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Intervertebral disc
degeneration—Current
therapeutic options and
challenges

Ankita Samanta, Thomas Lufkin and Petra Kraus*

Department of Biology, Clarkson University, Potsdam, NY, United States

Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due

to the spine’s declining function and the development of pain, it may a�ect

one’s physical health, mental health, and socioeconomic status. Most of the

intervertebral disc degeneration (IVDD) therapies today focus on the symptoms

of low back pain rather than the underlying etiology or mechanical function of

the disc. The deteriorated disc is typically not restored by conservative or surgical

therapies that largely focus on correcting symptoms and structural abnormalities.

To enhance the clinical outcome and the quality of life of a patient, several

therapeutic modalities have been created. In this review, we discuss genetic and

environmental causes of IVDD and describe promising modern endogenous and

exogenous therapeutic approaches including their applicability and relevance to

the degeneration process.
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Introduction

Low back pain (LBP) is one of the most common health concerns in the world. It affects

a significant part of the population and, in the United States, has the highest health-related

economic cost of up to 560–630 billion dollars per year (1–3). It is estimated that between

70 and 85% of the population will experience LBP at some point in their lives and that it

can already limit activities in those under the age of 45, posing a significant socioeconomic

impact by accounting for over 100 million lost workdays annually in the USA alone (4, 5).

LBP presents as one of the most frequent causes of disability among young adults (6, 7).

Although the reasons for most cases of LBP are unknown, intervertebral disc degeneration

(IVDD) is regarded as the most common factor (1, 8). IVDD is not limited to humans (9).

The organ affected in IVDD is the intervertebral disc (IVD). The IVD is a semi-movable joint

and a cushion of fibrocartilage between the vertebrae. It is comprised of a central nucleus

pulposus (NP) surrounded by an inner and outer annulus fibrosus (AF) and is sandwiched

between the cartilaginous endplates (CEP) as seen in Figure 1A (10–15). The AF is made

up of concentric lamellae, which are densely interwoven collagen bundles that run obliquely

between adjacent vertebral bodies (14, 16). The NP, on the other hand, has a loose collagen

network and is highly hydrated (11, 14, 16). Compared to other tissue types, NP cells are

present at a low cell-density (3,000 cells/mm3) sequestered in an abundance of extracellular

matrix (ECM) while the cell density in the AF is ∼3× higher (17–19). The strong, fibrous

collagen framework of the disc holds cells and proteoglycans (PG) in the matrix in place

while securing the disc to the vertebral bodies (20, 21). Collagen II represents ∼20% of the

NP dry weight, while PG, especially the big aggregating PG aggrecan (ACAN), make up
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∼50% of the NP dry weight (22), the latter providing the osmotic

swelling pressure that maintains disc height and turgor amidst

heavy compressive loads or impacts.

During embryogenesis carefully orchestrated events give rise

to the notochord (NC) a crucial structure during early chordate

development that is filled with relatively large, vacuolized NC

cells. NC cells take on an important function in maintaining

hydro-pressure against external forces through the production of

polarmacromolecules (23, 24).While largely considered conserved,

precise events of early notochord generation might vary between

different chordate species (25). Genetic engineering in mouse

demonstrated not only that the NP is of NC origin but also

identified the expression of many important transcription and

signaling factors that are involved in these early patterning events

such as Shh, Sox5, Sox6 and Sox9; the Paired box genes Pax1

and Pax9 alongside Nkx3.2 (Bapx1), Noto and Brachyury (Tbx1)

to name a few (26–37). NC cells make up the NP of early

vertebrate IVDs (38, 39) but depending on the species, these cells

might be reduced to a minimum population with different ratios

compared to other IVD cells, rendering the NP a heterogeneous cell

population (40–44). This loss of NC cells is often correlated with the

onset of disc degeneration (45). Morphology and cell composition

of the adult NP can differ between mammalian species (46, 47). In

some rodents popular in research NC-like cells are retained into

adulthood, whereas in other animals, chondrocyte-like (CL) cells

becomemore prominent over time. The origin of these CL cells is of

debate. Transdifferentiation of NC cells into CL cells, or progenitor

cell recruitment into the NP by NC cells prior to undergoing

regulated cell death are considered. Previously receptor tyrosine

kinase (Tek or Tie2) and disialoganglioside 2 (Gd2) expression

was used to identify multipotent stem cell populations in the IVD,

while the siaologlycoprotein encoding gene CD24 plays a role

in the differentiation of different cell types. Tie2+/Gd2–/CD24–

progenitor cells were identified in the mouse, human and bovine

NP and described as dormant stem cells (47–49). A gradual change

from a Tie2+/Gd2+/CD24– phenotype with self-renewal potential

and stem cell properties to a Tie2–/Gd2+/CD24– phenotype of

potential and a Tie2–/Gd2+/CD24+ phenotype of committed NP

FIGURE 1

The intervertebral disc. (A) Healthy IVD (B) Degenerated IVD. AF, annulus fibrosus; CEP, cartilaginous end plates; NP, nucleus pulposus. This figure

created in the Mind the Graph platform (www.mindthegraph.com).

progenitors before committing to a mature NP phenotype (Tie2–

/Gd2–/CD24+) was suggested (47, 48). Recent single cell RNA

sequencing (scRNASeq) analysis of sorted murine NP cells from

1 month old C57BL/6 mice identified four subpopulations. One

with an enrichment of stemness genes was considered as NP

progenitor cells involved in the regulation of cell growth and

differentiation based on their transcription factor profile (50). A

mouse NP progenitor cell population expressing the G-protein-

coupled receptor Uts2R was located in the peripheral NP, with the

majority of these cells expressing Tie2 and ∼1/3 Tie2 and Gd2.

The authors demonstrated that this progenitor population declines

in IVDD (50) supporting work pioneered by Sakai et al. (47). It

was further suggested through Krt19 fate mapping that CL cells

in the lumbar NP of mice older than 18 months represent a NP

cell derived terminal differentiation stage and that <15% thereof

remain Shh positive, suggesting age-related transdifferentiation

over cell invasion (51). In the human NP, NC cells disappear in

early childhood (4–10 years of age) (46, 52, 53). ScRNASeq recently

deciphered several cell clusters in the healthy human IVD, amongst

them three chondrocyte subclusters with many cells expressing

Noggin (NOG), a small group of cells expressing NC markers

TBXT and KRT8 and a group of multipotent NP progenitor

cells expressing PROCR, a gene associated with signaling receptor

activity and stemness, and PDGFRA associated with mesenchymal

stem cells (MSC), molecular evidence suggesting that different cell

morphologies in the NP reflect phases of NC lineage cells during

aging and degeneration (54). Based on these findings a correlation

between declining numbers ofUTS2R+ or TIE2+/GD2+ stem-like

cells and the onset of IVDD would also be expected, yet was not

specifically described for human NP CL cell populations of various

IVDD degrees (55, 56), however the relevant stages might have

been missed.

One of the earliest changes in IVDD is a loss of PG content and

composition, resulting in reduced hydration, height and flexibility

of the disc (11) as seen in Figure 1B. IVDD is a chronic disorder

characterized by a progressive loss of mechanical stability and

shock absorber function, which can lead to the formation of

osteophytes and restricted motion in spinal segments (57). IVDD
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is frequently associated with spondylolisthesis, disc herniation,

sciatica, spinal canal stenosis, and degenerative scoliosis (58).

About 20% of teenagers show signs of beginning IVDD (5, 59)

including athletes, especially those involved in high impact sports

such as football, gymnastics and diving. While frequencies of

cervical spine injuries were studied amongst school-age and college

athletes (60, 61), IVD damage amongst this cohort is less well

documented (62). IVDD also affects the ability of the spine to

resist physiologically acceptable loads during daily activities, and

impacts on the function of adjacent tissues, such as the muscles

and ligaments (63). Chronic LBP continues to limit abilities and the

quality of life for a large percentage of the population, despite access

to invasive and expensive surgical interventions for discogenic pain

such as arthroplasty and arthrodesis (5, 64). Restoring the ECM

components of the IVD to their initial state would be preferable

(65). Therefore, initiatives have been undertaken to create non-

operative therapy modalities that are both efficient and secure. A

major area of study is the direct injection of active compounds

to prevent, slow down, or even reverse IVDD (66, 67). In the

past 30 years, numerous clinical trials investigating biologic, cell-

and scaffold-based injectable therapies for symptomatic IVDDhave

been undertaken (6, 17, 68). Several preclinical animal studies and

fundamental scientific investigations support each of the clinical

trials (69) (Table 1). However, scientifically established methods to

prevent or reverse IVDD and the accompanying discogenic pain

are not yet available. The current lack of success in treatments

demonstrates the complexity of this illness (137). In this review,

we present the status of IVDD causes alongside the challenges of

available therapies.

Causes of IVDD

IVDD is usually caused by a conflux of genetic, environmental

and lifestyle factors as well as trauma as seen in Figure 2.

