibia, Burkina Faso, Guinea, South

Africa, Algeria

MeanR vs. CHE

Mozambique, Mauritania, Nigeria, Libya, Cameroon,

Rwanda, Madagascar,

0.563

South Africa, Guinea, RDC, Chad, Côte d’Ivoire, Sudan,

Mali, Morocco,

Tunisia, Zimbabwe,Kenya, Angola,

MeanR vs. Median age

Mozambique, Mauritania, Nigeria, Libya, Cameroon,

Rwanda, Madagascar,

0.626

South Africa, Guinea, RDC, Chad, Côte d’Ivoire, Sudan,

Mali, Niger,

Morocco, Tunisia, Somalia, Namibia, Burkina Faso,Kenya,

Guinea-Bissau,

MeanR vs. Mean Temperature

Mozambique, Mauritania, Nigeria, Libya, Rwanda,

Madagascar, Kenya,

−0.729

Guinea, RDC, Chad, Côte d’Ivoire, Sudan, Mali, Niger,

Guinea-Bissau,

Algeria, Tunisia, Angola, Somalia, Tanzania, Zambia,

Namibia,

Burkina Faso, Morocco, South Africa

Country: The country used for the correlation analysis. Correlation coefficient: Is the

value of the Pearson coefficient.MeanR vs. Y: The analysis of the correlation between the

variableMeanR and Y . where Y ∈ {GDP,CHE,Medianage ,Mean Temperature}. We Show

that if economic and the age are increasing, theMeanR increasing while it is decreasing if

the temperature increasing.

under 18 have a MeanR less than 2, including Niger, Mali,

Chad, Somalia, and Burkina Faso. While South Africa and other

countries with a median age greater than 27 have a MeanR

greater than 2.

This result may be explained by the fact that older people

are over-represented in the COVID-19 data since they are

more likely to be tested and have more serious infections

(26). In contrast, younger people tend to be in better health

than older ones, making them more immune to infection.

This has been observed in the influenza pandemic in Africa

where children and adolescents had a negligible epidemiological

impact (27).

3.5. Impact of climatic factors

The annual temperature and MeanR are negatively highly

correlated, as seen in Table 4 and Figure 5. Indeed, we

observe that almost all of the countries with a lower

value of meanR have a dry climate and a high annual

temperature (annual temperature greater than 27◦C), in

contrast to the northern countries, which have a lower

annual temperature (annual temperature less than 23◦C; see

Figure 4).

Note that, negative correlation had already been observed in

China (28), in several Latin American countries (29, 30), in the

U.S.A. (31) and in Japan (32). From a biological point of view,

low humidity dries out the nasalmucosa and impairs the stability

of the aerosol droplets and therefore virus particles (33). Hence,

the virus replication is limited by temperatures (20 and 30◦C)

(34).

3.6. Clustering of African country from
epidemic, economic, demographic, and
climatic variables

We performed a hierarchical clustering and a principal

component analysis (PCA) (Figures 7–10). The PCA depicts

two primary axes (PC1, PC2) that together account for

75% of country variation, 54.2% for the PC1 and 20.6%

for the PC2. The primary parameters in PC2 are MeanR,

median age, and GDP. For PC1, the primary parameter is

the temperature.

We then performed a Hierarchical Clustering of the

countries (see Figure 7). We were able to divide the countries

into two distinct clusters. Morocco, Algeria, Tunisia, Libya,

Egypt, Namibia, and South Africa make up the first cluster,

which spans north and south Africa. This cluster is characterized

by high median age and a high GDP > US$3000) (in [21.8, 32.7]

years old). Except for Egypt (MeanR = 1.8), this cluster has

witnessed an average of MeanR > 2.2. We have identified five

countries that had a significant first wave.

The second cluster is in turn divided into sub-

clusters, the first sub-cluster includes Tanzania, Ethiopia,

Angola, Zambia, Rwanda, and Zimbabwe. This cluster is

characterized by high values of MeanR. MeanR in [2.4, 3.21] in

Zimbabwe, a middle GDP in US$ [797, 1800], and a median

age < 20 years.

