Check for updates

OPEN ACCESS

EDITED BY Qiuda Zheng, The University of Queensland, Australia

REVIEWED BY Priyanka Shah, Indian Institute of Public Health Gandhinagar (IIPHG), India Naqshe Zuhra, University of Agriculture, Faisalabad, Pakistan

*CORRESPONDENCE Dengxiang Liu Image: rmyy666@163.com Jitao Wang Image: wangjt302@163.com

[†]These authors have contributed equally to this work

RECEIVED 09 February 2025 ACCEPTED 25 March 2025 PUBLISHED 04 April 2025

CITATION

Xu C, Li Z, Hao S, Zhang J, Li J, Liang K, Wang X, Zhang Y, Zhao G, Bai M, Liu D and Wang J (2025) Association of blood cadmium levels with all-cause and cause-specific mortality among adults with non-alcoholic fatty liver disease: a prospective cohort study. *Front. Public Health* 13:1573760. doi: 10.3389/fpubh.2025.1573760

COPYRIGHT

© 2025 Xu, Li, Hao, Zhang, Li, Liang, Wang, Zhang, Zhao, Bai, Liu and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Association of blood cadmium levels with all-cause and cause-specific mortality among adults with non-alcoholic fatty liver disease: a prospective cohort study

Congxi Xu^{1,2†}, Zhi Li^{3†}, Shirui Hao^{1†}, Jian Zhang^{1†}, Jinlong Li¹, Kuopeng Liang¹, Xiaojuan Wang¹, Yi Zhang^{1,2}, Guangyuan Zhao¹, Mengyun Bai¹, Dengxiang Liu^{1*} and Jitao Wang^{4*}

¹Hebei Provincial Key Laboratory of Cirrhosis and Portal Hypertension, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei, China, ²Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China, ³Department of Infection Management, North China Healthcare Group Xingtai General Hospital, Xingtai, Hebei, China, ⁴Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

Background: Cadmium (Cd) accumulates in the body over time, damaging organs such as the liver, kidneys, and brain. Some researchers have suggested that elevated blood Cd levels may contribute to the onset and progression of nonalcoholic fatty liver disease (NAFLD). However, only a few studies have explored the relationship between Cd exposure and long-term health outcomes in patients with NAFLD. This study aimed to evaluate the predictive value of blood cadmium levels for mortality risk in patients with NAFLD.

Methods: This study analyzed data from 13,450 patients with NAFLD in the National Health and Nutrition Examination Survey (NHANES) database, covering the years 1999 to 2018. Patients were categorized into three groups based on their blood Cd levels. The relationship between blood cadmium concentrations and all-cause, cardiovascular, and cancer mortality in NAFLD patients was assessed using Cox proportional hazards regression while accounting for potential confounders. Results were visualized using Kaplan–Meier and restricted cubic spline (RCS) curves. Stratified analyses were performed for validation of the robustness of the results.

Results: After adjusting for all covariates, blood Cd levels were positively associated with all-cause, cardiovascular, and cancer mortality in patients with NAFLD, showing a significant linear dose-response relationship. Specifically, for each unit increase in Log-transformed blood cadmium concentration, the risk of all-cause mortality increased by 191% (HR = 2.91, 95% CI: 2.39-3.53); cardiovascular mortality risk increased by 160% (HR = 2.6, 95% CI: 1.80-3.76); and cancer mortality risk increased by 279% (HR = 3.79, 95% CI: 2.54-5.65). Stratified analysis confirmed the robustness of these findings.

Conclusion: Our study suggests that high Blood Cd levels adversely affect the prognosis of patients with NAFLD. Individuals with NAFLD should be aware of Cd exposure and take preventive measures. Moreover, stricter environmental protection policies may be necessary to reduce Cd exposure.

KEYWORDS

cadmium exposure, non-alcoholic fatty liver disease, NHANES, mortality, prognosis, United States

1 Background

Nonalcoholic fatty liver disease (NAFLD) represents a significant contributor to the prevalence of chronic liver disorders (1, 2). It is a metabolic disorder characterized by the presence of fatty degeneration in \geq 5% of liver cells without other obvious causes, such as excessive alcohol consumption or viral hepatitis (3). The prevalence of NAFLD worldwide is approximately 25%-30% and is steadily increasing (4, 5). NAFLD is associated with multiple systemic metabolic disturbances, putting patients at increased risk for cancer, cardiovascular diseases, and cirrhosis (6). Currently, there is no specific medication for NAFLD; treatment primarily focuses on modifying metabolic risk factors to improve long-term outcomes (7). NAFLD imposes a significant economic burden and has emerged as a major global public health issue (8, 9). Therefore, identifying biomarkers that may be predictive of the prognosis of patients with NAFLD is crucial.