Therefore, the genetic and environmental risk factors

outlined here might each or in combination contribute to

and aggravate IVDD as seen for comorbidities in other

chronic illnesses (138). Magnetic resonance imaging (MRI)

has improved classifications of disc degeneration (139–141).

IVDD frequently occurs when ECM catabolism outweighs

its anabolism (142). The pathophysiology of IVDD is

influenced by many other factors such as genetics and the

environment including an unhealthy lifestyle, inactivity, smoking,

occupational exposure to vibration, mechanical loading, severe

trauma, psychosocial problems, benefit payments and more

(143, 144).

Genetic factors

IVD cells are impacted by changes in ECM composition,

structure and function resulting from genetic polymorphisms

and DNA mutations (Table 2) (162, 163). Recent research on

heredity and linkage has undoubtedly increased awareness of

genetic predisposition to IVDD. However, the degree and

kind of genetic influences are still not fully understood. The

association between disc degeneration and genetic polymorphisms

such as variable number of tandem repeats (VNTR) or single

nucleotide polymorphisms (SNP) of certain ECM macromolecules

is considered a main genetic factor (164, 165). For example,

polymorphisms in PG encoding genes such as ACAN were

associated with IVDD. Polymorphisms affecting fibrillar collagen

ECM constituents like COL11A1 were reported in the context

of disc herniation and IVDD (166–169). Transgenic mice with

a mutation in Col9a1 demonstrated progressive IVDD, likely

affecting synthesis or assembly of non-fibrillar Col9a1 chains

(170); while COL9A2 and COL9A3 variants were significantly

correlated with sciatica and lumbar disc degeneration in a Finnish

population (171, 172). Other genetic associations involve ECM

remodeling enzymes such as matrix metalloproteinases (MMP),

more specifically MMP2 and MMP9, both a gelatinase and

type IV collagenase and MMP3, a PG degrading enzyme (173–

178). Other disintegrin, and metalloproteinases (ADAM), and

those with thrombospondin motifs (ADAMTS) show changes

in expression patterns during IVDD (173, 179–182). In this

context, polymorphisms in the vitamin D receptor (VDR) across

diverse ethnic backgrounds were linked to IVDD (168, 183–

188). While the foundation for some genetic studies was based

on a limited cohort size (189) the rapid development of next

and third generation sequencing technologies allowed for genome

wide association studies (GWAS) as seen beneficial in other

fields, alongside more targeted, specific studies of susceptibility

regions in large patient and control cohorts of different ethnic

backgrounds. This genetic association suggests a pleiotropic

nature of IVDD (190). For instance, transcriptional regulators

NFAT1 and SOX9 control the expression of many genes that

are both anabolic and catabolic and mediate ECM production

(191, 192). CHST3, encodes for an enzyme that catalyzes the

sulfation of chondroitin, an ECM PG (148). Amongst other

susceptibility loci identified through GWAS are known players in

the context or ECM production, chondrogenesis and cell survival

like BARX1, COL11A1, COLGALT2, TGFA, FGFR3, FOXA3,

GDF5, SMAD3, and TGFA (190). While most studies so far

focused on caucasian populations, a recent GWAS focusing on

a Chinese cohort identified polymorphisms near Gasdermin-C

(GSDMC). Interestingly, gasdermins are involved in mediating

pyroptosis as a form of regulated cell death (193), however

the studies phenotype/genetic variant association differed from

previous findings (150), indicating the importance of such

studies across different ethnic backgrounds as well as the need

for a precise definition of IVDD phenotypes in such studies.

Also, non-lethal polymorphisms in early IVD patterning genes

will likely surface over time as underlying cause. Furthermore,

both single cell and bulk transcript analysis of IVD derived

cells through RNASeq and other methods will likely point to

biomarkers for NP and AF cells of healthy or degenerated

discs worth investigating in IVDD linkage analysis (41, 42,

194–198). Going forward it will be crucial to investigate not

only polymorphisms in coding and regulatory regions such

as promoters or enhancer/silencer binding sites of genes but

also epigenetic modifications from methylation, acetylation and

lactylation involved in metabolic reprogramming among other
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TABLE 1 Preclinical studies for di�erent interventions using various model systems to assess therapeutic potentials in IVDD.

Preclinical in vivo studies on growth factors

Animal model Therapeutic source Brief outcome References

Rabbit PGDF-BB Alleviated disc degeneration, prevented apoptosis (70)

OP-1 Disc height increased
Disc height and proteoglycans increased

(71–73)

BMP-2 Increase of hypervascularity and fibroblast
proliferation

(74)

GDF-5 Increased cell proliferation and matrix synthesis (75)

PRP Disc height increased along with chondrocyte
proliferation

(76)

PRP PRP-ADSC group restored discs compared to
controls.

(77)

Rat IGF-1, GDF-5, TGFβ, bFGF Increase of GDF-5 and TGFβ (78)

GDF-5 Slows progression of degeneration (79)

Mouse GDF-5 Disc height increased (80)

Dog NTG-101 Decreased expression of pain related neutrophins (81)

Preclinical in vitro and in vivo studies on EVs

EV source Method Animal model Brief outcome References

AD-MSCs In vitro Human NPCs were protected from oxidative stress by the
lyo-secretome

(82)

BM-MSCs In vitro Mouse Increase in Col2 and Acan expression (83)

In vivo Decreased levels of Mmp3 and Mmp6

In vitro Mouse Reduced inflammatory cytokines and activated MAPK
pathway

(84)

In vitro Rat Inhibition of apoptosis and ECM catabolism (85)

In vitro Rat Decreased NPC apoptosis (86)

In vivo Slowed the decrease in disc height

In vitro Rat Apoptosis decreased for NPCs in treatment group. (87)

In vivo Alleviated expression of Tnf-α

In vitro Human Proliferation rate increased (88)

In vitro Human Reduction of ER stress-induced apoptosis (89)

In vitro Human Apoptosis reduced in degenerated disc cells. (90)

In vitro Human Upregulation of COL2A1 and ACAN (91)

In vitro Human Inhibition of AF cell autophagy (92)

UC-MSCs In vitro Human Prevented damage from high glucose induced injury (93)

USCs In vitro Human Lowered GRP78, GRP94, Caspase 3, and Caspase 12
expression

(94)

In vivo Rat Alleviated IVDD in vivo

MSCs In vitro Rat Inhibition of apoptosis
Alleviates IVDD

(95)

In vivo Alleviated IVDD hallmarks

In vitro Mouse Inhibited pyroptosis (96)

In vivo Alleviated IVDD

PLMSCs In vitro Human Induces proliferation and migration (97)

In vivo Mouse Increased ZNF121 expression

(Continued)
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TABLE 1 (Continued)

Preclinical in vitro and in vivo studies on EVs

EV source Method Animal model Brief outcome References

NCs In vitro Canine Increased GAG and collagen content (98)

Human Increased GAG and collagen content

In vitro Bovine Only canine CLCs were affected by the mild
concentration-dependent anabolic impact of EVs.

(99)

Canine

In vitro Human Angiogenesis was inhibited by EV conditioned media
via miR-140-5p, which also controls WNT/Catenin
signaling.

(100)

In vivo Mouse Vascularization in degenerated IVDs was inhibited by
EV conditioned media.

NPCs In vitro Rat Upregulation of Acan, Sox9, and Col2a1 compared to
controls

(101)

In vitro Human Increased expression of ACAN, SOX9, COL2A1,
HIF1a, CA12, and KRT19

(88)

In vivo Rat miR-223-3p application lowered C-fiber responses (102)

In vitro Rat P21 and P53 relative expression increased in senescent
NPC EVs.

(103)

N/A N/A NPC autophagy and EV secretion were induced by
rapamycin and bafilomycin A1 in an
autophagy-dependent manner.

(104)

In vitro Human Downregulation of SIRT1 in vitro (105)

In vivo Rat By adsorbing miRNA-141-5p and downregulating
SIRT1 in vivo, circRNA_0000253 accelerated IVDD.

In vitro Human Significant cellular uptake (106)

AFCs In vitro Human Degenerated AFC-EVs stimulated cell migration and
increased levels of IL-6, TNF-α, MMP-3, MMP-13, and
VEGF, whereas EVs originating from non-degenerated
AF cells had the opposite effects.

(107)

CEPCs In vitro Rat Apoptotic bodies promoted PPi metabolism, increased
Pi and decreased PPi

(108)

CESCs In vitro Rat Alleviation of IVDD by the activation of the PI3K/AKT
pathway

(109)

PMEFs In vivo Mouse Upregulation of Foxf1 and Brachyury (106)

Preclinical in vivo and in vitro studies on gene therapy

Therapeutic source Animal model Brief outcome References

Naringin Rat Might have a protective effect on IVD. (110)

Cannabidiol Rat High dose can only alleviate IVDD (111)

EGCG Rat Reduction of pain in vivo (112)

UA Rat UA alleviated IVDD (113)

E2 Rat E2 can regulate autophagy of IVD and can be a therapeutic agent in
postmenopausal women

(114)

Rat E2 downregulates catabolic proteins and prevents IVDD (115)

Icariin Rat Icariin reduced disruption of AF (116)

Resveratrol Rabbit Resveratrol alleviated IVDD (117)

Rat Levels of IL-1 and TNF-α proteins decreased (118)

(Continued)
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TABLE 1 (Continued)

Preclinical in vivo and in vitro studies on gene therapy

Therapeutic source Animal model Brief outcome References

CXB Dog In dogs with IVDD, the controlled dose of CXB partially inhibited the generation
of PGE2.

