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Introduction: Cancer happening rates in humankind are gradually rising due to a

variety of reasons, and sensible detection and management are essential to decrease

the disease rates. The kidney is one of the vital organs in human physiology, and

cancer in the kidney is a medical emergency and needs accurate diagnosis and

well-organized management.

Methods: The proposed work aims to develop a framework to classify renal

computed tomography (CT) images into healthy/cancer classes using pre-trained

deep-learning schemes. To improve the detection accuracy, this work suggests a

threshold filter-based pre-processing scheme, which helps in removing the artefact in

the CT slices to achieve better detection. The various stages of this scheme involve:

(i) Image collection, resizing, and artefact removal, (ii) Deep features extraction, (iii)

Feature reduction and fusion, and (iv) Binary classification using five-fold cross-

validation.

Results and discussion: This experimental investigation is executed separately for:

(i) CT slices with the artefact and (ii) CT slices without the artefact. As a result of the

experimental outcome of this study, the K-Nearest Neighbor (KNN) classifier is able

to achieve 100% detection accuracy by using the pre-processed CT slices. Therefore,

this scheme can be considered for the purpose of examining clinical grade renal CT

images, as it is clinically significant.

KEYWORDS

kidney cancer, renal CT slices, deep learning, KNN classifier, validation

1. Introduction

It is becoming increasingly apparent that infectious and acute syndromes are rising

worldwide. Appropriate clinical procedures are necessary for detecting and treating these

diseases as early as possible. Untreated diseases will likely result in various problems, including

death, and theymay also burden the healthcare system substantially. It should be noted that acute

diseases are usually more severe than infectious diseases. Compared with infectious diseases,

acute diseases will also lead to death in individuals. According to the current literature, cancer is

a severe acute disease that accounts for a substantial number of deaths worldwide and has been

identified as a disease that causes many deaths as well (1–3).
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A report published by the World Health Organization (WHO) in

2020 shows that cancer was the leading cause of death worldwide in

2020 and is expected to continue in that way.1 Several studies have

indicated that, in the year 2020, approximately 10 million people will

have died worldwide from various cancer-related causes, including

cancer of the internal and external organs. According to this report,

lung and colon cancer are the leading causes of death worldwide.

The Global Cancer Observatory (GCO) report lists several cancer

cases in various body organs.2 This report lists cancer in organs based

on its occurrence rate, cancer in the kidney is listed as the 14th most

dangerous disease, and untreated renal cancer will lead to death. This

report also confirms that, in 2020, the number of cancer patients

increased to 431,288. This report also confirms that nearly 430,000

new cases will be diagnosed in 2020 alone. According to the disease

prediction byGCO, kidney (renal) cancer is severe, and its occurrence

rate is gradually rising due to various causes. Early recognition and

management are compulsory to cure the disease completely using

appropriate medications. Kidney cancer (KC) is commonly assessed

by automatic methods using a chosen medical imaging dataset (renal

CT images), and the achieved results are analyzed and recorded for

further investigation.

The earlier studies in the literature confirm that renal CT (RCT)-

based kidney detection is a recommended procedure to precisely

detect kidney abnormality during the disease screening process.

Usually, the RCT is collected as a three-dimensional (3D) image, and

then, a 3D to 2D conversion is employed to reduce the computation

complexity during the RCT analysis (4, 5). The axial-plane 2D slices

are commonly adopted in the literature, and it helps to provide the

necessary information about abdominal conditions, including kidney

health. Hence, this study also considered the axial-plane 2D RCT

slices to examine the KC. Before implementing the detection task,

every image is resized to a recommended dimension.

The ultimate task of this investigation is to prepare a disease

detection structure to accurately identify the KC using the RCT

images with the help of the chosen deep-learning scheme. To achieve

better detection accuracy, this study implemented a preprocessing

image procedure to treat the raw renal CT using a threshold filter

approach discussed in earlier research. In the earlier studies, this

arrangement is considered to strip the skull region from the brain

MRI slices (6, 7) and to remove the artifact in lung CT slices

(8–10). A similar procedure is adopted in this study to remove

the artifact in RCT slices to improve the visibility of the kidney

section. The proposed cancer detection framework consists of the

following phases:

i. Image resizing and artifact removal using threshold filter.

ii. Deep feature extraction using chosen pre-trained methods.

iii. Dual-deep feature generation using serially concatenated

deep features.

iv. Binary classification and verification using a

5-fold cross-validation.

