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PD-1 inhibitor-associated type 1
diabetes: A case report and
systematic review

Cuiping Lin, Xuan Li, Yu Qiu, Zheng Chen and Jianping Liu*

Department of Endocrinology and Metabolism, Second A�liated Hospital of Nanchang University,

Nanchang, China

Objective: This study aimed to summarize the clinical characteristics of

programmed death receptor 1 (PD-1) inhibitor-associated type 1 diabetes so

as to improve the ability of clinicians to correctly diagnose and treat it.

Methods: We reported a case of a 70-year-old woman with gastric cancer

who developed hyperosmolar hyperglycemic coma during camrelizumab (a

PD-1 inhibitor) treatment and was diagnosed with PD-1 inhibitor-associated

type 1 diabetes. We conducted a systematic review of 74 case reports of type

1 diabetes associated with PD-1 inhibitor therapy published before June 2022.

Results: The patient developed type 1 diabetes with hyperosmolar

hyperglycemic coma after receiving camrelizumab chemotherapy for 6

months (9 cycles). We searched 69 English articles comprising 75 patients, all of

whom had been treated with a PD-1 inhibitor (nivolumab or pembrolizumab)

and progressed to diabetes after an average of 6.11 (1–28) cycles. Nivolumab

combined with ipilimumab (a cytotoxic T lymphocyte-associated protein 4

inhibitor) had the shortest onset (4.47 cycles on average). A total of 76%

(57/75) of patients developed diabetic ketoacidosis (DKA) at onset, and 50.67%

(38/75) of patients had C-peptide <0.1 ng/mL. Most of the patients were tested

for insulin autoantibodies, with a positive rate of 33.33% (23/69); of these,

86.96% (20/23) were tested for glutamate decarboxylase antibody and 46.67%

(35/75) were tested for human leukocyte antigen (HLA). HLA-DR4was themost

common type.

Conclusions: The progression of type 1 diabetes induced by PD-1 inhibitors is

relatively rapid. Islet failure often occurs when detected, seriously endangering

patients’ lives. Patients treatedwith PD-1 inhibitors should closelymonitor their

plasma glucose level during treatment to detect, diagnose, and treat diabetes

on time.
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Introduction

Immune checkpoint inhibitors play an important role in immune tolerance

through negative regulation of the immune system. Common immune checkpoints

include programmed death receptor 1 (PD-1) and cytotoxic T lymphocyte-associated

protein 4 (CTLA-4). PD-1 belongs to the B7-CD28 family in the –immunoglobulin
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superfamily. However, PD-1 does not share ligands with

CD28 (1). The specific ligands of PD-1 include PD-L1

(B7-H1) and PD-L2 (B7-DC). The binding of PD-1 and its

ligand can prevent T-cell proliferation, cytokine production,

and cell decomposition. Camrelizumab is a novel immune

checkpoint inhibitor (PD-1 inhibitor) with independent

intellectual property rights in China. A highly humanized

monoclonal antibody, IgG4 is widely used in tumor treatment.

Its pharmacological action is to block the PD-1/PD-L1 pathway

by binding to PD-1 and hence promote T-cell activation and

proliferation, thereby inhibiting tumor growth (2). A PD-1

inhibitor overactivated the immune system and its ligand

is widely expressed in hematopoietic cells, pancreatic cells,

macrophages, and dendritic cells (3, 4). Therefore, may affect

other tissue cells during treatment. A series of immune-related

adverse events (irAEs) are induced, the most common of

which are pituitary and thyroid dysfunction, diabetes, and

adrenal hypofunction (5). In type 1 diabetes (T1DM), an

autoimmune disease, the destruction of islet β cells leads to

absolute insulin deficiency (6). Type 1 diabetes, a rare irAE

associated with PD-1 inhibitors, has an estimated incidence

of 0.2–1.4% (7–9). PD-1 inhibitors indirectly damage many

islet β-cells after the overactivation of the autoimmune

system, resulting in the development of diabetes. We reported

a case of a 70-year-old woman with gastric cancer who

developed type 1 diabetes complicated by hyperosmolar

hyperglycemic coma 6 months after receiving camrelizumab

chemotherapy. Subsequently, we conducted a systematic

review and summary of published case reports to draw the

attention of clinicians to this disease and thus its diagnosis

and treatment.