Cadmium (Cd) is a common environmental pollutant found in industrial production processes, contaminated rice and shellfish, batteries, pigments, cosmetics, and hair dyes. It enters the human body through food, air, soil, drinking water, and other pathways (10, 11). Cd accumulates in the liver, inducing extensive liver damage and ultimately leading to NAFLD (12, 13). It may promote the progression of NAFLD by inhibiting mitochondrial transfer and increasing intracellular lipid accumulation (14). Previous studies have reported the adverse effects of Cd exposure on the prognosis of the general U.S. population, postmenopausal women, and patients with hypertension (15-17). Some researchers have examined the relationship between blood Cd levels and NAFLD (18, 19). A recent review summarized existing epidemiological and laboratory research findings, suggesting an association between cadmium exposure and an increased risk of NAFLD as well as changes in liver damage markers (20). Furthermore, studies have indicated that early-life exposure to cadmium increases the risk of cognitive impairment in adulthood, potentially related to corticosterone responses and immune dysregulation (21, 22). Maternal exposure to cadmium may be associated with the development of NAFLD in offspring. Additionally, experiments in mice have confirmed that early-life exposure to cadmium induces the occurrence of liver tumors (23). However, there is a lack of conclusive evidence regarding the effect of blood cadmium levels on the prognosis of patients with NAFLD.

Therefore, this study aimed to provide evidence of the association between blood cadmium levels and the risk of mortality in patients with NAFLD using a large, nationally representative dataset from the National Health and Nutrition Examination Survey (NHANES) and the National Death Index (NDI). This research may facilitate timely and appropriate preventive and medical interventions to improve the prognosis of patients with NAFLD.

2 Methods

2.1 Study population

The NHANES, overseen by the Centers for Disease Control and Prevention (CDC), is a nationally representative survey aimed at evaluating the health and nutritional status of both adults and children in the United States. Informed consent from the National Centre for Health Statistics Institutional Review Board was obtained from all participants. Data from NHANES have been made publicly available online biennially since 1999 (24). Given the use of pre-existing de-identified data from NHANES and the waiver of the need for informed consent for this study, the National Center for Health Statistics Ethics Review Board granted an exemption for this research.

We included 55,081 adults aged ≥ 20 years from NHANES 1999– 2018 in the analysis. Exclusion criteria were as follows: (a) missing or below-detection-limit blood cadmium data (n = 18,078); (b) viral hepatitis (n = 3,325); (c) pregnancy or excessive alcohol consumption (n = 993); (d) lack of data for calculating hepatic steatosis index (HSI) and covariates (n = 5,901); (e) HSI ≤ 36 (n = 12,994); (f) White blood cell (WBC) count or platelet count is unknown (n = 27); and (g) Total energy intake is unknown (n = 313). Ultimately, 13,450 eligible participants were included in the analysis (Figure 1).

2.2 Cadmium exposure

Whole blood specimens were transported to the Laboratory Science Department, the National Center for Environmental Health, and the CDC for analysis. Blood Cd levels were assessed utilizing atomic absorption spectrometry from 1999 to 2002, and subsequently measured using inductively coupled plasma mass spectrometry from 2003 to 2018. Detailed information on the experimental methods and quality assurance measures can be found online (24). A natural logarithmic (log) transformation was applied to the blood Cd concentrations to reduce data skewness, as the distribution of blood Cd levels was highly skewed. This transformation helped normalize the data, allowing for more accurate statistical modeling and interpretation.

2.3 Nonalcoholic fatty liver disease

NAFLD was defined as HSI > 36 (25). The calculation formula for HSI was as follows: $HSI = 8 \times \begin{pmatrix} alanine aminotransferase (ALT) / \\ aspartate aminotransferase (AST) ratio \end{pmatrix} + (26).$ body mass index (BMI) (+2 for females; + 2 for diabetes)

2.4 Mortality ascertainment

NHANES data were linked to mortality data from the NDI. This study followed participants from participating in the survey until 31 December 2019. The determination of causes of death was conducted based on the International Classification of Diseases, Tenth Revision (ICD-10). Outcomes included all-cause, cardiovascular, and cancerrelated mortalities.

2.5 Covariate definitions

The following covariate information was collected from NHANES for analysis: age, sex, race, education, marital status, poverty income ratio (PIR), BMI, diabetes, moderate physical activity, smoking status, blood cotinine concentration, drinking status, and presence of hypertension. PIR was categorized as PIR < 1 (low income), $1 \leq PIR \leq 3$ (medium income), and PIR > 3 (high income). Smoking status was classified as yes (lifetime smoking ≥ 100 cigarettes) or no (lifetime smoking < 100 cigarettes). Drinking status was categorized

as yes (\geq 12 drinks per year) or no (<12 drinks per year). Diabetes was diagnosed based on the patient's questionnaire responses, fasting blood glucose levels, and glycated hemoglobin levels. Hypertension was diagnosed on the patient's medical history. Energy intake is defined as the total caloric intake per day. The FIB-4 index

$$\left(FIB - 4 = \frac{age * AST}{ALT * \sqrt{platelet}}\right)$$
 is used to represent the severity of

liver fibrosis in patients. A FIB-4 index of \geq 2.67 indicates advanced fibrosis (27).

2.6 Statistical analyses

We used Cox proportional hazards regression analysis to assess the relationship between blood Cd levels in patients with NAFLD and all-cause, cardiovascular, and cancer mortality while considering possible confounders. Crude model unadjusted for covariates. Model 1 was adjusted for age, sex, race, and educational level. Model 2 included adjustments from model 1 and also considered marital status, PIR, BMI, and moderate physical activity. Model 3 was adjusted for the covariates in Model 2, plus smoking status, cotinine levels, drinking status, hypertension, diabetes, WBC, energy intake and FIB-4 index. Participants were grouped into tertiles based on blood Cd levels. Kaplan-Meier curves were drawn, and log-rank tests were performed between groups. RCS regression models were employed to examine the association between blood Cd levels and mortality rate. Stratified analyses were performed to assess the robustness of the results. Statistical analyses were performed using R software (version 4.3.1) and the Free Statistics software version 1.8. Statistical significance was set at p < 0.05.