The merit of the computerized scheme depends on its

explainability and robustness, and hence, this study considered

a framework that is very simple and robust (11). This scheme

1 https://www.who.int/health-topics/cancer

2 https://gco.iarc.fr/

considered MATLAB for initial image processing, and the developed

framework is implemented using PYTHON. The experimental

exploration is separately implemented using (i) RCT with the artifact

and (ii) RCT without the artifact, and the achieved performance

values are compared. This approves that the classification accuracy

realized with the artifact-removed RCT is better than the raw

RCT. Furthermore, this study employs pre-trained schemes, such

as VGG16, VGG19, ResNet50, ResNet101, DenseNet121, and

DenseNet201, to obtain better detection in the considered task.

The results authorize that the outcome achieved with VGG19

and DenseNet121 is better for the chosen RCT, and hence, the

proposed scheme is implemented using deep features of (i) VGG19

and (ii) DenseNet121 and serially concatenated features of VGG19

and DenseNet121 after a 50% dropout. The deep feature-based

classification helps accomplish an accuracy of 100% with the RCT

without the artifact. This confirms that the proposed framework is

clinically noteworthy and can be considered to identify the KC from

the RCT collected from actual patients.

The key contributions of this framework include the following:

i. Threshold filter-supported preprocessing is executed to

eliminate artifacts in RCT.

ii. Implementation of the proven deep-learning schemes to detect

the KC using RCT.

iii. Implementation of serially concatenated deep features to

enhance the KC detection accuracy.

This study is divided into the following sections: Section 2

presents the context, Section 3 illustrates the methodology, and

Sections 4 and 5 discuss the results and conclusions.

2. Related studies

Computerized disease screening and diagnosis is one of the

recent advancements, adopted in a variety of hospitals and disease

screening laboratories to reduce the diagnostic burden of doctors

and lab technicians. The increased disease occurrence rates need

a faster and more accurate system to detect the disease using

chosen medical data. The bio-image-supported disease screening is

a common and widely adopted procedure to verify the condition of

the internal organs. Furthermore, the bio-image-supported methods

support accurate disease information compared with other medical

modalities, and hence, these methods are widely employed to screen

patients suffering due to cancer.

Kidney cancer is one of the acute diseases and ranked 14th

based on the year 2020 reports of the WHO and GCO. Appropriate

diagnosis and treatment will help the patient to recover from the

disease. Due to its importance, a number of computerized schemes

are discussed by the researchers to distinguish the KC using RCT

pictures. Table 1 summarizes a few chosen KC detection procedures

found in the literature.

Along with the above-considered studies, the research by

Abdelrahman and Viriri (21) presents a detailed survey on traditional

and deep-learning segmentation of the abnormal fragment in the

kidney in RCT images. The research by Wang et al. (22) also presents

a thorough evaluation of the deep-learning-supported scheme for

biomedical image examination, including the RCT. These studies

authorize the need for a well-organized methodology to detect
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TABLE 1 Summary of the renal CT image examination methods.

References Procedure implemented Outcome

Alzu’bi et al.

(12)

This study presents a new database of

RCT images, which has been created

using VGG16 code and ResNet50

support, which is used to detect the KC

97% accuracy

Xu et al. (13) As a result of the implementation of

ResNet50 and ResNet101, the cropped

RCT images have been classified into the

following two categories: healthy and

cancerous

>82% accuracy

Amiri et a l.

(14)

The execution of the machine learning

scheme with a radiomics feature is

discussed in order to detect kidney

abnormalities by using RCT slices to

perform the machine learning

94% accuracy

Miskin et al.

(15)

With the application of machine

learning techniques based on the

cropped RCT images, the detection of

benign and malignant cystic renal

masses can be accomplished

93% specificity

Shehata et al.

(16)

An innovative computer-assisted

diagnosis system is proposed for

examining kidney cancer in cropped

RCT slices using a novel comprehensive

renal cancer computer-assisted

diagnosis scheme

89.6% accuracy

Nikpanah et al.

(17)

A deep-learning-supported technique

based on multi-phasic MRI is presented

as an example of the execution of the

technique for detecting the clear cell

renal cell carcinoma

81% accuracy

Heller et al.

(18)

With the use of the KiTS19 challenge

benchmark 3D RCT images, we are able

to segment the abnormal kidney region

using 3D U-Net

Dice value of 97.4

and 0.85.1% is

achieved for kidney

and tumor,

respectively

Bhandari et al.

(19)

The present study discusses the

detection of low/high-grade renal cell

cancers from RCT images in detail

82 to 96% Area

Under Curve

(AUC) is present.