Case presentation

A 70-year-old female patient underwent a total gastrectomy

for gastric cancer in 2017. Multiple lymph node metastases of

gastric cancer were found in August 2019. Since April 2020,

she has regularly received 200mg camrelizumab intravenously,

21 days/cycle, combined with apatinib mesylate tablets 850

mg/day at a local cancer hospital. No obvious adverse reactions

were noted, except pancytopenia, during the treatment. On

the night of October 12, 2020, the patient drank many sugary

drinks. The next morning, her family found her unconscious

and took her to a local hospital. The auxiliary examination

revealed the following: randomplasma glucose was 1,082mg/dL,

HbA1c was 7.88%, fasting C-peptide was 0.04 ng/mL, blood

sodium was 140.6 mmol/L, blood potassium was 6.46 mmol/L,

blood chlorine was 97.4 mmol/L, effective plasma osmotic

pressure was 354.22 mOsm/L (>320 mOsm/L), urine glucose

was (3+), and urine ketone body was (+-); arterial blood

gas: pH 7.44, bicarbonate (HCO−

3 ) 19.7 mmol/ L, and base

excess −3.3 mmol/L. The diagnosis included the following:

(1) hyperosmolar hyperglycemic coma; (2) hyperkalemia; (3)

diabetes; (4) metabolic acidosis. The patient was treated for

fluid replenishment, hypoglycemia, and correction of water

and electrolyte disorders. After discharge, the patient received

insulin glargine 8U to lower hyperglycemia, but the patient had

poor plasma glucose control. On October 26, 2020, she was

admitted to our outpatient department for further diagnosis and

treatment. The physical examination showed the following: body

temperature 36.2◦C, pulse 64 beats/min, 20 breaths/min, blood

pressure 110/62mm Hg (1mm Hg= 0.133 kPa), height 150 cm,

body weight 41 kg, and body mass index (BMI) 18.22 kg/m2.

The examination of the heart, lung, and abdomen revealed no

abnormality, with no edema in both lower extremities. The

family denied a history of diabetes. During admission, the fasting

plasma glucose was 440 mg/dL, 1-h postprandial plasma glucose

level was 239 mg/dL, 2-h postprandial plasma glucose level

was 212 mg/dL, HbA1c was 11.1%, IA-2A was positive, serum

C-peptide (0, 60, and 120min) was <0.1 ng/mL, and urinary

ketone body was (–) (Tables 1, 2). Combined with the fact

that no report on diabetes caused by apatinib mesylate tablets

was shown, this patient was diagnosed with PD-1 inhibitor-

associated type 1 diabetes. The patient’s islet function was poor,

and the presentation was marked by brittle diabetes. Therefore,

intensive treatment with an insulin pump was given after

admission: 10 units of basal insulin and 4 units of insulin aspart

before breakfast, lunch, and dinner. The patient’s plasma glucose

level was continuously monitored, and the insulin dose was

adjusted according to the plasma glucose level. After the plasma

glucose level was stable, the patient was treated with low-dose

rapid-acting insulin before three meals and long-acting insulin

before sleep, including 6 units of insulin aspart before breakfast,

5 units before lunch, and 5 units before dinner, together with 6

units of insulin degludec before bed.

Methods

We searched English-language case reports on PD-

1 inhibitors and diabetes published before June 2022,

using the search terms “PD-1 inhibitor”, “Nivolumab”,

“Pembrolizumab”, or “Immune checkpoint inhibitor” and

“Diabetes”, “Diabetes Mellitus”, “diabetic ketoacidosis”,

“ketoacidosis” and “DKA”. A total of 69 reports (10–78),

were retrieved. The following information was extracted

from each case: author, year of publication, patient’s age,

gender, tumor type, type of immune checkpoint inhibitor,

onset cycle, plasma glucose level, HbA1c, C-peptide, presence

of DKA, islet autoantibodies, and human leukocyte antigen

(HLA) genotypes (Supplementary Table S1). The informed

consent of the patient herself has been obtained for this

case report.
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TABLE 1 Laboratory parameters at the time of hospital admission.