(119)

Dog In vivo, the progression of IVDD was reduced by intradiscal regulated release of
CXB.
Life quality improves without evident signs of regeneration

(120)

Berberine Rat Could alleviate IVDD in animal model (121)

Metformin Rat Showed a protective effect against IVDD (122)

Gefitinib Rat Decreased histological scores in comparison to the control group (123)

Statin Rat Intradiscal injection alleviates IVDD (124)

Luteoloside Rat ECM and NP tissues well preserved (125)

Curcumin Rat Lowered NF-κB-p65 and TNF-α expression (126)

Preclinical in vivo and in vitro studies on gene therapy

Vector Method Animal model Reference

BV In vivo Rabbit (127)

LV In vivo Rabbit (128)

RV In vitro Bovine (129)

AV In vitro, In vivo Rabbit (130)

In vivo Rabbit (131)

AAV In vivo Rat (132)

RNAi In vitro Rat (133)

Ultrasound targeted microbubble destruction In vivo Rat (134)

Polyplex micelle In vitro Human and rat (135)

CRISPR/Cas9 In vitro Human (136)

ACAN, Aggrecan; ADSC, adipose-derived mesenchymal stromal cell; AV, adenovirus; AAV, adeno-associated virus; AFC, annulus fibrosus cell; bFGF, basic fibroblast growth factor; BM-MSC,

bone marrow-derived mesenchymal stem cell; BMP, bone morphogenetic protein; BV, baculovirus; CEPC, cartilage endplate chondrocyte; CESC, cartilage endplate stem cell; CLC, chondrocyte

like cell; CXB, celecoxib; COL, collagen; E2, estradiol; ECM, extracellular matrix; ER, endoplasmic reticulum; EV, extracellular vesicle; GAG, glycosaminoglycan; GDF, growth differentiation

factor; IGF, insulin like growth factor; IL, interleukin; IVDD, intervertebral disc degeneration; LV, lentivirus; MAPK, mitogen activated protein kinase; MMP, matrix metalloproteinase;

MSC, mesenchymal stem cell; NC, notochordal cell; NF-kb, nuclear factor kappa-light-chain-enhancer of activated B cells; OP, osteogenic protein; Pi, inorganic phosphate; PPi, extracellular

pyrophosphate; PGDF-BB, platelet-derived growth factor BB; Pi, inorganic phosphate; PI3K/AKT, phosphatidylinositol 3-kinase Akt; PLMSC, placental mesenchymal stem cell; PMEF, primary

mouse embryonic fibroblast; PPi, extracellular pyrophosphate; PRP, platelet rich plasma; RNAi, RNA interference; RV, retrovirus; SIRT, Sirtuin; TGF, transforming growth factor; TNF, tumor

necrosis factor; UA, urolithin A; UC-MSC, umbilical cord-derived mesenchymal stem cell; USC, urine-derived stem cell.

effects (197, 199). This could facilitate the identification of

environmental variables as a factor in disc degeneration as IVDD

is a multifactorial disease (162, 200, 201).

Environmental factors

Metabolic stress factors
The disc’s microenvironment is complex. The healthy adult

NP is the largest avascular, organ in the vertebrate body and the

distance to the closest blood vessel can be up to 8mm (202).
Residing cells rely on diffusion from capillaries penetrating the
outer AF and adjacent CEPs to transport nutrients or oxygen and

to remove metabolic waste products. This generates challenging
circumstances for NP cell survival in this unique in vivo niche (203–
205). In a healthy NP, the oxygen tension is 2%; in a degenerated
NP, it is 1% (206). These anaerobic conditions result in lactic acid
fermentation for energy production (11, 203, 207, 208), which

alongside proton retention via ECM-PGs renders even the healthy

NP slightly acidic (∼pH 7.1). The acidity increases further in

the degenerate stage with pH readings of 6.5–5.7 (209–212). It

was reported that the activity of disc cells is extremely sensitive

to extracellular oxygen and pH in vitro, that ECM production

rates fall sharply at acidic pH and at low oxygen concentrations,

and that cells are not able to withstand extended exposure

to low pH (16, 213). Decreased nutrition supply was further

considered a cause of progressive IVDD with aging potentially

as an implication of increased calcification and erosion of the

CEP (22, 205, 214–217). Experimentally and in human patients,

it has been demonstrated that disruptions in nutrition delivery

have an impact on how oxygen and lactic acid are transported

in and out of the disc (206). However, it was also shown that

lactate can serve as carbon source for various cell types (218, 219)

and NP cells in their unique niche likely developed metabolic

adaptions catering to the use of lactic acid, given that primary

cells isolated from a healthy coccygeal bovine IVD preferred
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FIGURE 2

Causes of IVDD.

the absence of glucose in serum containing monolayer culture

(197). Disc degeneration and back discomfort are linked to

conditions that influence the blood flow to the vertebral body,

such as abdominal aortic atherosclerosis, increased CEP erosion

and calcification (216, 217, 220). Impairment of the CEPs also

alters the NP’s mechanical loading, which causes alterations in

the disc’s metabolism (221, 222). Endplate calcification as seen

in scoliotic discs can affect nutrients and metabolite transport

through the endplate and further aggravate hypoxia and an acidity

(223, 224). Calcified CEP with 50% reduction in permeability

resulted in disc deformity and a drop in IVD glucose levels to

half of levels in the healthy NP (225, 226). This could prevent

IVD cells from sustaining the ECM (222, 227). Additionally, it has

been shown that deteriorated IVDs exhibit chronic inflammation

(228), with increased expression of a number of pro-inflammatory

cytokines (207). This includes interleukin (IL) 1, MMP10 (229),

MMP12 (230), cyclooxygenase 2 (COX2) (231), IL8, tumor necrosis

factor- (TNF) 22 (232), IL10 (233), IL2, IL4, and IL17 (234),

among others, which may be strongly associated with discogenic

pain (235).

Mechanical stress factors
The IVD is an important part of the vertebral column

facilitating protection of the vertebrae and spinal cord during

regular daily activities, exercise, and accidental trauma. Abnormal

mechanical load and stress can lead to disc injury and degeneration.

For many years, it was believed that injuries, which result in

structural damage, are a major contributor to spinal disorders

(236). These injuries eventually result in IVDD and associated

symptoms like back pain. This finding has been supported by

animal models (237). While exercise is generally considered a

healthy activity, some forms including impact or strenuous loading

(diving, gymnastics, weight lifting, and high impact contact sports)

can trigger IVDD, while other forms are beneficial resulting in

increased anabolic responses with increased glycosaminoglycan

and hydration levels in the IVD (62). For instance, more lumbar

IVD degeneration was seen in gymnasts compared to controls

who weren’t athletes (238), as well as in soccer players and

weightlifters in comparison to shooters (186). Evidence supporting

the positive effects of exercise on the IVD in humans, however, is

less clear (239). Basketball, baseball, swimming, and soccer were

linked to better IVD parameters over controls, while poorer NP

hydration was marginally linked with a longer career and heavier

training load (62). The transport of nutrients into the disc and,

consequently, their concentration in the tissue, appears to be

influenced by exercise (223, 224). Although the exact mechanism

is unknown, it has been proposed that exercise alters the capillary

bed’s morphology at the disc-bone interface (223).

Other environmental factors
Risk factors such as age, low income, prior cervical spine

surgery, type of health insurance, and medical comorbidities

like cancer, diabetes, hypertension, depression, hypothyroidism,

peripheral vascular disease chronic obstructive pulmonary disease

(COPD), and lifestyle choices such as smoking were linked to

IVDD (240–244). Numerous studies have linked tobacco use to

lower back pain. Smoking is known to prevent the fusion and

healing of bones and initially reduces the proliferation and activity
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TABLE 2 Cohort studies in the field of IVDD.

Published/peer reviewed/in-preprint cohort studies

Summary Outcome Limitations References

GWAS based studies

Investigate 5
′
upstream SNP variant

rs143383 in 5 population cohorts in
Northern European women.

Positive association IVDD struggles with a lack of established
epidemiologic explanations, which makes it
difficult to examine it methodically.

(145)

Investigate VNTR polymorphism in 132
middle aged Finnish men.

ACAN polymorphism has a correlation
with IVDD.

Small sample size
N = 132

(146)

GWAS to study chronic LBP. Association of chronic LBP with genes
expressed in the brain.
Greater genetic contribution to chronic
vs. acute pain.

No information on a detailed pain phenotype
description or pain medication.