3 Results

3.1 Participant characteristics

A total of 13,450 NAFLD patients were included in our analysis, with male participants accounting for 43%. Table 1 describes the patient characteristics stratified by tertiles of blood Cd levels. Compared to the T1 group, participants in the T3 group (higher blood Cd levels) were more frequently male, non-Hispanic white, widowed/ divorced/separated, with a PIR < 1, smokers with higher cotinine levels, drinkers, hypertension, higher WBC, higher energy intake, and lower FIB-4 index. Additionally, the T3 group had lower average age, education level, BMI, and moderate physical activity. As of December 31, 2019, 2,261 (16.8%), 632 (4.7%), and 516 (3.8%) participants had died from all-cause, cardiovascular, and cancer-related causes, respectively.

3.2 Associations between blood Cd and all-cause mortality

During a mean follow-up time of 137.3 months, 2,261 patients died from all causes. Patients were categorized into tertiles based on blood Cd levels: T1 (<0.33 µg/L), T2 (0.33–0.55 µg/L), and T3 (\geq 0.55 µg/L), with 406, 837, and 1,018 deaths from all causes in each group, respectively. After adjusting for various covariates, elevated blood Cd levels were strongly associated with an elevated all-cause mortality risk (Table 2).

After adjusting for all covariates, for each unit increase in log-transformed blood cadmium concentration, all-cause mortality risk in patients increased by 191% (HR = 2.91, 95% CI: 2.39–3.53). Compared to the T1 group, the T3 group exhibited a 59% increase in mortality risk (HR = 1.59, 95% CI: 1.41–1.8). Kaplan–Meier curves demonstrated that with longer follow-up, the cumulative survival rate of patients in the T3 group was significantly lower than that in the T1 group (Figure 2A). The RCS plot indicated a clear linear dose–response relationship between blood Cd concentration and all-cause mortality (nonlinear p = 0.497). When the HR is 1, the log-transformed blood cadmium concentration is -0.3872, which corresponds to a blood cadmium concentration of 0.415 µg/L at this point (Figure 3A).

3.3 Associations between blood Cd and cardiovascular mortality

In the T1, T2, and T3 groups, there were 119, 239, and 274 cardiovascular deaths, respectively. After adjusting for various covariates, elevated blood Cd levels were significantly linked to an increased risk of cardiovascular mortality (Table 2).

After adjusting for all covariates, for each unit increase in log-transformed blood Cd concentration, cardiovascular mortality risk increased by 160% (HR = 2.6, 95% CI: 1.80–3.76). Compared to the T1 group, the T3 group had a 59% higher risk of mortality (HR = 1.59, 95% CI: 1.41–1.8). Kaplan–Meier curves demonstrated that with longer follow-up, the cumulative survival rate of patients in the T3 group was significantly lower than that in the T1 group (Figure 2B). The RCS plot indicated a clear linear dose–response relationship between blood Cd concentration and cardiovascular

mortality (nonlinear p = 0.943). When the HR is 1, the log-transformed blood cadmium concentration is -0.3872, which corresponds to a blood cadmium concentration of $0.415 \mu g/L$ at this point (Figure 3B).

3.4 Associations between blood Cd and cancer mortality

In the T1, T2, and T3 groups, there were 90, 177, and 249 cancerrelated deaths, respectively. After adjusting for various covariates, elevated blood Cd levels were closely associated with an increased risk of cancer mortality (Table 2).

After adjusting for all covariates, for each unit increase in log-transformed blood Cd concentration, the risk of cancer mortality in patients increased by 279% (HR = 3.79, 95% CI: 2.54–5.65). Compared to the T1 group, the T3 group had a 75% higher risk of mortality (HR = 1.71, 95% CI: 1.32–2.21). Kaplan–Meier curves demonstrated that with longer follow-up, the cumulative survival rate of patients in the T3 group was significantly lower than that in the T1 group (Figure 2C). The RCS plot indicated a clear linear dose–response relationship between blood Cd concentration and cancer mortality (nonlinear p = 0.521). When the HR is 1, the log-transformed blood cadmium concentration is -0.3872, which corresponds to a blood cadmium concentration of 0.415 µg/L at this point (Figure 3C).

3.5 Subgroup analysis

In the subgroup analyses, a robust positive association was observed between blood Cd concentration and all-cause, cardiovascular, and cancer mortality rates (Figure 4). Stratified analysis did not reveal significant interactions (p > 0.05). For overall mortality, there was a trend indicating a greater adverse impact of blood cadmium on prognosis in patients with advanced fibrosis (FIB-4 index \leq 2.67 vs. FIB-4 index >2.67: 2.66 [1.68, 4.20] vs. 3.06 [2.50, 3.76]), although the difference was not statistically significant (p = 0.439). Regarding cardiovascular mortality, a similar trend was observed in the advanced fibrosis subgroup, with blood cadmium showing a greater adverse effect on prognosis (FIB-4 index ≤ 2.67 vs. FIB-4 index >2.67: 1.76 [0.66, 4.65] vs. 3.07 [2.08, 4.53]), but again, the difference was not statistically significant (p = 0.638). For cancer mortality, there was also a trend suggesting a more pronounced adverse effect of blood cadmium on prognosis in the advanced fibrosis subgroup (FIB-4 index \leq 2.67 vs. FIB-4 index > 2.67: 2.59 [1.01, 6.59] vs. 4.06 [2.70, 6.12]), although the difference did not reach statistical significance (p = 0.437).