Laboratory Test Value Reference range

Plasma glucose (mg/dL) 440 70–110

HbA1c (%) 11.1 3–6

Na+ (mmol/L) 131.72 137–147

K+ (mmol/L) 4.49 3.5–5.3

Cl+ (mmol/L) 103.62 99–110

CO2CP (mmol/L) 21.42 23–29

WBC (109̂/L) 1.99 3.5–9.5

RBC (101̂2/L) 2.59 3.8–5.1

Hb (g/L) 88 110–150

PLT (109̂/L) 112 125–350

Urinary glucose 2+ -

Urinary ketone - -

Urinary pH 6.0 4.5–8.0

Urinary ACR (mmol/L) 9.25 <30

HbA1c, Glycated hemoglobin; CO2CP, CO2 combining power; WBC, white blood cell;

RBC, red blood cell; Hb, hemoglobin; PLT, platelets; ACR, albumin–creatinine ratio.

TABLE 2 Related autoantibodies and islet function.

Laboratory test Value Reference range

GADA - -

ICA - -

IA-2A + -

IAA - -

ZnT8A - -

Plasma glucose 0min (mg/dL) 440 70–110

Plasma glucose 60min (mg/dL) 239 79.2–140.4

Plasma glucose 120min (mg/dL) 212 79.2–140.4

Serum C peptide 0min (ng/mL) 0.06 1.1–4.4

Serum C peptide 60min (ng/mL) 0.04

Serum C peptide 120min (ng/mL) 0.07

GADA, Glutamic acid decarboxylase antibody; ICA, islet-cell antibodies; IA-2A,

insulinoma-associated antigen-2; IAA, insulin autoantibody; ZnT8A, zinc transporter

8 antibody.

Results

We searched 69 English articles, comprising 75 patients. All

patients received PD-1 inhibitors therapy, with a female/male

ratio of 23/52 and an average age of 63 (12–85) years

(Supplementary Table S2). Tumor types included melanoma

36% (27/75), non-small-cell lung cancer 16% (12/75), renal

cell carcinoma 12% (9/60), and other types 36% (27/75)

(Supplementary Table S2). It was preferable to calculate by

cycle due to the inconsistent duration of drug use, with an

average of 6.11 (1–28) cycles for the diagnosis of diabetes

(Supplementary Table S2). The mean plasma glucose level

was 656 (271–1,298) mg/dL, and the mean HbA1c was

7.85% (6.1%−11.1%) (Supplementary Table S2). A majority

of patients, 76% (57/75), had DKA at the onset. The

reference range of C-peptide detection was inconsistent

in most patients; except for some for whom the value

was not explained, 59.38% (38/64) of patients had C-

peptide <0.1 ng/mL or undetectable (Supplementary Table S2).

A total of 93.33% (70/75) of patients were tested for

insulin autoantibodies, with a positive rate of 32.86% (23/70)

(Supplementary Table S2). The average progression of diabetes

was 3.39 cycles in patients who were antibody positive and

7.5 cycles in patients who were antibody negative. Glutamate

decarboxylase antibody (GADA) accounted for 86.96% (20/23)

of the autoantibodies (Supplementary Table S2). Two or more

antibodies were positive in 30.43% (7/23) of patients. About

46.67% (35/75) of the patients were tested for HLA genotypes,

mainly HLA-DR4 (37.14%) (Supplementary Tables S1, S2). HLA

gene testing was not performed in the present case. Also, further

analysis of the use of immune checkpoint inhibitors suggested

that patients receiving nivolumab developed diabetes in an

average of 6.47 cycles, whereas those receiving pembrolizumab

developed diabetes in a longer duration (6.5 cycles). Nivolumab

also resulted in lower mean plasma glucose level and

HbA1c than pembrolizumab. Patients treated with the PD-1

inhibitor nivolumab in combination with the CTLA-4 inhibitor

ipilimumab had the shortest time to diagnose of diabetes

(4.47 cycles on average) (Supplementary Table S3). Among

the cases we collected, two patients received PD-1 inhibitor

treatment and were diagnosed with diabetes after a period

of drug withdrawal (61, 73). The guidelines promulgated by

the European Society for Medical Oncology note that another

plasma glucose measurement 4–6 weeks after the last cycle of

immunotherapy may be necessary (79).