(147)

Linkage to CHST3 variants CHST3 linkage with IVDD. Small sample size
N = 4,043

(148)

First GWAS meta-analysis of IVDD
with 4,600 subjects

PARK2 gene is involved in IVDD. Small sample size.
N = 4,600

(149)

GWAS related transcriptome analysis of
Gasdermin-C

Association ofrs6651255 and rs7833174
with lumbar spinal stenosis.

Selection bias and small sample size.
N = 400

(150)

Anatomical based studies

MRI of 200 IVDD patients on signs of
degeneration with respect to age, sex,
and other factors.

21–30-year-old 38.8% showed at least
one IVDD symptom.
51–60-year-old 91.6% showed at least
one IVDD symptom.
No substantial difference in disc height
amongst all groups.

Patient medical histories were not obtained.
Area of facet joint arthritis was not included.
Quantification of spondylosis was
not investigated.

(151)

Investigation of LSTV with LBP and
IVDD

IVDD and LBP had a correlation with
LSTV.

Small sample size
N = 1,468

(152)

Baggage handlers from the Copenhagen
Airport vs. control group

LBP was more prevalent in the baggage
handlers.

Degree of exposure. Misclassification and
misinterpretation of outcomes.

(153)

Investigates correlation between short
and long-term physical inactivity and
degeneration of the thoracic and lumbar
spine.

Physical inactivity over a period of 14
years had a strong connection to IVDD.

No prior MRI images to compare with
current MRI images.
Lack of substantial information about
physical activity.

(154)

Investigation if different thresholds of
IVDD lead to a correlation between disc
degeneration and self-reported LBP.

IVDD was most strongly associated with
LBP at thresholds at more moderate
grades at ages 45 and 49, despite a
tendency for disc degeneration to be
more strongly associated with LBP at
thresholds at more severe grades of disc
signal and disc height loss at age 41.

Odds ratio calculated by logistic regression
analysis are associated with anomalies.

(155)

Fluoroscopic studies to compare
intervertebral angular motion sharing
inequality and variability during
continuous lumbar motion in chronic,
non-specific LBP patients and controls.

Higher inequality motion sharing was
found in patients with chronic,
non-specific LBP.

Small sample size.
N = 20

(156)

A lumbar radiograph and a
questionnaire were completed by 699
individuals.

No correlation between osteophytes and
LBP
Disc space narrowing is associated with
neuropathic pain.

Inconsistent quality of radiographs.
Anteroposterior lumbar radiograph was
not available.

(157)

Correlation of symptomatic and
asymptomatic age related IVDD.

Severe degeneration was seen in
symptomatic patients in comparison to
the asymptomatic patients.

The symptomatic group had patients only
from 30 to 79 years of age.

(158)

Pain level based and other cohort studies

Investigates correlation between modic
changes and LBP.

Significant and independent association
between modic changes LBP.

Small sample size.
N = 1,512

(159)

(Continued)
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TABLE 2 (Continued)

Published/peer reviewed/in-preprint cohort studies

Summary Outcome Limitations References

Investigates correlation between LBP,
IVDD and mental distress.

Of the total population, 5.2% had severe
and frequent LBP, and 29.0% had no
LBP.
Mental distress increased the correlation
between LBP and IVDD.

Definition of clinically significant pain was
relative.
Details were not obtained on
other comorbidities.

(160)

Investigatescorrelation between BMI,
smoking and physical activity with
IVDD in young adults.

Environmental factors play a role in
IVDD in young males.

The smoking data was self-reported
Imaging design was cross-sectional.

(161)

ACAN, Aggrecan; BMI, body mass index; CNS, central nervous system; CHST3, carbohydrate sulfotransferase 3 variant; GWAS, genome wide association studies; IVDD, intervertebral disc

degeneration; LBP, low back pain; LSTV, lumbosacral transitional vertebrae;MRI, magnetic resonance imaging; SNP, single nucleotide polymorphism; VNTR, variable number of tandem repeats.

of fibroblasts and osteoblasts and the usual inflammatory response

(245–248). It subsequently interferes with neovascularization and

the normal vascular supply, encouraging net bone resorption rather

than net bone growth (245, 247). Notably, after lumbar or cervical

fusion surgery, pseudarthrosis occurs at a rate that is two times

higher among smokers (245, 249–252). Tobacco inhalation and

nicotine caused vasoconstriction and decreased the exchange of

nutrients and anabolic substances, resulting in inadequate IVD

nourishment, ECM andNP cell development all contributing to the

IVD’s instability and degeneration (253–258). Toxins from cigarette

smoke impaired spinal blood flow and nutrition supply, accelerated

spondylosis or resulted in rapid infection, and other surgical

problems (259–261). While the pathophysiological mechanism and

pathological characteristics of IVDD brought on by cigarette smoke

remain unknown and a clear link between smoking and IVDD

remains speculative, smoking appeared to increase and accelerate

the chance of disc herniation through capillary constriction as an

independent risk factor in patients with lumbar disc herniation

(249, 257, 262–265).

Degeneration is quickened by the interaction of hereditary

and environmental factors. There is currently no study that

acknowledges the independent influence of environmental factors

without genetic predisposition (144). However, subtypes of

herniation may develop as a result of sedentary lifestyle (266, 267).

The composition of the disc retains water to keep the hydrostatic

pressure constant, keeping the NP elastic, flexible and able to

withstand compression (268). There is convincing evidence that as

people age, the likelihood of disc degeneration increases, partially

as a result of the accumulation of senescent cells (269, 270).

Although in mitotic arrest, these cells remain metabolically active

and anaerobic metabolism contributes to increased acidity (271)

and their senescence associated secretory phenotype (SASP) is

likely luring more neighboring cells into the same fate (272). Lastly,

obesity is linked to biomechanical alterations that lead to a variety

of spinal disorders like IVDD, osteoarthritis, disc herniation, and

spinal stenosis (273, 274).

Current and future therapy options for
IVDD

IVDD is closely tied to the loss of ECM producing cells in

the maturing NP. Cell survival especially in the degenerating

NP environment is challenging and cell death can have complex

consequences on tissue homeostasis and immunity, triggering

amongst many outcomes the release of proinflammatory cytokines

(275, 276). Therapeutic interventions for IVDD (Figure 3) changed

substantially over the years, however no treatment leading to a

cure has been established so far. Owing to the nature of the IVD,

many strategies are based on endogenous approaches that aim to

stimulate resident progenitor cell populations, whereas exogenous

approaches try to replenish the IVDwith new cells. Efforts aremade

to minimize cell death and SASP associated signaling cascades.

Classic therapies

Surgery, steroids and non-steroidal anti-inflammatory drugs

(NSAIDs), analgesics, opioids, muscle relaxants, and physical

therapy are some of the classic therapies to alleviate IVDD

symptoms like pain (277, 278) enabling short term relief, but not

eradicating the problem. Radiographic imaging techniques like

MRI can often demonstrate that the ongoing discomfort is caused

by nerve compression (279). In recent years, regenerativemedicine-

based approaches along with other therapeutic interventions are

gaining increased attention for advanced IVDD therapies.

Cell therapies

Cell therapy to refurbish the IVD is an important area

of research (280). As the number of healthy resident cells

gradually declines during IVDD, catabolic activities take place over

tissue anabolism (281). To encourage endogenous repair of the

degenerated IVD, stem cells can be extracted from various sources

and transplanted into ailing host tissues. Harnessing “stemness” is

intriguing and includes the transplantation of transdifferentiated

somatic cells, induced pluripotent stem cells and embryonic stem

cells. Undifferentiated stem cells have the capacity to self-renew

and multiply, giving rise to committed, differentiated cells that

replenish the cell pool in a particular tissue (282). There, they

may secrete growth factors and cytokines to support resident

cell activity, and attract or stimulate local progenitor cells (281–

283). Stem cells have been isolated from a number of tissues,

including the IVD (46, 284–290). Pluripotent cells however

pose a risk of tumorigenesis. Additionally, some cell types are
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FIGURE 3

Current strategies for IVDD therapies. EV, extracellular vesicles; IVDD, intervertebral disc degeneration; MSC, mesenchymal stem cells.

deemed uneconomical on an individualized basis, are not fully

understood in their differentiation potential, or their generation

and use is of ethical concern (291–294). Among candidates

that have emerged for cell-based therapies for IVDD are NC

cells, chondrocytes, MSC and NP cells, some have undergone

preclinical and/or clinical examinations (197). Selecting a cell

type requires understanding of disc development as well as

knowledge of the cellular changes induced by maturation and

degeneration (6, 44, 295). Some IVD cell populations exhibit

progenitor cell potential as discussed above (46, 47, 49, 50, 197,

296–299), yet would require surgery for harvesting. Autologous

or allogeneic MSC gained popularity as their less-tumorigenic

multipotent phenotype might be directed into the appropriate

cell type via endogenous cues from the recipient tissue or ECM.