4 Discussion

Our large prospective cohort study reveals a significant positive correlation between blood Cd levels and all-cause, cardiovascular, as well as cancer-related mortality in patients with NAFLD, even after adjusting for multiple covariates. Subgroup analyses corroborate the robustness of these findings. Furthermore, a significant linear dose-response relationship was observed between blood cadmium levels and mortality, with a threshold of $0.415 \,\mu$ g/L associated with a markedly increased risk of all-cause, cardiovascular, and cancer mortality. This indicates that NAFLD patients should aim to maintain

TABLE 1 Participants baseline characteristics by blood cadmium tertiles.

Variables		Blood ca	dmium		p
	Total (<i>n</i> = 13,450)	T1 (<i>n</i> = 4,279)	T2 (<i>n</i> = 4,614)	T3 (<i>n</i> = 4,557)	
Age, Mean ± SD, years	52.0 ± 16.5	50.1 ± 16.4	54.4 ± 16.4	51.5 ± 16.5	< 0.001
Gender, <i>n</i> (%)					< 0.001
Male	5,781 (43.0)	2,051 (47.9)	1,768 (38.3)	1,962 (43.1)	
Female	7,669 (57.0)	2,228 (52.1)	2,846 (61.7)	2,595 (56.9)	
Race, <i>n</i> (%)					<0.001
Mexican American	2,931 (21.8)	1,057 (24.7)	1,116 (24.2)	758 (16.6)	
Other Hispanic	1,049 (7.8)	411 (9.6)	361 (7.8)	277 (6.1)	
Non-Hispanic White	6,038 (44.9)	1,749 (40.9)	2,005 (43.5)	2,284 (50.1)	
Non-Hispanic Black	2,714 (20.2)	841 (19.7)	900 (19.5)	973 (21.4)	
Other Race	718 (5.3)	221 (5.2)	232 (5)	265 (5.8)	
Education, <i>n</i> (%)					<0.001
Less than high school	3,971 (29.5)	1,081 (25.3)	1,384 (30)	1,506 (33)	
High school	3,352 (24.9)	981 (22.9)	1,105 (23.9)	1,266 (27.8)	
More than high school	6,127 (45.6)	2,217 (51.8)	2,125 (46.1)	1,785 (39.2)	
Marital status, <i>n</i> (%)					< 0.001
Married/living with partner	8,260 (61.4)	2,830 (66.1)	2,906 (63)	2,524 (55.4)	
Widowed/divorced/separated	3,281 (24.4)	843 (19.7)	1,141 (24.7)	1,297 (28.5)	
Never married	1,772 (13.2)	573 (13.4)	511 (11.1)	688 (15.1)	
Unknown	137 (1.0)	33 (0.8)	56 (1.2)	48 (1.1)	
Poverty income ratio, <i>n</i> (%)					< 0.001
<1	2,468 (18.3)	668 (15.6)	726 (15.7)	1,074 (23.6)	
1–3	5,396 (40.1)	1,645 (38.4)	1,837 (39.8)	1,914 (42)	
≥3	4,488 (33.4)	1,638 (38.3)	1,633 (35.4)	1,217 (26.7)	
Unknown	1,098 (8.2)	328 (7.7)	418 (9.1)	352 (7.7)	
Body mass index, Mean ± SD, Kg/m ²	32.9 ± 5.9	33.2 ± 6.4	33.0 ± 5.8	32.6 ± 5.6	< 0.001
Diabetes, n (%)					0.186
Yes	3,255 (24.2)	1,052 (24.6)	1,143 (24.8)	1,060 (23.3)	
No	10,195 (75.8)	3,227 (75.4)	3,471 (75.2)	3,497 (76.7)	
Moderate physical activity, <i>n</i> (%)					< 0.001
Yes	5,229 (38.9)	1,793 (41.9)	1,835 (39.8)	1,601 (35.1)	
No	8,024 (59.7)	2,452 (57.3)	2,710 (58.7)	2,862 (62.8)	
Unknown	197 (1.5)	34 (0.8)	69 (1.5)	94 (2.1)	
Smoking status, n (%)					< 0.001
Yes	7,141 (53.1)	1,417 (33.1)	2,114 (45.8)	3,610 (79.2)	
No	6,309 (46.9)	2,862 (66.9)	2,500 (54.2)	947 (20.8)	
Cotinine, Median (IQR), ng/mL	0.1 (0,36.2)	0 (0,0.1)	0 (0,0.3)	102 (0.1,238)	< 0.001
Drinking status, <i>n</i> (%)					< 0.001
Yes	9,597 (71.4)	3,037 (71)	3,108 (67.4)	3,452 (75.8)	
No	3,853 (28.6)	1,242 (29)	1,506 (32.6)	1,105 (24.2)	
Hypertension, <i>n</i> (%)					< 0.001
Yes	5,861 (43.6)	1,716 (40.1)	2,087 (45.2)	2,058 (45.2)	
No	7,589 (56.4)	2,563 (59.9)	2,527 (54.8)	2,499 (54.8)	
WBC, 1,000 cells/uL	7.5 ± 2.2	7.3 ± 1.9	7.3 ± 2.2	8.0 ± 2.3	< 0.001
Energy intake, Mean ± SD, kcal	2046.2 ± 958.2	2105.5 ± 946.0	1982.3 ± 910.2	2055.1 ± 1011.9	< 0.001