Discussion

The irAEs induced by ICPIs mainly include thyroid

dysfunction, hypophysitis, adrenal hypofunction, diabetes, etc.,

(5). Multiple endocrinopathies induced by PD-1 inhibitors can

possibly occur at the same time, despite the low frequency

of adverse events in each endocrine organ. Our results

showed that 41.33% (31/75) patients were complicated with

other endocrine gland abnormalities, among which thyroid

dysfunction (34.67%) was the most common, followed by

adrenal hypofunction (19.23%) and infrequent hypopituitarism

(2.67%) (Supplementary Table S3). In addition, A meta-analysis

by Barroso-Sousa et al. (80). showed that combination therapy

with immune checkpoint inhibitors was more likely to involve

other endocrine glands.

Type 1 diabetes caused by PD-1 inhibitors is relatively rare,

with an estimated incidence of 0.2–1.4% (7–9). DKA is the most

common onset (10–24), but the patient in this study presented

with hyperosmolar hyperglycemic coma at the onset. Although
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the overall frequency of type 1 diabetes in irAEs is relatively low,

PD-1 inhibitor-associated type 1 diabetes progresses rapidly to a

critical illness and may endanger patients’ lives if not promptly

diagnosed and treated (5, 81). Clinicians should inform patients

of the potential risk of diabetes with PD-1 inhibitors, train

them in recognizing the symptoms of hyperglycemia and

DKA, and enhance the knowledge of patients with diabetes.

Currently, the Food Drug Administration–approved PD-1

inhibitors include nivolumab and pembrolizumab. Studies have

shown that nivolumab is associated with an increased risk of

type 1 diabetes (16, 82, 83), and the cases may increase with

the more widespread use of nivolumab. Our results showed that

nivolumab monotherapy had a slower progression to diabetes

than pembrolizumab. In addition, patients treated with PD-

1 inhibitors combined with CTLA-4 inhibitors progressed to

diabetes at an earlier time.

Based on this report and a systematic review of previous

related cases, the pathogenesis of PD-1 inhibitor-associated type

1 diabetes can be summarized as follows:

(1) Activation of proliferating T cells destroys islet β cells:

Several animal studies have demonstrated the role of PD-1

in type 1 diabetes. For example, PD-1 transgenic mice had a

reduced incidence of type 1 diabetes (84), and PD-1 blockade

led to the faster progression of diabetes in mice with prediabetic

nonobese diabetes (NOD) (85, 86), mainly occurring through

the PD-1/PD-L1 pathway; the PD-1/PD-L2 pathway is rare

(87). The PD-1 expression rate on T cells (mainly CD8+ T

cells) of patients with type 1 diabetes was lower than that of

healthy persons or patients with type 2 diabetes (88, 89). PD-

1 inhibitors block the PD-1/PD-L1 pathway, increasing the

number of T cells or maintaining higher activity and leading

to the accelerated destruction of islet β cells (87). Figure 1

provides an overview of the mechanism of action of PD-1

inhibitors and the hypothesis of an association between PD-

1 inhibitors and type 1 diabetes mellitus. The PD-1/PD-L1

pathway is crucial in maintaining islet β-cell antigen tolerance,

and β-cell destruction leads to faster progression to diabetes in

genetically predisposed individuals (90); that is, patients with a

family history of diabetes may progress to diabetes faster when

treated with PD-1 inhibitors. Among the retrieved cases, two

had a family history of diabetes (47, 55); they were diagnosed

with diabetes after 1 cycle of treatment with a PD-1 inhibitor,

with severely impaired islet function, and became dependent on

insulin treatment.