MSCs, especially subcutaneous adipose MSCs, offer a promising

option owing to their ease of harvest, capacity for self-renewal,

multilineage potential, and immunosuppressive properties (197,

300–302). However, transplanted stem cells face delivery and

survival challenges in the harsh environment of the IVD which are

exacerbated in the degenerated disc (6, 205, 290, 303, 304). MPC-

06-ID, a Phase 3 product candidate was developed to address IVDD

related chronic pain with 6 million mesenchymal precursor cells

per dose for patients who have exhausted other therapy options

(www.mesoblast.com). A recent subjective review indicated that

result considering impairment, pain, and quality of life were

influenced by the placebo effect. Therefore, more quantifiable and

objective measures such as MRI and other radiographic exams

are needed (305). A study to examine the clinical applicability,

safety, and efficacy of NOVOCART
R©

Disc in the repair of

herniated discs requiring an elective sequestrectomy employs an

autologous cell compound (306). The Sponsor has permanently

halted the NOVOCART
R©
Disc development program since there

was no evident advantage of the investigational intervention

above standard therapies (https://www.tetec-ag.de/en.html). An

updated list of clinical trials for MSC in IVDD can be seen

in Table 3 (clinicaltrials.gov). Further large-scale, randomized

(placebo), controlled studies for cell based IVDD therapeutics

are needed.
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TABLE 3 Clinical trials reported with growth factors in the context of IVDD based on data from May 2023 (www.clinicaltrials.com).

Status Type Trial ID Phase Result

Completed 2014 Evaluate the safety, tolerability, and
preliminary effectiveness of single
administration intradiscal rhGDF-5 for
the therapy of early-stage lumbar IVDD
(1.0 and 2.0mg)
Open label
Australia

NCT01158924 1/2 Unclear if neurological, ODI and VAS
outcome was an improvement,
increased score for functional health
and wellbeing
Therapy emergent adverse effects in
14% (1.0mg) and 4% (2.0mg).

Completed 2013 Intradiscal rhGDF-5 (0.25/1.0mg)
Open label
United States

NCT00813813 1/2 Unclear if neurological, ODI and VAS
outcome was an improvement,
increased score for functional health
and wellbeing.
Therapy emergent adverse effects in
29% (0.25mg) and 4% (1.0mg).

Completed 2014 Evaluate the safety, tolerability, and
preliminary effectiveness of single
administration intradiscal rhGDF-5 for
the therapy of early-stage lumbar IVDD.
(placebo/1.0mg)
Randomized, double blind study.
Republic of Korea

NCT01182337 1/2 No therapy emergent adverse effects.
Unclear if neurological, ODI and VAS
outcome was an improvement, score for
functional health and wellbeing
indicates placebo effect.

Completed 2014 Multicenter, randomized, double-blind,
placebo controlled, clinical trial to
evaluate the Safety, Tolerability and
Preliminary effectiveness of 2 doses of
intradiscal rhGDF-5 (for the therapy of
early-stage lumbar IVDD) (placebo/1.0
mg/2.0mg)
Randomized, double blind study.
United States.

NCT01124006 2 No therapy emergent adverse effects.
Unclear if neurological, ODI and VAS
outcome was an improvement, score for
functional health and wellbeing
indicates placebo effect.

Not yet recruiting Intradiscal and intra-articular injection
of autologous platelet-rich-plasma
(PRP) in patients with lumbar IVDD
and facet joint syndrome. Open label.

NCT04816747 3 No results posted

ODI, Oswestry disability index (Pain Intensity, Personal Care, Lifting, Walking, Sitting, Standing, Sleeping, Sex Life, Social Life, Traveling) disability measurement scale; VAS, visual analog scale

pain score.

Extracellular vesicle therapies

Cell-to-cell communication is fundamental for the

maintenance of microenvironment homeostasis (307). Our

knowledge of cell-cell communication has improved with the

development of large-scale “-omics” technologies for analyzing

the secretome of cells. These technologies have also allowed us

to investigate extracellular vesicles (EV) with cell-type specific

cargos of proteins and nucleic acids (285, 307). Although

the classification of EVs is constantly changing, they usually

fall into one of three categories: Exosomes (50–150 nm) are

created by the endosomal formation of multivesicular bodies

(MVB). Apoptotic bodies (up to 5,000 nm) and ectosomes (up

to 1,000 nm) are generated by outward budding of the plasma

membrane (308, 309) as seen in Figure 4. Most cell types produce

exosomes, and their release into body fluids and culture media

has sparked interest in finding cancer biomarkers (310). In fact,

researchers from a variety of sectors are increasingly interested

in analyzing EVs produced by resident cells in the hopes of

identifying specific cell or disease-related biomarkers (311).

Exosomes with cell-specific proteins, lipids, and nucleic acids

are now recognized as a form of intercellular communication

method (312). This theory is supported by the observation that

exosomes generated by parental cells may interact with target

cells, causing target cell behavior and phenotypic traits to be

influenced (313). Limited research has been done on IVD-derived

EVs (105, 107, 311, 314). In the area of biomarkers of LBP and

disc disorders, there have been a lot of encouraging research

findings such as the ongoing study and validation of pertinent,

correct, and sensitive biomarkers of disc disorders (315). NC-

derived EVs enhanced DNA and glycosaminoglycan content

in human NP cell micro-aggregates compared to untreated

control conditions although the underlying mechanism and

associated EV content were not examined (316). EVs derived

from human NP cells of patients with lumbar degenerative

disease were found to promote MSC migration and differentiation

into an NP-like phenotype via the Notch1 pathway, though

the precise EV content responsible for this action is unknown

(88, 101). Several examples of MSC derived exosomes impact

on cell survival, often through their micro RNA (miRNA)

cargo affecting key signaling pathways controlling events in

apoptosis and pyroptosis (276). Human UC-MSCs exosomes

prevented NP cell pyroptosis by targeting METTL14 with a

methyltransferase that catalyzes the m6A change (317). NP

cell apoptosis decreased by miR-142-3p reducing IL1-induced

inflammatory cytokine release and MAPK pathway activation
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FIGURE 4

Exosome biogenesis and composition. DNA, deoxyribonucleic acid; miRNA, microRNA; MVB, multivesicular bodies; RNA, ribonucleic acid. This figure

created in the Mind the Graph platform (www.mindthegraph.com).

(84). TNFα induced apoptosis, ECM breakdown, and fibrosis in

NP cells was prevented via miR-532-5p targeting Ras association

domain-containing protein 5 (RASSF5) (85). Pyroptosis in

IVDD was reduced by miR-410 by binding to the pyrin domain

containing 3 (NLRP3) mRNA (96, 318) and miR-26a-5p prevented

pyroptosis by reducing NLRP3, IL1, and IL18 expression (317).

IVDD and gait abnormalities improved through miR-4450

targeting the zinc finger protein 121 (97) and miR-141-3p

via the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear

factor (erythroid-derived-2) like 2 (Nrf2) pathway reduced

oxidative stress-induced pyroptosis in NP cells (319). In a

recent systematic review it was further reported that stem cell-

derived EVs can slow the progression of IVDD at the cellular,

molecular and organ levels (320). Lastly, an ongoing clinical trial

(NCT04849429) uses platelet-derived exosomes for IVDD and

may soon provide useful in vivo evidence on the therapeutic effect

of exosomes.

Synthetic and non-synthetic
sca�old-based therapies

Structural integrity and support can be provided via three-

dimensional (3D) tissue scaffolds that enable cellular interactions

between native tissues and the implant and provide structural

support for the cells by mimicking cell-ECM interactions. The

ECM, a composite of fibers, bioactive molecules and solutes is

dynamic in vivo providing structure and signals to the cells that

generate it (321). Regenerative medicine makes use of “inductive”

properties of the ECM. In the early 1960s scaffolds were created

as cell substrates to resemble the niche in which cells thrive,

enabling cells to attach, differentiate and proliferate (17, 322).

Ideally such a scaffold would be non-cytotoxic, biocompatible

and eventually biodegradable (323). Recent research demonstrates

promising biomaterials and processing techniques for IVD repair

or regenerative strategies. Composite scaffolds that allow for
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simultaneous regeneration of cells and ECM would be most

beneficial because IVDD affects both (324). In the past, 3D

biomimetic scaffolds were created using a variety of methods:

solvent casting, freeze drying, phase separation, leaching and

electrospinning (325–327). Bioprinting is also investigated for the

IVD. Although in its early stages, using this cutting-edge method

could enhance the creation of IVD-based scaffolds (328). Based on

the polymer used, these scaffolds can be considered synthetic or

non-synthetic (natural).

Natural materials
The most prevalent protein in mammals, collagen, is employed

extensively in biomedical procedures and its function is likely

crucial for IVD regeneration (289, 329). Owing to its minimal

antigenicity, atelocollagen is recognized as one of the best

basic matrices for implantable materials (330). A mechanically

stable, manageable, honeycomb-shaped atelocollagen scaffold

promotes the development of high-density cell cultures (330)

and may be beneficial as a 3D scaffold in tissue engineering

given these properties (331). Silk scaffolds provide strength and

stability through compressive and tensile properties. Silk fibroin

proteins are synthesized by silkworms and other insects and are

biodegradable (332, 333). Once implanted, the silk scaffold would

decay slowly enough to permit healthy tissue growth (332, 334).