(Continued)

TABLE 1 (Continued)

Variables		Blood ca	dmium		p
	Total (<i>n</i> = 13,450)	T1 (<i>n</i> = 4,279)	T2 (<i>n</i> = 4,614)	T3 (<i>n</i> = 4,557)	
FIB-4, n (%)					< 0.001
≤2.67	5,424 (40.3)	1,894 (44.3)	1,617 (35)	1,913 (42)	
>2.67	8,026 (59.7)	2,385 (55.7)	2,997 (65)	2,644 (58)	
All-cause mortality, <i>n</i> (%)					< 0.001
No	11,189 (83.2)	3,873 (90.5)	3,777 (81.9)	3,539 (77.7)	
Yes	2,261 (16.8)	406 (9.5)	837 (18.1)	1,018 (22.3)	
Cardiovascular mortality, <i>n</i> (%)					< 0.001
No	12,818 (95.3)	4,160 (97.2)	4,375 (94.8)	4,283 (94)	
Yes	632 (4.7)	119 (2.8)	239 (5.2)	274 (6)	
Cancer mortality, <i>n</i> (%)					< 0.001
No	12,934 (96.2)	4,189 (97.9)	4,437 (96.2)	4,308 (94.5)	
Yes	516 (3.8)	90 (2.1)	177 (3.8)	249 (5.5)	

T1: <0.33 $\mu g/L,$ T2: 0.33–0.55 $\mu g/L,$ T3: $\geq \! 0.55 \; \mu g/L.$

TABLE 2 The association between blood cadmium (μ g/L) and mortality in patients with NAFLD.

Blood cadmium	Crude Model [HR(95%CI)]	Model 1 [HR(95%CI)]	Model 2 [HR(95%Cl)]	Model 3 [HR(95%Cl)]
All-cause mortality				
Continuous [#]	2.3 (1.98,2.66)	3.77 (3.17,4.47)	3.46 (2.91,4.11)	2.91 (2.39,3.53)
Tertiles				
T1	Reference	Reference	Reference	Reference
T2	1.61 (1.43,1.81)	1.21 (1.08,1.37)	1.22 (1.09~1.38)	1.2 (1.06,1.35)
Т3	2.11 (1.88,2.37)	1.82 (1.62,2.05)	1.77 (1.57~1.99)	1.59 (1.41,1.8)
<i>P</i> for trend	<0.001	<0.001	<0.001	<0.001
Cardiovascular mortalit	ty			
Continuous [#]	1.98 (1.49,2.63)	3.21 (2.3,4.49)	2.99 (2.13,4.18)	2.6 (1.8,3.76)
Tertiles				
T1	Reference	Reference	Reference	Reference
T2	1.57 (1.26,1.95)	1.15 (0.92,1.43)	1.17 (0.94~1.47)	1.18 (0.94,1.48)
Т3	1.94 (1.56,2.4)	1.64 (1.32,2.03)	1.6 (1.29~2)	1.52 (1.21,1.91)
<i>P</i> for trend	<0.001	<0.001	<0.001	<0.001
Cancer mortality				
Continuous [#]	3.05 (2.27,4.1)	5.15 (3.67,7.22)	4.96 (3.52,6.99)	3.79 (2.54,5.65)
Tertiles				
T1	Reference	Reference	Reference	Reference
T2	1.55 (1.2,2)	1.22 (0.95,1.58)	1.23 (0.95,1.59)	1.16 (0.9,1.5)
T3	2.35 (1.85,2.99)	2.11 (1.66,2.7)	2.08 (1.63,2.65)	1.71 (1.32,2.21)
<i>P</i> for trend	<0.001	<0.001	<0.001	<0.001

Crude Model: unadjusted. Model 1: adjusted for age, gender, race, and education. Model 2: adjustments for model 1 plus marital status, poverty income ratio, body mass index, and moderate physical activity. Model 3: adjustments for model 2 plus Smoking status, Cotinine, Drinking status, Hypertension, Diabetes, WBC, Energy, and FIB-4. *Blood cadmium concentrations underwent logarithmic transformation. T1: <0.33 µg/L, T2: 0.33–0.55 µg/L.

blood cadmium levels below 0.415 μ g/L. Notably, the impact of blood Cd concentration on all-cause, cardiovascular, as well as cancerrelated mortality tends to be amplified in populations with advanced liver fibrosis, although the differences were not statistically significant.

Cd, a toxic heavy metal widely present in the environment, is classified as a Group 1 carcinogen. Human exposure to cadmium mainly occurs through food, tobacco smoke, and occupational exposure (28). Previous studies have linked high blood cadmium

levels to increased mortality in the general U.S. population, older adults, postmenopausal women, patients with type 2 diabetes, individuals with hypertension, rheumatoid arthritis, chronic obstructive pulmonary disease, and patients with chronic kidney disease (15–17, 29–33). Our study provides reliable evidence for the association between blood Cd levels and increased all-cause, cardiovascular, and cancer mortality in patients with NAFLD.