(2) Increase in insulin autoantibodies: Currently, insulin

autoantibody inhibitors correlate with PD-1 in the development

of type 1 diabetes, yet the mechanism is not clear. An

autoimmune diabetes NOD mouse model was established by

Ansari et al. (87). found that some had autoantibody-negative

diabetes while some had autoantibody-positive diabetes. The

positive rate of GADA was the highest in patients with positive

insulin autoantibodies. However, GADAwas also found in other

autoimmune endocrine diseases, such as Graves’ disease (91),

FIGURE 1

Mechanism of action of PD-1 inhibitor and hypothesis of

association between PD-1 inhibitors and type 1 diabetes. (A)

Tumor cells can inactivate T cells and evade the immune system

by expressing PD-L1. This leads to the enhanced survival of

tumor cells. (B) Anti–PD-1 can block the PD-1 receptor and

restore immune response. This leads to the apoptosis of tumor

cells. (C) Pancreatic β-cells express PD-L1 and thereby evade

the immune response. (D) During anti–PD-1 therapy, in certain

susceptible persons, T cells are activated and develop an

immune response to pancreatic β-cells. MHC, major

histocompatibility complex; TCR, T-cell receptor.

and hence it was not specific. In addition, Gauci et al. (92).

found that the time interval between the occurrence of type

1 diabetes induced by PD-1 inhibitors was related to GADA

positivity. Usui et al. (93). indicated that GADA positivity could

accelerate the progression of type 1 diabetes associated with PD-

1 inhibitors, which was also supported by our systematic review.

In other words, patients positive for insulin autoantibodies

were diagnosed with diabetes after receiving PD-1 inhibitors

treatment, and the average medication period was significantly

shorter than that of patients negative for autoantibodies. We

considered that besides cellular immunity, humoral immunity

was involved in antibody-positive patients, leading to more

rapid islet failure.

(3) HLA genotype increases susceptibility to type 1

diabetes: HLA-specific alleles are associated with increased

susceptibility to T1DM, account for 30–50% of the genetic

risk of T1DM (94), especially HLA-DRB1, HLA-DQB1 and

HLA-DQA1 (95). Different combinations of HLA-DRB1,

DQB1, and DQA1 determine the extent of haplotypic risk.

There is research shows that the most susceptible HLA
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FIGURE 2

Pathophysiology of PD-1 Inhibitor–associated Type 1 Diabetes. Treg, regulatory T cells.

haplotypes are DRB1∗04:05–DQA1∗03:01–DQB1∗03:02,

followed by DRB1∗04:01–DQA1∗03:01–DQB∗03:02,

DRB1∗03:01–DQA1∗05:01–DQB1∗02:01, and DRB1∗04:02–

DQA1∗03:01–DQB1∗03:02 (94). Stamatouli et al. (96) reported

that HLA-DR4 was dominant in patients with type 1 diabetes

associated with immune checkpoint inhibitors. We also found

that HLA-DR4 had the highest association rate. Several case

reports have shown an established high-risk allele for T1DM

(HLA-II DR4 haplotype) present in the majority of patients

for whom HLA typing was available (11, 57). Additionally, a

recent report indicated that the frequencies of the DRB1∗04:05-

DQB1∗04:01 and DRB1∗09:01-DQB1∗03:03 haplotypes were

significantly higher than the other haplotypes (97), which

was in agreement with our findings. The patient in this

case did not undergo HLA genetic testing, and if HLA was

performed, it might be a predictor of T1DM episodes caused by

camrelizumab. Further research is needed to determine whether

HLA genotyping should be performed in all patients treated

with PD-1 inhibitors to predict the risk of type 1 diabetes.