Islam et al.

(20)

The work presented here implemented

the VGG16, InceptionV3, and resNet50

using RCT slices to detect kidney

abnormalities in multi-classes, with the

VGG16 presenting a better detection

metric compared to the others

98.2% accuracy

abnormality from the chosen medical image. Hence, in this research,

a framework based on deep learning is proposed to detect the KC

from the axial-plane RCT slices accurately.

3. Methodology

Using a binary classifier, this research division demonstrates how

RCT slices are classified into healthy and cancerous classes in an axial

plane.When the patient visits the nephrologist to verify the condition

of the kidney, a recommended clinical protocol will be followed by

the doctor to examine the kidney and its condition, and based on the

observations/disease symptoms, the nephrologist recommends a bio-

imaging-based examination to get the complete information about

the kidney. When the patient undergoes a CT scan, it will provide a

3D picture of the abdominal region, which is then converted into 2D

to reduce the computational complexity. Furthermore, the personal

verification of the kidney section from the bio-image needs a 2D

picture printed on a specialized film. A similar procedure is executed

when a computer-supported diagnosis is implemented.

From the data collection to the decision-making process, the

proposed scheme is depicted in Figure 1. A number of procedures

are involved in the proposed scheme, including image collection and

preprocessing for improved detection accuracy, feature extraction

utilizing a selected deep-learning technique, feature reduction, and

serial feature concatenation to produce the fused feature vector,

binary classification via 5-fold cross-validation, and verification of the

proposed scheme’s performance on the basis of the results obtained.

In this study, the fused feature vector is constructed by integrating

the deep features of VGG19 and DenseNet121. In addition, based

on the computation of performance measures, the merit of the

proposed scheme is confirmed based on the evaluation of these

features to determine the classification performance of SoftMax and

other binary classifiers.

3.1. Image database

This study considered the axial-plane RCT slices provided by

Islam et al. (21). This dataset consists of both the axial-plane and

coronal-plane images with categories, such as cyst, stone, cancer,

and healthy. In this study, only the healthy and cancer axial-plane

images alone are considered for the examination. To have a balanced

database, this study considered 2,680 images (1,340 healthy class

and 1,340 cancer class). Before implementing the classification task,

every image is resized to 224 × 224 × 1 pixels. The proposed

detection task is implemented using the RCT with and without

the artifact, and the obtained results are separately examined and

verified. Figure 2 represents the trial imageries considered in this

study, and the number of images considered in this study is depicted

in Table 2. In this study, 80% of images are considered to train the

deep-learning scheme, 10% of images are considered for validation,

and the remaining 10% of images are used to test the performance

of the scheme with a 5-fold cross-validation with individual and

fused features.

3.1.1. Artifact removal
Themerit of the automaticmedical image examination procedure

depends mainly on the image database considered during the

experimental investigation. The earlier studies in the research verify

that the images without the artifact help in achieving a better

accuracy compared with the images with the artifact (23). This

study implements a threshold filter-supported method to remove

the artifact from the chosen RCT, and this task is executed using

MATLAB software as discussed in (24). In this process, the threshold

value (Th), which separates the image into a processed artifact,

is identified manually. When an appropriate Th is obtained, it is

implemented to divide the raw test image into two sections as shown

in Figure 3. Figure 3A shows the raw RCT, and Figures 3B, C shows

the processed picture and the removed artifact. This task depends on

the threshold level of the image, and it is shown in Figure 3D. The

original histogram (red) depicts the pixel distribution of the raw RCT,

the green histogram depicts the pixel distribution of the processed
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FIGURE 1

Kidney cancer detection framework.

image, and the remaining section (blue) shows the pixel value of

the artifact.

3.2. Deep-learning model

Recently, pre-trained and customized deep-learning procedures

have been widely implemented in various data analytic tasks due

to their performance, ease of implementation, and significance.

Compared to the traditional and machine-learning schemes, the

deep-learning procedures efficiently provide a better result on

moderate and large datasets. Furthermore, most of these methods can

be practically implementable in a chosen hardware system, improving

its performance (25–27).

Researchers have recently widely employed pre-trained models

to achieve better results during medical image examination tasks.

The proposed research study also implements well-known pre-

training procedures, such as VGG16, VGG19, ResNet50, ResNet101,

DenseNet121, and DenseNet201, to examine the KC in RCT slices.