Animal experiments have demonstrated that Cd exposure exacerbates hepatic steatosis induced by a high-fat diet, primarily through the induction of oxidative stress, inflammatory responses, cell signaling, and lipid metabolism (12, 34–38). First, cadmium promotes the production of reactive oxygen species (ROS), which enhances oxidative stress. This, in turn, leads to lipid peroxidation and hepatic steatosis. ROS can also damage DNA and proteins, resulting in hepatocyte apoptosis (14, 20, 39). Second, cadmium induces the production of inflammatory factors, such as tumor necrosis factoralpha (TNF- α) and interleukin-6 (IL-6), in hepatocytes, leading to an inflammatory response in the liver. Chronic inflammation subsequently results in liver fibrosis (35). Additionally, cadmium may activate the NF- κ B and MAPK signaling pathways, promoting fibroblast proliferation and collagen deposition, thereby facilitating the progression of hepatic fibrosis (40). Finally, cadmium-induced interference with lipid metabolism leads to increased fatty acid synthesis and decreased oxidation, resulting in the accumulation of excess fatty acids in hepatocytes, which contributes to steatosis (41).

Cd may contribute to atherosclerosis through oxidative stress, inflammation, and endothelial cell damage (42). It may also elevate blood pressure through vascular effects, inflammation, and blockade of calcium signaling pathways, thereby increasing the cardiovascular mortality rate in NAFLD patients (43).

Previous studies have shown controversial results regarding the association between Cd exposure and cancer risk (44–49). A recent review summarizing epidemiological and laboratory findings showed that Cd is a multi-organ carcinogen, with its exposure linked to tumors in the lungs, kidneys, pancreas, and breasts, as well as the progression of hepatocellular carcinoma (50). Our study on the NAFLD population confirmed a positive correlation between blood Cd levels and cancer mortality.

These findings have vital clinical and medical implications. Elevated blood Cd levels can serve as predictive biomarkers of mortality in patients with NAFLD. Furthermore, a interventional study conducted in cadmium-contaminated areas demonstrated that