The latest cluster includes the rest of the countries. This

cluster is characterized by a high annual temperature of more

than 25◦C and a GDP of between US$2350 and US$438. These

countries are distinguished by MeanR values in [1.69, 2.59].

Twelve of the 18 countries of the second Group are included in

this cluster.
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TABLE 5 Distribution of the countries between classes waves of R0 and GDP (in US$).

GDP > 3000 1000 < GDP ≤ 3000 GDP ≤ 1000

First wave

C1(1) Morocco, South Africa, Tanzania, Sudan, Chad,

Tunisia, Namibia, Senegal Guinea-Bissau

Algeria, Mali,

C2(1) Egypt, Zimbabwe, Somalia, Madagascar,

Côte d’Ivoire Rwanda, Burkina-Faso,

Ethiopia, Niger,

C3(1) Libya Guinea, Cameroon Mozambique, RDC,

Angola, Kenya, Zambia

Mauritania,

Second wave

C1(2) Egypt Tanzania, Senegal, Sudan, Madagascar,

Zimbabwe, Mauritania Mozambique, Zambia

Burkina-Faso,

C2(2) Morocco, South Africa, Cameroon Chad, Mali,

Algeria, Namibia, Rwanda, Ethiopia

Libya

C3(2) Tunisia Guinea, Angola, Guinea-Bissau, Somalia,

Côte d’Ivoire, Kenya, Niger, RDC

Third wave

C1(3) Libya, Tunisia Zimbabwe, Guinea Mozambique, Rwanda,

Ethiopia

C2(3) Namibia Tanzania, Senegal, Zambia, Mali,

Côte d’Ivoire RDC, Somalia,

C3(3) Egypt, Morocco, Mauritania, Cameroon, Sudan, Madagascar,

Algeria, South Africa, Angola, Kenya Guinea-Bissau, Niger,

Burkina-Faso, Chad

Fourth wave

C1(4) Zimbabwe, Côte d’Ivoire, Ethiopia, Guinea-Bissau

Angola,

C2(4) Libya, Namibia, Guinea, Senegal Mozambique, Rwanda,

South Africa, Morocco, Mauritania RDC, Niger

Zambia,

C3(4) Tunisia, Egypt, Cameroon, Kenya Mali, Somalia, Sudan

Algeria

Fifth wave

C1(5) Zambia

C2(5) Tunisia Kenya

C3(5) Algeria

MeanR

C1 South Africa Zimbabwe, Senegal, Angola Ethiopia, Zambia

C2 Morocco, Algeria, Tunisia, Tanzania, Guinea, Kenya, Mozambique, Sudan,

Libya Mauritania, Nigeria, Guinea-Bissau, Rwanda,

Côte d’Ivoire Mali,RDC,

C3 Egypt Cameroon Somalia, Madagascar, Niger,

Chad, Burkina-Faso

C
(j)
i : is the group i, i = 1, 2, 3 at wave j, j = 1, 2, 3, 4, 5. We show that countries with the highest GDPs in Africa (GDPs above US3000$ per capita), especially South Africa and some North

African countries like Tunisia, Morocco, and Algeria are experienced a significant first wave.
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FIGURE 6

Distribution of the t0 for the first wave.

4. Conclusion

The objective of our paper was to document the Spatio-

temporal variations in the baseline reproduction rate R0

and to understand the reasons for the different disparities

between them. We highlight that more developed countries

experienced a higher incidence in the first wave, which can

be explained by their higher international exposure. We also

show that the quality of health systems played a key role in

limiting virus-related mortality. Consistent with the literature,

we also show that countries with younger populations were

less affected by the pandemic. Finally, we show that climate

also plays a determining role in explaining the reproduction

rate R0. At the end of the analysis of the determinants,

we have made a clustering of the countries in order to

identify which ones have been the most suffering during

this pandemic or on the contrary which ones have been the

most resistant.