(4) Increased levels of inflammatory cytokines: Existing

evidence indicates that the expression of PD-L1 can be

induced by multiple inflammatory factors (98, 99). These

factors mainly include interferon (IFNs), interleukin-1 β (IL-

1β), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-12

(IL-12), interleukin-17 (IL-17), transforming growth factor-β

(TGF-β), and tumor necrosis factor-α (TNF-α). Colli et al. (90).

suggested that IFN-γ and IFN-α upregulated the expression

of PD-L1 in islet β cells of patients with diabetes to reduce

susceptibility to autoimmune cells. Hence, it was speculated that

islet β cells could inhibit destruction by autoimmune T cells

in this way. Figure 2 illustrates the pathophysiology of PD-1

inhibitor-associated type 1 diabetes.

Different clinical phenotypes have been identified in type

1 diabetes. PD-1 inhibitor-associated diabetes is considered a

novel form of type 1 diabetes that is specifically triggered by

the use of PD-1 inhibitors. Reviewing the recently published

literature on the subject, most agree that diabetes caused by

PD-1 inhibitors is immune-mediated type 1 diabetes. There

is increasing evidence that PD-1 inhibitor-associated type

1 diabetes has some specificity compared to conventional

type 1 diabetes, but there are also some common diagnostic

features. In addition, we refer to Wu et al. (100) summary

of comparison of disease phenotypes in checkpoint inhibitor

associated autoimmune diabetes versus traditional type 1

diabetes (Supplementary Table S4).

In the present case, a 70-year-old female patient denied

a history of diabetes and had no obvious symptoms of

hyperglycemia. At the onset of the disease, the plasma

glucose level significantly increased, islet failure occurred,

and the patient was dependent on insulin treatment.

Combined with previous reports of related cases (10–24),

the characteristics of PD-1 inhibitor-associated type 1

diabetes can be summarized as follows: (1) Late-onset age.

More common in elderly people; (2) Fast islet failure. Most

patients have C-peptide < 0.1 ng/mL at onset; (3) Diverse

clinical manifestations. Including polydipsia, polydipsia,

polyuria, nausea, vomiting, dizziness, fatigue, abdominal pain,

diarrhea, and even coma; (4) Potential combination with other

endocrine gland dysfunctions. Which is often associated with

thyroid dysfunction.
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PD-1 inhibitor-associated type 1 diabetes progresses rapidly

and causes critical illness. If the diagnosis and treatment are

not timely, it may endanger the patient’s life. Clinicians should

inform patients about the potential risks of PD-1 inhibitors

in diabetes and the ways to identify hyperglycemia and DKA

symptoms, enhance diabetes-related knowledge, and regularly

detect plasma glucose level, urine glucose level, blood ketones,

urine ketone, electrolyte, arterial blood gas, and so forth.

Moreover, most reports stated that there were no remissions

of type 1 diabetes regardless of cessation of PD-1 inhibitor

treatment (64). That is, stopping the PD-1 inhibitor will

not influence the recovery of β-cells, requiring long-term

insulin therapy (101). Whether to continue PD-1 inhibitor

treatment once glycemic control has been attained has not yet

been established. The American Society of Clinical Oncology

and National Comprehensive Cancer Network guidelines

recommend withholding therapy until glucose control is

achieved (102). This patient continued to receive camrelizumab

after stable glycemic control.

In addition, PD-1 inhibitors are also used for

treating patients with type 2 diabetes complicated

with tumors. We reviewed the cases of six patients

with a history of type 2 diabetes who developed

DKA after two treatment cycles with PD-1 inhibitors

(11, 27, 36, 44, 68, 72) and had positive insulin autoantibodies

and low C-peptide levels. Whether such patients are

more sensitive to immune checkpoint inhibitors needs

further exploration.

Conclusion

In summary, as PD-1 inhibitors are widely used by

patients with cancer, the reports of type 1 diabetes should

attract the attention of clinicians. Further, they should

help improve the recognition of hyperglycemia or DKA

symptoms in patients, necessitating the close follow-up of

patients during treatment, regular monitoring of plasma

glucose level, prompt detection, and correct diagnosis and

treatment of diabetes. Further, novel biomarkers of susceptibility

should be identified to better guide drug treatment in

the future.
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