Subarou-	UP (95% CIL		P for interaction	Ď	HP (95% C*)		D foo lastoon 1
Subgroup	нк (э5%СІ)		P for interaction	Subgroup	нк (95%CI)		P for interaction
Overall		-		Overall	4 00/4 40 5 55		
Grude	2.3 (1.98,2.66)	-		Grude	1.98(1.49,2.63)	-	
Adjusted	2.91 (2.39,3.53)			Adjusted	2.6 (1.8,3.76)	-	
Gender	2 72 /2 04 2 00		0.155	Gender	2 2 /4 22 2 000	_	0.252
male	2.73 (2.04,3.66)		0.156	male	2.3 (1.33,3.96)		0.262
female	2.93 (2.14,4.02)			female	2.46 (1.33,4.55)		
Age,years				Age,years			
<60	3.05 (2.02,4.6)		0.113	<60	2.35 (0.98,5.64)	•	0.188
≥60	2.65 (2.06,3.41)			≥60	2.16 (1.35,3.44)		
Education				Education			
less than high scho	ol 2.9 (2.1,4.01)		0.851	less than high school	3.13 (1.7,5.77)		0.152
High school	2.82 (1.84,4.35)			High school	1.04 (0.43,2.53)	—	
more than high sch	ool 2.7 (1.84,3.97)			more than high school	2.73 (1.31,5.68)		
Poverty income ra	tio			Poverty income ratio			
<1	3.25 (2.01,5.27)		0.954	<1	4.07 (1.49,11.08)		0.887
1-3	2.85 (2.11,3.85)			1-3	1.98 (1.12,3.5)		
≥3	2.23 (1.39,3.58)	_		≥3	2.55 (1.06,6.12)		
Unknown	3.93 (1.76,8.75)			Unknown	3.23 (0.65, 16.12) -	•	_
Diabetes				Diabetes			
Yes	2.69 (1.94,3.71)	_	0.501	Yes	2.1 (1.16,3.8)	_	0.997
No	2.92 (2.19,3.9)	_		No	2.57 (1.46,4.54)		
Moderate physical	activity			Moderate physical activ	rity		
Yes	2.54 (1.71.3 77)	_	0.637	Yes	2.06 (0.97.4.35)		0.525
No	2 94 (2 26 3 83)	-		No	2 18 (1 31 2 63)		0.069
Linknerer	2.0+(2.20,3.83)			lakerun	4.02 (0.65 24.75)		
Omonown	2.03 (0.82,0.88)	•	_	Omenown	4.02 (0.00,24.70) -	•	
Smoking status				Smoking status			A 177
Yes	2.74 (2.12,3.53)		0.996	Yes	2.02 (1.23,3.31)		0.499
No	2.7 (1.75,4.17)			No	2.61 (1.18,5.74)		
Cottinine,ng/ml				Cottinine,ng/ml			
0.011-10	2.54 (1.9,3.4)	_	0.783	0.011-10	2.43 (1.41,4.19)		0.785
≥10	2.51 (1.74,3.62)	—		≥10	1.81 (0.86,3.81)	+	
Drinking status				Drinking status			
Yes	3.07 (2.37,3.97)		0.349	Yes	2.63 (1.6,4.33)	_	0.327
No	2.37 (1.61,3.49)	_		No	1.77 (0.87,3.6)		
Hypertension				Hypertension			
Yes	3 (2 31 3 9)		0.96	Yes	3 (1 86 4 84)		0 127
No	2 5 (1 74 3 59)	· · ·		No	1 31 (0 61 2 81)		
50 4	2.0 (1.14,0.00)				1.01 (0.01,2.01)	•	
FIB-4							
-0.07	0.00.00.00		0.400	FIB-4	1 70 (0 00 1 00)		0.000
≤2.67	2.66 (1.68,4.2)		0.439	FIB-4 ≤2.67	1.76 (0.66,4.65)	•	0.638
≤2.67 >2.67	2.66 (1.68,4.2) 3.06 (2.5,3.76)		0.439	FIB-4 ≤2.67 >2.67	1.76 (0.66,4.65) 3.07 (2.08,4.53)		0.638
≤2.67 >2.67	2.66 (1.68,4.2) 3.06 (2.5,3.76)	2.0 4.0 Effect (0.6% Ch)	0.439	FIB-4 ≾2.67 >2.67	1.76 (0.66,4.65) 3.07 (2.08,4.53) 0.50	1.0 2.0 4.0 8.0 Effort (6.0 0)	0.638
\$2.67 >2.67	2.66 (1.68,4.2) 3.06 (2.5,3.76) 1.0	2.0 4.0 Effect (95%C1)	0.439	F iB-4 ≤2.67 ≥2.67	1.76 (0.66,4.65) 3.07 (2.08,4.53) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
≤2.67 >2.67	2.66 (1.68,4.2) 3.06 (2.5,3.76) 1.0 HR (95%CI)	2.0 4.0 Effect (95%Cl)	0.439 8.0 P for interaction	FIB-4 ≤2.67 ≥2.67	1.76 (0.66,4.65) 3.07 (2.08,4.53) 0.50	1.0 2.0 4.0 8.0 Effect (95%Cl)	0.638
\$2.67 >2.67 	2.66 (1.68,4.2) 3.06 (2.5,3.76) 1.0 HR (95%CI)	2.0 4.0 Effect (95%Ci)	0.439 1 8.0 P for interaction	FIB-4 ⊴2.67 >2.67	1.76 (0.66,4.65) - 3.07 (2.08,4.53) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
\$2.67 >2.67 Subgroup Overall Crude	2.66 (1.68,4.2) 3.06 (2.5.3.76) 1.0 HR (95%Cl) 3.06(2.27,4.1)	2.0 4.0 Effect (95%Cl)	0.439 3.0 P for interaction	FIB-4 ≤2.67 >2.67	1.76 (0.66,4.65) - 3.07 (2.08,4.53) 0.50	1.0 2.0 4.0 8.0 Effect (95%Cl)	0.638
s2.67 >2.67 Subgroup Overall Crude Adjusted	2.66 (1.68,4.2) 3.06 (2.5,3.76) 1.0 HR (95%CI) 3.05(2.27,4.1) 3.79 (2.54,5.65)	2.0 4.0 Effect (95%Ci)	0.439 8.0 P for interaction	FIE-4 ≤2.67 >2.67	1.76 (0.66,4.65) 3.07 (2.08,4.53) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
≤2.67 >2.67 Subgroup Overall Crude Adjusted Gender	2.66 (1.88.4.2) 3.06 (2.5.3.76) 1.0 HR (85%Cl) 3.05(2.27,4.1) 3.79 (2.54,5.65)	2.0 4.0 Effect (05%CI)	0.439 8.0 P for interaction	FB-4 ≤2.67 ≥2.67	1.76 (0.66,4.65) 3.07 (2.08,4.53) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638 16.0
s2.67 >2.67 Subgroup Overall Crude Adjusted Gender male	2.66 (1.68.4.2) 3.06 (2.5.3.76) 1.0 HR (95%Cl) 3.06(2.27,4.1) 3.79 (2.54,5.65) 3.86 /2 14.6 em	2.0 4.0 Effect (05%Cl)	0.439 8.0 P for interaction	FIB-4 <2.67 >2.67	1.76 (0.66.4.65) 3.07 (2.08.4.53) 0.50	1.0 2.0 4.0 8.0 Effect (05%Cl)	0.638
