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Introduction

Since 2016 there has been considerable discussion about anomalous health incidents

(AHIs), popularly called theHavana syndrome, amongUS personnel stationed inHavana

and elsewhere. One widely discussed theory is that the incidents were the result of

attacks using pulsed microwave energy resulting in nonspecific symptoms reminiscent

of vestibular disturbances (1, 2). In the commented paper, Foster et al. (3) analyzed

thermoacoustically (TA) induced acoustic transients produced in a simple tissue model

from high intensity pulsed microwaves over a wide frequency range and concluded

that microwave pulses at extreme but feasible fluences (incident energy densities per

pulse) could produce physiologically significant levels of acoustic energy in the head. The

possibility of attacks by microwaves was considered in detail by JASON (4), an expert

group commissioned by the U.S. Department of State, which could find no evidence for

the use of microwaves. The practical difficulties of beaming high peak power microwaves

at subjects in a “stealthy” manner seem daunting in any event.

Infrared TA transduction

Thermoacoustic sound generation results when a fluid is subject to rapid heating

due to thermal expansion. The generation of acoustic waves is most efficient when the

heating occurs over times shorter than the stress relaxation time of the medium (about

1 µs for the present case). The theory behind the effect is simple (3) and applies equally

to pulsed laser light (5) as to pulsed microwaves. Unlike high peak power microwave

sources, which are typically used only in classified military environments, high peak

power lasers are commercially available and used for a variety of industrial applications.
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TABLE 1 Acoustic waves produced by a 5 ns pulse of 1.06µm infrared energy from a commercial Nd:YAG laser incident on a fluid with acoustic

properties similar to those of tissue.

Energy
penetration
depth L mm

Pulse
width (ns)

Assumed energy
density absorbed

in the head,
J/m2

Incremental
temperature rise

at the tissue
surface after

each pulse (µK)

Peak pressure
increase, Pa (dB

re 20 µPa)

Peak acoustic
frequency (kHz)

3.5 5 1 76 28 (123) 68

Calculations based on (3).

FIGURE 1

(A) Acoustic wave induced in a plane model of tissue by a short

pulse of IR radiation with energy penetration depth in the tissue

of 3.5mm and radiant exposure of 1 J/m2. The pulse is assumed

to be completely absorbed in the tissue and occurs at t = 0 in

this figure. (B) Magnitude spectrum of the waveform. Calculated

using Equations (6) and (7) of (3) assuming tissue density of

1,109 kg/m3 and heat capacity of 3,390 J/(kg K). For pulses

shorter than the stress relaxation time (≈1 µs) the induced TA

wave is essentially independent of the pulse duration.

Such lasers are small (can be placed on a desktop) and together

with their power supply and coolant system (which are typically

in cabinets of <1 m3 volume) and power source could be fitted

into a van. Such lasers could transmit beams over long distances

or, via fiberoptics, into enclosed spaces.

For example, the ANL10k10 Nd:YAG laser (Ekspla, a

Lithuanian firm) generates 5 ns infrared pulses at a wavelength

of 1.06µm, with an output energy of 10 J/pulse and pulse

repetition rate of 10Hz. Such energy is invisible to humans. The

transmission coefficient of this radiation into skin is high, and its

(1/e) energy penetration depth in tissue is about 3.5mm (6)—

similar to those of 6 GHz microwaves. The laser beam would

have to be expanded (to avoid skin burns from a narrow high

intensity beam) and then aimed at the target, both of which are

technically easy to do. This pulse energy, if uniformly distributed

in a beam of 1 m2 area, would create a radiant exposure to a

targeted individual of 10 J/m2.

When this energy is absorbed in skin, the resulting thermal

expansion of tissue water will generate acoustic waves that will

propagate deeper into tissue. The frequency range of the acoustic

energy is determined by the energy penetration depth of the

radiation in tissue, and the peak sound pressure is determined by

the incremental amount of energy deposited in tissue, provided

that the pulsewidth is shorter than the stress relaxation time

of the medium. For IR wavelengths near 1µm, IR energy is

relatively highly penetrating in tissue, which results in relatively

low frequency TA signals.

Table 1 and Figure 1 summarize the induced acoustic energy

that would be generated within the head by exposure to a single

pulse of 1.06µm laser radiation with radiant exposure of 1 J/m2,

based on Foster et al. (3). The peak acoustic sound pressure level

(SPL) is about 28 Pa (123 dB re 20 µPa), with a broad spectrum

centered at 68 kHz (Figure 1B). The spectrum of the acoustic

pulse is very broad, extending from the audible frequency

range (e.g., ≈3 Pa or about 103 dB at 3 kHz) and upwards to

hundreds of kHz. Because acoustic energy in this low-ultrasonic

frequency range travels for long distances in tissue, the net

acoustic stimulus in the head would consist of a series of echoes

lasting for perhaps 1ms (based on experience with microwaves),

repeated at the pulse repetition rate of the laser (10Hz for the

laser described above). Curthoys et al. (8) reported thresholds

for stimulation of otolithic neurons in the guinea pig cochlea of

about 80 dB SPL at 3 kHz for air conducted sounds, which is a

rather different stimulation than from acoustic waves that are

directly generated in the head.

Thus, it appears that thermally generated acoustic waves

from exposure to the head to short IR pulses from commercially

available lasers are in the range that could excite vestibular

responses, although a more detailed analysis is clearly needed.

Such laser pulses would be invisible to an exposed human being,

produce negligible temperature increases in the skin (<0.1

millidegree after each pulse) but the induced acoustic energy

might be physiologically significant. However, retinal burns, a

significant potential hazard of pulsed IR energy in this spectral

range, would be a concern if the beam were incident on the face

as opposed to the side of the head. Allen et al. (7) determined

that the threshold exposure for retinal damage in the rhesus

monkey from a single 4 ns pulse of Nd:YAG laser radiation is

about 0.16 mJ measured at the corneal surface. This corresponds

to a radiant exposure of about 6 J/m2; retinal damage thresholds

in humans would presumably be similar. The victim might

not notice a brief exposure leading to a retinal burn, but may

later experience deterioration of vision. One potential use of

this (entirely hypothetical) device would be for harassment, to

induce frightening experiences in a subject but not cause injury.
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The feasibility of such a device for that purpose would depend

on the difference between thresholds for auditory/vestibular

stimulation and retinal injury, which at present can only be

roughly estimated.

Conclusion

This preliminary analysis suggests that, in principle, high

peak power IR lasers can induce auditory/vestibular responses

in humans via thermoelastic sound generation when directed

against the head. Developing a practical non-lethal weapon

would require adapting the laser and associated hardware for

portable use, and adjusting the beam characteristics, power

output, and wavelength to produce objectionable responses

while minimizing, as far as possible, the likelihood of eye

damage to the subjects. Unlike the case of high peak power

microwave generators used in classified weapons programs,

high peak power pulsed lasers are commercially available (but

potentially are very hazardous to an untrained user) and TA

sound generation in the head from pulsed IR radiation would

be relatively easy to study. If reasonable suspicion exists that

some individuals were exposed to such radiation, they should

be examined for possible retinal injury. Non-lethal weapons of

this sort are hypothetical, but seemmore feasible than analogous

weapons using pulsed microwaves and would potentially be of

interest to governments around the world which have already

made considerable investments in laser weapons.
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