The complete evidence concerning the preferred schemes can be

found in the literature (28–32), and in this study, these schemes are

considered along with chosen binary classifiers. The following initial

parameters are assigned for these models: learning rate = 1×10−5,

training with linear dropout rate (LDR), Adam optimization,

ReLu activation, total iteration = 2000, total epochs = 150, and

classification with a SoftMax unit using a 5-fold cross-validation.

Before implementing the developed scheme, an image

augmentation procedure is implemented to increase the learning

capability of the chosen deep-learning systems. The augmentation

process involves the horizontal and vertical flip, an angle-based

rotation, and zoom-in and zoom-out. This helps the system to learn

better about the features of the image.

3.3. Feature vector generation and
classification

Each deep-learning procedure implemented in this study

provides a deep feature vector of dimension 1 x 1 x 1,000, which

is then used to authenticate the merit of the classifiers. The feature
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FIGURE 2

Sample axial-plane test images of renal CT slices.

TABLE 2 Dataset considered to verify the proposed framework.

Class Dimension Number of images

Total Training (80%) Validation (10%) Testing (10%)

Healthy 224× 224× 1 1,340 1,072 134 134

Cancer 224× 224× 1 1,340 1,072 134 134

vector after a 50% dropout will offer a reduced feature vector of

dimension 1 x 1 x 500, which is the concatenated deep feature

with similar reduced features to achieve a fused feature vector

of dimension 1 x 1 x 1,000, which helps in achieving a better

classification accuracy during the RCT-based KC detection task. The

total dimension of these features is 1 x 1 x 1,000, which is then

reduced to 1 x 1 x 500 using a 50% dropout, and from this, the

fused feature vector is obtained. The feature vectors of this system

are depicted in Equations (1)–(3) (33, 34):

DLFVGG19 (1×1×1000) = VGG191,1,VGG191,2, ...,VGG19(1,1000)

(1)

DLFDenseNet121 (1×1×1000) = DN1,1,DN1,2, ...,DN(1,1000) (2)

DLFVGG+DN (1×1×1000) = VGG+ DN1,1,VGG

+ DN1,2, ...,VGG+ DN(1,1000) (3)

where DLF = deep-learning features, VGG = VGG19,

and DN= DenseNet121.

3.4. Performance metric computation

Performance metrics obtained during the classification task are

used to verify the merit of the proposed scheme. To begin with,

the measures, such as true-positive (TP), false-positive (FP), true-

negative (TN), and false-negative (FN), are computed from the

confusion matrix presented in Equations, which are then used

to implement these values into mathematical expressions. From

Equations (4) to (9), the necessary measures, such as accuracy

(ACC), precision (PRE), sensitivity (SEN), specificity (SPE), F1-score

(F1S), and Matthews correlation coefficient (MCC), are calculated.

In contrast to the binary classification task in this study, SoftMax,

Nave-Bayes (NB), decision trees (DT), random forests (RF), KNNs,

and support vector machine (SVM) are used (35–37).

ACC =
TP + TN

TP + TN + FP + FN
(4)

PRE =
TP

TP + FP
(5)

SEN =
TP

TP + FN
(6)

SPE =
TN

TN + FP
(7)

F1S =
2TP

2TP + FP + FN
(8)

MCC =
(TP∗TN) − (FP∗FN)

√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

(9)

4. Results and discussions

The proposed study is implemented with MATLAB and Python

on a workstation equipped with an Intel i7 2.9 GHz processor, 20 GB

RAM, and 4 GB VRAM.

Initially, the proposed framework is implemented on the raw

RCT images with the artifacts, and the classification performance
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FIGURE 3

Implementation of threshold filter to eliminate the artifact. (A) Original image. (B) Processed image. (C) Artifact. (D) Gray-scale histogram.

TABLE 3 Classification results achieved for raw renal CT slice with a SoftMax classifier.

Scheme TP FN TN FP ACC PRE SEN SPE F1S MCC

VGG16 118 15 116 19 87.3134 86.1314 88.7218 85.9259 87.4074 74.6644

VGG19 118 17 121 12 89.1791 90.7692 87.4074 90.9774 89.0566 78.4176

ResNet50 120 13 116 19 88.0597 86.3309 90.2256 85.9259 88.2353 76.2024

ResNet101 117 20 117 14 87.3134 89.3130 85.4015 89.3130 87.3134 74.7144

DenseNet121 118 18 119 13 88.4328 90.0763 86.7647 90.1515 88.3895 76.9269

DenseNet201 118 20 116 14 87.3134 89.3939 85.5072 89.2308 87.4074 74.7130

The bold contents are the considered best metric.

is verified using the chosen binary classifiers. Then, the RCT

classification performance of chosen pre-trained models is verified

using the raw axial-plane images, and the outcomes are equated.