Silk scaffolds are of interest for AF tissue engineering owing to

their mechanical properties (335). The naturally occurring polymer

chitosan is a very adaptable biomaterial (336). It comes from a

natural and regenerative source: crab shells (337–340). Chitosan

possesses a hydrophilic surface that encourages cell attachment and

growth, and its degradation products are non-toxic (341). Alginate

is utilized in a number of biomedical applications, including tissue

engineering and drug delivery, because of its qualities in terms of

biocompatibility, biodegradability, non-antigenicity, and chelating

ability (342–346). A hybrid alginate/chitosan scaffold promotes

ECMdeposition, enhances AF cell proliferation, and degradesmore

slowly than a pure alginate scaffold (346). Another biomaterial

which develops a stable hydrogel structure as a result of gelation

is gellan gum (347). A 3D gel network that can be employed as

a matrix for cell seeding is created when untangled sections of

polysaccharide chains connect to orientated bundles of double helix

structures (348–350). Natural polymers support cell adhesion and

function (351).

Decellularized ECM-based scaffolds have drawn a lot of interest

and have begun to be utilized extensively in a variety of tissues

(heart valves, vascular grafts, cornea, etc.) (352–356). However,

decellularization protocols cannot rely on perfusion in the largely

avascular IVD and a balance between complete cell removal to

avoid inflammatory triggers and ECM preservation to allow for

bioactivity is important (357, 358). Decellularized scaffolds are

currently commercialized for numerous therapeutic uses because of

their pro-regenerative capabilities, and they may offer a promising

alternative for IVD regeneration (357, 359).

Synthetic materials
Necessary forms and implants can also be created from

synthetic polymers. Synthetic biodegradable polymers can generate

stable porous materials that are predesigned 3D scaffolds and

do not melt or disintegrate in in vitro tissue culture settings

(360). The synthetic biodegradable polymers most frequently

employed in tissue regeneration are aliphatic polyesters (351).

The ester groups in these polymers’ backbones are often

hydrolyzed to produce deterioration, which can be regulated

depending on the polymer’s composition, structure, and molecular

weight (361). A ring-opening polymerization of the monomers

(lactide and/or glycolide) is a typical method for producing

polylactide (PLA), polyglycolide (PGA), and their copolymer

poly (lactide-co-glycolide) (PLGA) (362). These polymers are

among the few synthetic polymers that the U.S. Food and

Drug Administration (FDA) has approved for human clinical

applications, such as surgical sutures and some implanted devices.

Synthetic polyesters with a wide range of applications in AF

tissue regeneration include poly ε-caprolactone (PCL), PGA, PLA

and copolymers produced from these monomers (363, 364). PCL

has been widely employed as a biocompatible polymer with

reasonable cost and high mechanical qualities for electrospun

fibrous scaffolds (365). Many synthetic polymers are hydrophobic

with restricted water absorption requiring modifications for cell

attachment. Some limitations in their biomedical applications,

may be solved by including other polymers, such as natural

or synthetic proteins and polysaccharides (366). A development

in the field of synthetic scaffolds is the use of “conductive” or

“smart” biomaterials. Conductive materials are typically polymer

or nanomaterial-based additives to the scaffold allowing for the

transfer of electromechanical signals to target cells (367). A

conductive effect could also be achieved with natural polymers

like collagen based on a described piezoelectric effect under

load for ordered collagen fibers, especially collagen I (368). A

piezoelectric potential of the AF and to a lesser degree NP

tissue was described. This approach could facilitate more effective

mechanically induced tissue remodeling and cell homing in the

IVD (369).

NuCore R© injectable nucleus hydrogel (Spine Wave, Inc.,

Shelton, CT, USA) as a substitute for NP tissue lost to herniation

and microdiscectomy was investigated and seemed to prevent

the disc from collapsing too soon after microdiscectomy (370).

The FDA approved Discseel
R©

which relieves chronic neck and

low back discogenic pain offers a procedure to effectively repair

discs to their normal states, both mechanically and biochemically

(371). Owing to the relative short timeframe of follow up

with some of these procedures not much clinical evidence to

support these therapies is available. Also, secondary effects of

IVDD, such as spinal stenosis and muscle fatigue caused by

lumbar lordosis and loss of sagittal stability of the spine, may

be more excruciating than structural transformation in the disc

themselves (372).

Small molecules and growth factors-based
therapies

Small molecules are substances that attach to certain biological

molecules and aid in the regulation of a specific biological

process (222). Small molecules can be taken orally (373). The

maximum molecular weight for a molecule that needs to quickly
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diffuse through the cell membrane and be absorbed by the

digestive system is 900 Daltons (374). Small molecules can

significantly alter signaling transduction and gene transcription

by intervening on specific signaling pathways regulating cell

physiology and function (375). There are various benefits of

using small molecules as a therapeutic agent. They cause fewer

immune response in the host owing to their small size, and are

considered to have anti-inflammatory, anti-apoptotic, and anti-

oxidative effects accompanied by anabolism and anti-catabolic

effects (222). The anti-inflammatory effect of small molecules

such as berberine, morin, notoginsenoside R1, cannabidiol,

curcumin, icariin, resveratrol, epigallocatechin gallate, naringenin,

and tofacitinib was shown by the downregulation of IL1 and

TNFα levels in IVD cells in a number of in vitro studies

(222, 375, 376). Src homology region 2-containing protein

tyrosine phosphatase 2 (SHP2) is an important contributor to

the development of IVDD, and its small molecule inhibitor

SHP099 prevented SHP2 expression and NP cell degeneration

(377). Following toll-like receptor (TLR) 2/6 agonist induction, o-

vanillin reduced TLR2 expression and SASP (378). Other small

molecules acted in a multipotent manner. Curcumin showed cell-

type and experiment dependent pro-apoptotic or anti-apoptotic

effects. In IVDD it reduced the activity of proinflammatory

cytokines by inhibition of the nuclear factor kappa B (NF-

kB) and mitogen-activated protein kinase (MAPK) pathways,

protected mitochondria and induced autophagy via its reactive

oxygen species (ROS) scavenging capacity (379–384). Icariin, a

bioactive and peroxylated flavonol glycoside compound isolated

from herba epimedii or horny goat weed was investigated as a

therapy of articular cartilage degenerative diseases (385). Its anti-

oxidative and mitochondrial protective effects were attributed

to the activation of the PI3K/Akt and Nrf2 signaling pathways,

culminating in decreased ROS production and programmed

cell death in NP cell (385, 386). Melatonin induced parkin-

dependent mitophagy, also protected mitochondria (380, 387)

and exhibited anti-inflammatory effects by inhibiting IL1 release

and NLRP3 primed pyroptosis (388). When high hyperglycemia

caused mitochondrial damage in end plate cells, alpha lipoic

acid prevented apoptosis by increasing mitochondrial membrane

potential (389).

Growth factor (GF) therapy involves the injection of bioactive

molecules into the IVD to promote ECM production, prevent

degeneration, and decrease inflammation (390, 391). GFs are

peptides that bind to receptors and trigger physiological processes

such as protein synthesis, differentiation, apoptosis, and cellular

proliferation (392). Bone morphogenic proteins (BMPs) and other

transforming growth factor (TGFβ) members, which promote

osteogenesis and chondrogenesis, are the most well-known GFs in

spine and orthopedic therapies (215). In an IVDD mouse model,

TGFβ inhibitors decreased Nerve growth factor (Ngf) expression,

indicating that TGFβ may control Ngf expression in vivo (393).

Other GFs like BMPs, platelet derived growth factors (PDGF) and

epidermal growth factor (EGF) inhibit proinflammatory cytokines

including IL1, IL6, TNFα, MMPs, nitric oxide, and prostaglandin

E2 (PGE2) and decrease catabolic activity (391, 394). The biological

half-life of GFs is only a few hours to days, making it unsuitable

for restoring degenerative discs when GF stability or long lasting

effects are required (391, 394). Platelet-rich plasma (PRP) contains

a variety of GFs (395, 396). PDGF decreased the percentage of

apoptotic AF cells in vitro after of serum deprivation (397). An

updated list of clinical trials for GFs in IVDD can be seen in

Table 4 (clinicaltrials.gov).

Gene therapy

The use of nucleic acids such as DNA or RNA to cure a

disease is known as gene therapy (399), often targeting monogenic

congenital diseases or cancer. A plasmid (400) or oligonucleotide

can be used (401). Gene therapy’s potential long-term efficacy is a

key benefit (402). Transfected cells that have received a therapeutic

gene produce the desired gene products (RNAs or proteins). Stable

transfection facilitates long-term expression of a transgene even in

dividing cells if the foreign gene integrates into the host genome,

however this can come at the expense of insertional mutagenesis.

Cells that have been transiently transfected with an episomal

vector also express a foreign gene but the foreign gene will be

lost in dividing cells (403). IVDD is a chronic problem (129,

402, 404–406). Retrovirus (RV), lentivirus (LV), adenovirus (AV),

and adeno-associated viruses (AAV) are common vectors (407).