Our results show that the geography of the pandemic

in Africa largely overlaps with the geography of the wealth

of the states. Consequently, the fight against poverty and

the development of health infrastructures are sine-qua-non

conditions for an effective fight against future epidemics or

pandemic crises that could occur.
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FIGURE 7

Hierarchical clustering (Dendrogram) for the pandemic, economic, demographic, and climatic variables allows countries to be grouped into 3

separate clusters.

FIGURE 8

Principal components (PC) plot from the principal component analysis (PCA) on the pandemic, economic, demographic, and climatic variables.
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Appendix: Model description

This model consists of the following system of ordinary

differential equations:



























S′(t) = −τS(t)[I(t)+ U(t)]

I′(t) = τS(t)[I(t)+ U(t)]− νI(t)

R′(t) = ν1I(t)− ηR(t)

U′(t) = ν2I(t)− ηU(t)

(1)

Where t ≥ t0 the time in days, t0 is the beginning date

of each wave, S(t) is the number of individuals susceptible to

infection at time t, I(t) is the number of infectious individuals

at time t, R(t) is the number of reported infectious individuals

at time t and U(t) is the number of unreported infectious

individuals at time t. This system is supplemented by initial

condition at time t = t0, (S0, I0,R0,U0).

We assume that the cumulative number of reported

symptomatic cases at time t is proportional to the cumulative

number of symptomatic cases for each time t. Let’s denote the

proportion coefficient by f . Therefore, the rate of asymptomatic

infectious becoming reported symptomatic is ν1 = f ν and

the rate of asymptomatic infectious becoming unreported

symptomatic is ν2 = (1− f )ν.

Table A1 represents the set of parameters that are fixed by

the hypothesis and those evaluated by the country model.

We assume that η = 1
7 and ν = 1

7 , are fixed for

all African countries, which means that the average period

of infectiousness of both unreported symptomatic infectious

individuals and reported symptomatic infectious individuals

and that the average period of infectiousness is 7 days. The

fraction of total infectious cases that are reported f is unknown

and varies from region to region.

The cumulative number of the reported symptomatic

infectious cases at time t is obtained by using the following

equation (21):

CR(t) = ν1

∫ t

t0

I(s)ds (2)

Since in the early stage of the epidemic, all the infected

components of the system grow exponentially and the number of

Table A1 Parameters and initial conditions of the model 1.

Symbol Interpretation Method

t0 Time at which the epidemic started Fitted

S0 Number of susceptible at time t0 Fixed

I0 Number of asymptomatic infectious at

time t0

Fitted

U0 Number of unreported symptomatic

infectious at time t0

Fitted

τ Transmission rate Fitted

1
ν

Average time during which

asymptomatic infectious are

asymptomatic

Fitted

f Fraction of asymptomatic infectious

that become reported symptomatic

infectious

Estimated

ν1 = f ν Rate at which asymptomatic infectious

become reported symptomatic

Fitted

ν2 = (1− f )ν Rate at which asymptomatic infectious

become unreported symptomatic

Fitted

1
η

Average time symptomatic infectious

have symptoms

Fixed

susceptible remains unchanged during a relatively short period

of time t, we can fit an exponentially growing curve CR(t) to

the cumulative reported cases data defined by the following

special form :

CR(t) = χ1 exp(χ2t)− χ3 (3)

with χ1,χ2 and χ3 three positive numbers that we estimate using

log-linear regression and the Genetic algorithm optimization

method (35).

Following (21), we have:



































t0 = 1
χ2

(ln(χ3)− ln(χ1))

I0 =
χ1χ2 exp(χ2t0)

f ν

U0 =
ν2

η+χ2
I0 =

(1−f )ν
η+χ2

I0

τ =
χ2+ν

S0
η+χ2

ν2+η+χ2

R0 =
τS0
ν
(1+ ν2

η
)

(4)
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