The outcome of this experiment authorizes that the SoftMax-based

binary classification with a 5-fold cross-validation provides a better

detection performance with VGG19 and DenseNet121 methods

compared with VGG16, ResNet50, ResNet101, and DenseNet201.

Furthermore, along with the detection accuracy, the MCC achieved

with these schemes is also better; this information is shown in Table 2.

A similar experimental task is repeated using the images whose

artifacts are eliminated with a threshold filter. The results of this study

confirm that this process offers a better ACC and MCC than other

methods, as represented in Table 3. This table also approves that the

VGG19 and DenseNet121 offer better performance. Table 5 presents

the outcome for VGG16 with a SoftMax for various folds, and the

best fold value is chosen as the outcome. The result of a chosen cross-

validation approach is also presented in Figure 4. In this figure, the

Glyph plot of Tables 3, 4 is separately developed and merged. These

images are necessary to confirm the overall merit of this scheme,

and this confirms that the artifact-removed RCT provides a better

result than other methods. In addition, the result authorizes that this

structure works fine on the chosen RCT images.
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FIGURE 4

Integrated Glyph plot to demonstrate the overall performance of the considered methods.

TABLE 4 Classification results achieved for processed renal CT slice with a SoftMax classifier.

Scheme TP FN TN FP ACC PRE SEN SPE F1S MCC

VGG16 124 9 129 6 94.4030 95.3846 93.2331 95.5556 94.2966 88.8257

VGG19 127 7 128 6 95.1493 95.4887 94.7761 95.5224 95.1311 90.3010

ResNet50 125 8 127 8 94.0299 93.9850 93.9850 94.0741 93.9850 88.0590

ResNet101 128 5 126 9 94.7761 93.4307 96.2406 93.3333 94.8148 89.5939

DenseNet121 129 5 127 7 95.5224 94.8529 96.2687 94.7761 95.5556 91.0549

DenseNet201 126 9 127 6 94.4030 95.4545 93.3333 95.4887 94.3820 88.8295

The bold contents are the considered best metric.

FIGURE 5

Convergence of training and validation process. (A) Accuracy. (B) Loss.
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FIGURE 6

Intermediate layer outcomes collected from VGG19. (A) Conv1. (B) Conv2. (C) Conv3. (D) Conv4. (E) Conv5.

FIGURE 7

Confusion matrix and ROC curve achieved with fused features. (A) Confusion matrix. (B) the ROC curve.

The performance of the proposed system is then verified

by considering the fused deep features of dimension 1 x 1 x

1,000. During this task, the VGG19 and DenseNet121 features are

considered. Then, their features are sorted based on their value, and

finally, a 50% dropout of these features is employed. To execute

the classification task, the attained features are then serially fused

to achieve a fused feature vector with dimensions of 1 x 1 x 1,000

pixels. The result of this experiment with fused features is presented

in Figures 5–7. Figure 5 presents the convergence achieved with

RCT image databases, and this figure confirms that the proposed

method helps to achieve better detection accuracy (1,000%) than

other methods. Figures 5A, B denote the experimental result achieved

in this study.

The convolutional layer outcome was extracted with these results

to verify the framework’s performance with the chosen database. The

results of Figure 6 show that this method will provide a better result

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1109236
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Rajinikanth et al. 10.3389/fpubh.2023.1109236

TABLE 5 Outcome of VGG16 with SoftMax for a 5-fold cross-validation.

Cross-validation TP FN TN FP ACC PRE SEN SPE F1S MCC

Fold 1 125 10 128 5 94.4030 96.1538 92.5926 96.2406 94.3396 88.8703

Fold 2 126 7 126 9 94.0299 93.3333 94.7368 93.3333 94.0299 88.0702

Fold 3 121 11 130 6 93.6567 95.2756 91.6667 95.5882 93.4363 87.3645

Fold 4 127 5 126 10 94.4030 92.7007 96.2121 92.6471 94.4238 88.8716

Fold 5 127 7 128 6 95.1493 95.4887 94.7761 95.5224 95.1311 90.3010

The bold contents are the considered best metric.

TABLE 6 Overall results achieved with the proposed framework for individual and fused features.