Replication incompetent RV were used in vitro to deliver DNA to

cells purified from bovine coccygeal vertebral endplates suggesting

that local gene therapy may be used to treat disc degeneration

(129, 408, 409). Non-human LVs are considered apathogenic in

humans but can transduce human cells. Replication-incompetent

LV vectors are available (410). To demonstrate that LV-mediated

MMP3 knockdown may lessen IVDD, LV-MMP3-shRNA and/or

LVSox9 were administered to rabbit lumbar discs. This significantly

delayed the progression of IVDD and increased collagen type

II and proteoglycan expression (128). Insertional mutagenesis

remains a concern associated with highly efficient RV and LV

vectors (411). The AV genome persists in an extrachromosomal

state. Standard recombinant AV vectors can carry up to 7.5 kb of

foreign DNA (412). To further increase the packaging capacity

to more than 30 kb AV genes are provided in-trans by a helper

virus (413). A recombinant AV vector was used to deliver the

lacZ gene to female New Zealand white rabbit NP cells in vitro

and in vivo (130). The AV-lacZ construct was directly injected

into the NP of the rabbit’s lumbar IVD for the in vivo model.

The successful transduction of disc NP cells was demonstrated by

X-Gal (5-bromo-4-chloro-3-indolyl-D-galactopyranoside) staining

and reporter gene expression persisted in vivo for at least 12 weeks.

This study demonstrated the promise of direct gene therapy for

a treatment of IVDD by successfully delivering a foreign gene to

the IVD (414, 415). AV have several different serotypes, including

51 in humans (412); Ad5 is the most common and 45–80% of

the population has neutralizing antibodies against this serotype

(412). Unfortunately AV vectors in general can cause severe and

even lethal inflammatory reactions (416, 417). AAV’s are used more

recently as non-pathogenic, generally non-integrating gene therapy

vectors suitable for dividing and non-dividing cells. However,

it is challenging to generate the high titers needed for human

clinical studies and the packaging capacity is limited (415, 418).

The activatorprotein-2 (Ap2α) impacts IVDD via controlling the
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TABLE 4 Clinical trials reported with mesenchymal stem cells (MSC) in the context of intervertebral disc degeneration (IVDD) based on data from May

2023 (www.clinicaltrials.com).

Status Type Trial ID Phase Result

Completed 2017 IVDD therapy with allogeneic MSC.
Randomized, triple blind study.
Spain

NCT01860417 1/2 MSC vs. Mepivacaine not yet available
in database.
Reproducible cell expansion and
satisfactory quality control tests (398)

Completed 2017 Use of autologous BM-MSC in patients
with lumbar IVDD.
Open label.
Spain

NCT01513694 1/2 No results posted

Completed 2015 Safety and preliminary efficacy of
mesenchymal precursor cells in subjects
with lumbar back pain.
Randomized, double blind.
United States, Australia

NCT01290367 2 No results posted

Completed 2013 Study of 3 doses of NeoFuse combined
with MasterGraft granules in subjects
requiring posterolateral lumbar fusion.
Randomized, open label.
United States

NCT00549913 1/2 No results posted

Withdrawn 2015 Autologous AD-MSC transplantation in
patient with lumbar IVDD.
Open label.
Republic of Korea.

NCT01643681 n/a No results posted.
Unwilling to continue clinical trials.

Withdrawn
2012

Lumbar IVDD therapy with
autologous BM-MSC.
Open label.
No location data.

NCT02440074 1/2 No results posted.
Not funded.
Administrative formalities.

Withdrawn 2022 MSC for lumbar IVDD.
Randomized, open label.
Unites States

NCT03692221 1 No results posted.
Stalled due to COVID-19

Withdrawn 2011 Safety and efficacy of NeoFuse in
subjects requiring posterolateral lumbar
fusion.
Open label.
United States

NCT00810212 1/2 No results posted.
Withdrawn for better study
design (Mesoblast).

AD-MSC, adipose-derived mesenchymal stromal cell; BM-MSC, bone marrow derived mesenchymal stem cell.

expression of Tgfβ and Smad3 (132). Rat IVDs injected AAV-

Ap2α and AAV-Tgfβ, increased the expression of Acan, Collagen

II and decreased the expression of Mmp2, Mmp9, and Smad3

in NP tissue (132). However, in general, viral vector based gene

therapy carries a risk of viral component-related complications

(419, 420).

The post-transcriptional RNA interference (RNAi) mechanism

evolved as a crucial biological strategy for targeted gene silencing

(402). The reporter genes firefly and renilla luciferase were

downregulated in NP cells in vitro in a co-transfection experiment

and achieved considerable inhibition of reporter gene expression

in both cell types for 3 weeks, suggesting siRNA-mediated gene

silencing as effective in NP cells (421). Moreover, in rat coccygeal

IVDs, siRNA-mediated RNAi remained active for at least 24

weeks to down regulate in vivo expression of the endogenous Fas

ligand, as well as a reporter gene (422). MRI and histological

studies showed that a single injection of ADAMTS5 siRNA

prevented NP tissue breakdown after annular puncture in vivo

(423). Apoptosis in the discs was also significantly reduced by

siRNA therapy intervention against Caspase3 and ADAMTS5

(424). Inhibiting TLR4 and overexpressing Klotho via RNAi in

a rat IVDD model decreased ROS induced inflammation (133).

Klotho promotes antiaging through the modulation of numerous

signaling pathways, including TLR4/NF-kB signaling (133, 425).

However, in vivo applications could be hampered by RNAi

associated immune stimulation, off-target effects and the low

number of target cells in the IVD (426). There were no clinical

trials reported for gene therapy-based therapeutics in IVDD until

now (clinicaltrials.gov).

Most recently CRISPR/Cas9 (427) was also added to the

growing toolkit for IVDD therapy development. Potential

applications for CRISPR/Cas9 gene editing, targeting or labeling

to enhance IVD research by generating new disease models, new

means of studying IVD cell phenotypes and possible clinical

translations thereof were suggested and reviewed (428). As a

promising recent example, AAV delivered CRISPR/Cas9 to

target β-catenin reduced IVDD in the mouse model (429) and

CRISPR epigenome editing systems could be introduced into

pathological human IVDs in vitro using LV vectors to control

expression of inflammatory receptors. This could suppress

negative impacts of inflammatory cytokines in the IVD. TNFR1

epigenome-edited cells showed decreased NF-kB activation,

reduced apoptosis, and suppression of catabolic gene expression

changes (430).
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Discussion

The IVD at first glance appears as a simple organ comprised of

just two major tissue types with few residing cells under extreme

mechanical or physiological stress yet it is possibly one of the most

challenging enigmas in the vertebrate body to solve. Therefore,

despite IVDD being a primary health concern, it still must find

a permanent cure. IVDD decreases the quality of life by causing

chronic discomfort and discogenic pain due to multifactorial

changes in the degenerating IVD as previously described in detail

(431). The IVD is susceptible to a variety of risk factors and can

deteriorate because of a pathologic cascade resulting in metabolic

and cellular changes in IVD cells. Classic IVDD therapies were

reviewed before (431) and are available in health centers, but often

encounter a “roadblock” in that they only relieve symptoms but

do not restore structure and functionality to the disc. Surgical

options for IVDD are often ambiguous and carry underlying

hazards and complications, hence, they should only be used after

conservative measures have failed, as their outcome depends on a

surgeons’ experience and technical expertise, as well as a patients’

comorbidities (391).

Advanced therapies of low back pain as summarized in

Figure 5 show some promising results in mostly animal studies

(Table 1) but still have their own safety concerns and limitations.

To start, these novel interventions once intended for clinical

applications first require the approval by appropriate government

bodies such as the FDA in the United States, European Medicines

Agency (EMA) in Europe or the Central Drugs Standard

Control Organization (CDSCO) in India. Based on successful

outcomes of pre-clinical studies an investigational new drug

application (IND) can be filed with the FDA triggering several

phases and years of clinic trials with uncertain outcome for the

investigator and high financial risk for sponsors as previously

described (320). Despite all, progress is evident and current, and

future research will hopefully translate many of these cutting-

edge technologies from benchside to bedside as alternative

IVDD therapies despite plenty of challenges that remain to

be addressed.

Owing to the avascular nature of the IVD, systemically

applied therapies are less suitable. Therefore, exogeneous and

endogenous interventions would require intradiscal injections of

cells, hydrogels, GF, small molecules, viral vectors or combinations

thereof. Such injections produce a bolus of compressed fluid at

the injection site that may take a long time to diffuse into the

surrounding tissue due to a high degree of stiffness and limited

permeability in NP tissue. This pressure may cause fluid to leak

through the AF defect after the needle retraction (432–434). The

severity of AF disruption can vary depending on the needle gauge

used, stiffness and fluid viscosity and would require oversight to

assess the danger of leakage, especially for more advanced therapies

such as gene therapy involving viral vectors (435–438). While the

avascular nature of the NP limits the use of systemic interventions

it could keep side effects limited after intradiscal delivery, provided

no leakage at the injection site. Despite promising potential,

currently, small molecule drugs have little clinical relevance in

IVDD as they do not appear to offer a significant advantage over

NSAIDs (375, 439, 440). The reasons might be low specificity, the

avascular nature of the IVD and unanticipated adverse reactions

in other tissues when administered systemically. To date, most in

vivo studies have focused on rodent models, and more appropriate

translational models are needed for an honest assessment of safety

and efficacy of small molecules as alternative strategy to NSAIDs.

Recent advancements in sequencing technologies identified

genetic defects associated with IVDD and LBP and will enable

more personalized therapy approaches. At the same time,

increased knowledge of cellular events at the molecular level

facilitates more targeted therapies with recombinant or xenofree

bioactive molecules or inhibitors thereof down to modulations

of intracellular signaling pathways, for example those involving

cytokine triggered inflammation, regulated cell death or SASP

in the IVD (222, 441, 442). However, despite success in animal

models, IVDD human gene therapy in the classic sense of gene

delivery is unlikely to be a mainstream intervention any time

in the near future as IVDD is not a monogenic disease and

current technologies do not allow to effectively and safely alter

multiple genes in vivo. Safer viral and non-viral vectors with

improved cargo capacity and better transfection efficiency at

a lower dosage alongside reduced immune response activation

are needed for increased safety and efficacy of gene therapy in

general. Promising work using engineered AAVs and serotypes

with different tropism were underway for several diseases until

recent setbacks sent once again alarming signals through the

gene therapy community (443). Gene therapy for IVDD ideally

employs vectors that can target NP cells specifically through unique

cell surface/viral capsid protein interactions, however, this could

arise as one of the bigger challenges given that the adult NP

cell population is heterogeneous and suitable NP cell unique cell

surface markers have yet to be discovered (41, 42). RNAi as tool to

downregulate proinflammatory responses seems more promising.

Recent research showed that miR-370-3p-regulated circular RNA

(circRNA) PKNOX1 controlled the expression of KIAA0355, which

impacted on IVDD progression, hence circPKNOX1-based therapy

may become useful (444). However, in vivo off-target effects remain

a concern for RNAi and CRISPR gene editing for now. A better

understanding of the pleiotropic impact of bioactive molecules like

miRNAs on various, often connected signaling pathways including

those critical in inflammatory response, senescence, cell cycle arrest

and regulated cell death is crucial for safety and efficacy (222).

Endogenous cell-based therapies stimulating native IVD

progenitor cells depend largely on effective and safe delivery

of the stimulant, while exogenous approaches transplanting

autologous/allogenic cells depend on the ability of those cells to

settle, survive and be productive in a challenging or degenerated

environment. Cell therapies struggle with the accumulation of

senescent cells, a poor survival rate of transplanted cells and the

necessity of correct differentiation (445). Increased cell death post

transplantation could trigger inflammasome related pyroptosis and

further aggravate IVDD.Many in vitro studies have investigated the

efficacy of MSCs in preserving and reactivating NP cells isolated

from healthy or degenerate discs by maintaining or enhancing

ECM synthesis as well as by encouraging upregulation of NP

markers, which are diminished within the diseased disc (197,

446–448). In a variety of studies, MSCs such as those produced

from bone marrow (BM-MSCs), adipose tissue (AD-SCs), and
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FIGURE 5

Summary of modern therapy approaches for lower back pain from IVDD. IVD, intervertebral disc; IVDD, intervertebral disc degeneration; GF, growth

factor; AAV, adeno-associated virus. This figure was created in the Mind the Graph platform (www.mindthegraph.com).

umbilical cord (UC-MSCs) were employed alone or in combination

with biomaterial scaffolds and carriers to repair and regenerate

the ailing IVD (137, 449, 450). However, if non-autologous

cells are used the problem of host rejection presents itself

and even if the cells are tolerated, it remains unclear if these

added cells can survive long enough under conditions they

encounter in the degenerate IVD (285). Few studies have examined

how transplanted cells interact with the native disc microniche.

However, some evidence backs the delivered cells’ ability to reduce

inflammation in degenerating discs (6, 451). In vitro data from

2D culture where required culture supplements such as serum

or glucose and frequent medium changes might not reflect a

natural IVD environment need to be evaluated with skepticism.

Further large animal and advanced organ culture models, as

well as clinical trials, are needed to confirm findings from these

in vitro experiments. Numerous animal models were used in

preclinical research examining cell therapies for IVD regeneration

(452). Mechanical, enzymatic, or surgical methods can be used to

study disc degeneration in a variety of species, including mice,

rats, rabbits, pigs, sheep, goats, cows, and dogs (Table 1). Yet

comparative interpretations are challenging and frequently do not

yield knowledge that is easily applicable to human studies owing

to a lack of agreement between different animal models (453).

In particular distinctions in NP cell composition, the variable

persistence of NC cells, as well as biomechanical differences hamper

the translatability of small animal models (37, 41, 46, 165, 223, 454–

459).

The recently developing field of EV based IVDD therapies

faces challenges and bottlenecks with production cost, quality

assurance of batch-to-batch homogeneity, and long-term stability

of EVs. High purity production of EVs is often based on costly

differential ultracentrifugation or affinity chromatography (460).

The International Society for Extracellular Vesicles (ISEV) so far

proposes only minimal guidelines for EV isolation and functional

analysis and a range of investigator determined EV isolation and

characterization methods exists (320, 461, 462). Cold chain storage

for EVs was suggested but different opinions on how storage affects

EV quality exist as well (463–465). A range of responses in EV

recipient cells or EV parent culture conditions as well as different

interaction modes between cells and EV types might complicate the

interpretation of regenerative outcomes (320). Despite success in

the purification of exosomes, the exact molecular mechanisms of

exosome function are still under investigation. Establishing large-

scale upstream and downstreammanufacturing processes, accurate

dosing regiments and efficacy evaluations will likely present major

obstacles for quality EV-based therapeutics, yet it will be important

to safely implement their application for IVDD therapy (445).

Progress made in tissue engineering over the years using a

combination of natural and synthetic biomedical scaffolds, cells and

bioactive molecules represents an exciting new era. In clinical trials

these approaches often fail to address discogenic pain (372). For

example, to date no research on ectopic sensory nerve distribution

after MSC delivery to the painful disc is available. Detailed reviews

and discussions of different scaffold types exist, and a “holistic”
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approach for IVD regeneration was emphasized by simultaneous

NP, AF and CEP repair (368). Successful strategies to replace

IVD tissue with non-biological scaffolds must address the unique

biological shock absorbing function of the NP and/or the ECM-

provided structural architecture such as the angle-ply arrangement

in the AF or the spacing of different size fibers in the NP alongside

the importance of continued CEP porosity, as a whole facilitating

inductive and permissive signals for cells and tissue homeostasis.

In light of the abundance of studies aimed at IVD regeneration

presented in the literature, regeneration of CEPs is rarely addressed,

despite being a significant source of nutrients and water supply for

the IVD (368). A recent study found that the human CEPs have

a distinct structure and, ECM composition when compared to the

NP, AF, and articular cartilage (466), while others investigate CEP

composition for diagnostic purposes (467) or how impaired CEP

healing after surgery relates to IVDD (468). Generally, research

on CEPs and the AF still does not have the momentum seen

in NP research, therefore a need to include AF and CEPs more

in overarching regenerative research and the development of

therapeutic strategies remains.

In summary, promising IVDD therapies are developing in

different areas, and possibly the combined effort will lead to

biocompatible scaffolds loaded with protected bioactive molecules,

EVs and/or MSC that can mobilize and recruit local progenitor

cells. Examples of such efforts are underway. In a preclinical

IVDD rabbit model, platelet-derived growth factor BB (PDFG-BB)

delivery in a thiol-modified hyaluronic acid hydrogel significantly

reduced disc degeneration by preventing apoptosis and raising

collagen-3 production, preserved disc structure, and enabled

biomechanical functions (70, 200). Combining a thermosensitive

acellular ECM hydrogel with AD-MSC-exosomes to create an

injectable functionalized ECM hydrogel could prevent pyroptosis

in rat discs by lowering the expression of NLRP3 inflammasomes

and minimizing the inflammatory response (469). However,

additional data from pre-clinical research, clinical trials and long-

term follow up assessments will be needed to ensure safety

and efficacy of any approach. Several recent scRNASeq and

GWAS projects provide very valuable data to better understand

IVDD and it would be constructive to the field to expand

these studies to more age groups, all genders, ethnicities, and

stages of IVDD to identify master regulators in NP development

and IVDD progression. IVDD is multifactorial and likely results

from a combination of environmental risk factors and genetic

predisposition. An overarching concept of modern therapies for

IVD tissue homeostasis relies on the introduction, maintenance
or stimulation and directed differentiation of stem/progenitor cells

supported by suitable scaffolds preventing triggers of senescence or

regulated cell death.
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