Image Classifier TP FN TN FP ACC PRE SEN SPE F1S MCC

V
G
G
19

SoftMax 127 7 128 6 95.1493 95.4887 94.7761 95.5224 95.1311 90.3010

NB 128 6 130 4 96.2687 96.9697 95.5224 97.0149 96.2406 92.5476

DT 127 4 130 7 95.8955 94.7761 96.9466 94.8905 95.8491 91.8141

RF 128 7 128 5 95.5224 96.2406 94.8148 96.2406 95.5224 91.0554

KNN 129 5 129 5 96.2687 96.2687 96.2687 96.2687 96.2687 92.5373

SVM 130 5 127 6 95.8955 95.5882 96.2963 95.4887 95.9410 91.7927

D
en
se
N
et
12
1

SoftMax 129 5 127 7 95.5224 94.8529 96.2687 94.7761 95.5556 91.0549

NB 129 7 129 3 96.2687 97.7273 94.8529 97.7273 96.2687 92.5802

DT 130 5 128 5 96.2687 96.2963 96.2963 96.2406 96.2963 92.5369

RF 128 4 129 7 95.8955 94.8148 96.9697 94.8529 95.8801 91.8150

KNN 129 6 130 3 96.6418 97.7273 95.5556 97.7444 96.6292 93.3077

SVM 129 4 127 8 95.5224 94.1606 96.9925 94.0741 95.5556 91.0868

F
u
se
d
d
ee
p
fe
at
u
re
s
(V

G
G
+
D
N
)

SoftMax 133 0 134 1 99.6269 99.2537 100 99.2593 99.6255 99.2565

NB 137 1 128 2 98.8806 98.5612 99.2754 98.4615 98.9170 97.7614

DT 132 2 133 1 98.8806 99.2481 98.5075 99.2537 98.8764 97.7639

RF 132 3 132 1 98.5075 99.2481 97.7778 99.2481 98.5075 97.0259

KNN 139 0 129 0 100 100 100 100 100 100

SVM 136 2 128 2 98.5075 98.5507 98.5507 98.4615 98.5507 97.0123

The bold contents are the considered best metric.

FIGURE 8

Spider plot achieved using the results of Table 6. (A) VGG19. (B) DenseNet121. (C) Fused deep features (VGG+DN).
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and efficiency in completing the task. Figure 7 presents the outcome

of the proposed technique, which shows the confusion matrix and

the receiver operating characteristic (ROC), which depends mainly

on the test images considered. The ROC value achieved is improved

compared with the alternatives.

The result of this method authorizes that this system benefits

in achieving a better result, and these measures for the experiment

with conventional and fused features are shown in Table 5. The initial

result for this table is achieved using a VGG19 and DenseNet121,

which confirms the merit of the proposed technique. Finally, a spider

plot is constructed to demonstrate the result in a graphical form, and

the best result is highlighted.

The task of the proposed scheme is successfully employed

using the fused features, and this scheme helps to accomplish

an improved recognition accuracy (100%) compared with other

methods found in the literature. The performance evaluation of

Table 6 presented in Figure 8 confirms its overall merit on various

classifiers. Figures 8A–C present the classification performance for

different feature vectors. The main limitation of this research is

the implementation of the threshold filter, which needs a manually

verified Th. Nevertheless, the merit of the proposed scheme is verified

using the clinical grade CT database, and the achieved experimental

outcome verifies that the planned technique is better and helps

to get better detection accuracy. The limitation of the proposed

study is it needs an artifact removal process and it can be replaced

by a chosen image enhancement scheme to achieve better disease

detection accuracy.

5. Conclusion

The literature authorizes that cancer is a severe disease in human

communities, and early diagnosis and treatment are necessary.

When the cancer is accurately diagnosed, it can be controlled

using a recommended clinical protocol. Due to its importance, a

substantial amount of automatic cancer detection based on the bio-

image-supported technique has been proposed and executed by

researchers (38). The proposed study aims to develop a framework

to effectively detect the KC in RCT images with the help of pre-

trained deep-learning procedures. This study considered VGG19 and

DenseNet121 schemes to classify the RCT into healthy/cancer classes

with improved accuracy. As part of this study, individual DLFs and

fused DLFs are employed to perform the binary classification task,

and the results are compared to identify the most appropriate KC

scheme. According to the results of this study, a binary classification

with a KNN classifier was effective in achieving an accuracy of

100% for RCTs that had previously been preprocessed using a

threshold filter. Based on the results of this research, the proposed

framework appears to be effective, and it will be possible to test

and validate its performance using clinically collected RCT slices

in future.
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