s2.67 >2.67 Subgroup Overall Crude Adjusted Gender male fomale	2.66 (1.68.4.2) 3.06 (2.5.3.76) 1.0 HR (85%CI) 3.06 (2.27.4.1) 3.79 (2.64.5.65) 3.86 (2.14.0.96) 3.96 (2.14.0.96)	2.0 4.0 Effect (85%CI)	0.439 8.0 P for interaction 0.302	FIB-4 <2.07 >2.07	1.76 (0.66,4.65) - 3.07 (2.08,4.53) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
s2.67 >2.67 Subgroup Overall Crude Adjusted Gender male female Annue	2.66 (1.68.4.2) 3.06 (2.5.3.76) HR (85%CI) 3.05(2.27.4.1) 3.79 (2.54.5.65) 3.86 (2.14,6.96) 3.94 (2.07.7.5)	2.0 4.0 Effect (05%CI)	0.439 8.0 P for interaction 0.302	FB-4 22.67 >2.67	1.76 (0.68,4.65) - 3.07 (2.08,4.53) 0.50	1.0 2.0 4.0 8.0 Effect (05%Cl)	0.638
=2.67 =2.67 Subgroup Overall Crude Adjusted Gender male female Age,years	2.66 (1.68.4.2) 3.06 (2.5.3.76) 1.0 HR (95%CI) 3.05(2.27.4.1) 3.79 (2.54.5.65) 3.88 (2.14.6.96) 3.94 (2.07.7.5)	2.0 4.0 Effect (95%Ci)	0.439	FIB-4 =2.67 >2.67	1.76 (0.66,4.65) - 3.07 (2.06,4.63) 0.50	1.0 2.0 4.0 8.0 Effect (195%CI)	0.638
=2.67 >2.67 Subgroup Overall Crude Adjusted Gender male Age.years <60	2.66 (1.68.4.2) 3.06 (2.63.76) 1.0 HR (85%CI) 3.06 (2.27.4.1) 3.79 (2.64.6.66) 3.80 (2.14.6.96) 3.94 (2.07.7.5) 2.43 (1.1.5.39)	20 40 Effect (85%C))	0.439 8.0 P for interaction 0.302 0.13	FB-4 22.67 ≻2.67	1.76 (0.66,4.65) - 3.07 (2.06,4.63) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
2.87 2.87 Subgroup Overall Crude Adjusted Gender male female female 450 250	2.66 (1.68.4.2) 3.06 (2.5.3.76) I.0 HR (85%CI) 3.05(2.27.4.1) 3.79 (2.54.8.65) 3.86 (2.14,6.96) 3.94 (2.07.7.5) 2.43 (1.1,5.39) 5.12 (3.04.8.63)	2.0 4.0 Effect (85%C))	0.439 8.0 P for interaction 0.302 0.13	FB-4 22.67 >2.67	176 (0.66,4.65) 3.07 (2.06,4.53) 0.50	1.0 2.0 4.0 8.0 Effect (05%Cl)	0.638
22.67 22.67 Subgroup Overall Crude Adjusted Gender male female Age,years <60 260 Education	266 (1.68.4.2) 3.06 (2.63.76) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 4.0 Effect (05%Ci)	0.439	FIB-4 =2.67 >2.67	1.76 (0.86,4.65) 3.07 (2.08,4.65) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0638
s2.67 >2.67 Subgroup Overall Crude Adjusted Gender male female Age,years <50 260 Education Hess than high school	2.66 (1.68.4.2) 3.06 (2.5.3.76) I.0 HR (85%CI) 3.05(2.27,4.1) 3.79 (2.54,5.65) 3.88 (2.14.0.96) 3.94 (2.07,7.5) 2.43 (1.1,5.39) 5.12 (3.04,6.63) 3.94 (1.94,7.28)	2.0 4.0 Effort (85%CI)	0.439 8.0 P for interaction 0.302 0.13 0.65	FB-4 22.67 >2.67	176 (0.86,4.65) 3.07 (2.06,4.65) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
	2.66 (1.68.4.2) 3.06 (2.5.3.76) HR (85%CI) 3.05(2.27.4.1) 3.79 (2.54.5.65) 3.86 (2.14,6.96) 3.94 (2.07.7.5) 2.43 (1.1.5.39) 5.12 (3.04.8.63) 3.96 (1.84,7.28) 5.64 (2.53,13.53)	2.0 4.0 Effect (85%CI)	0.439 8.0 P for interaction 0.302 0.13 0.65	FB-4 22.67 >2.67	176 (0.66,4.65) 3.07 (2.06,4.63) 0.50	1 0 20 40 80 Effect (65%Cl)	0838
22.07 >2.07 Subgroup Overall Crude Gender male Gender Mage years <00 260 Education Lies than tigh school High school more than high school	266 (1.68.4.2) 3.06 (2.63.70) I I I I I I I I I I I I I I I I I I I	20 40 Effect (05%C))	0.439 8.0 P for interaction 0.302 0.13 0.05	FB-4 ≤2,67 ≥2,67	1.76 (0.86,4.65) 3.07 (2.06,4.65) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0638
22.87 >2.87 Subgroup Overall Overal	2.06 (1.08.4.2) 3.06 (2.5.3.70) I.0 IRR (85%CI) J.0 IRR (85%CI) J.0 IRR (254,5.65) J.0 J.0 (2.54,5.65) J.0 (2.54,5.65) J.0 (2.64,5.65) J.0 (2.64,6.63) J.0 (1.84,6.63) J.0 (1.84,7.28) 5.84 (2.53,13.53) S.04 (1.8,6.55) J.0 (1.8,6.55) J.0 (1.8,6.55)	20 40 Effort (65%CI)	0.439 P for interaction 0.302 0.13 0.65	FB-4 22.67 ≥2.67	176 (0.68,4.65) 3.07 (2.08,4.65) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
22.87 >2.87 Subgroup Overal Crude Adjusted Gender Adjusted Gender Adjusted Gender Adjusted Gender Adjusted Gender Adjusted Besthan high scho more than high scho Poverthin ones ra	2.66 (1.68.4.2) 3.06 (2.5.3.76) HR (85%CI) 3.05(2.27.4.1) 3.79 (2.54.5.65) 3.86 (2.14,6.96) 3.94 (2.07.7.5) 2.43 (1.1,5.39) 5.12 (3.04,8.63) 3.96 (1.84,7.28) 5.84 (2.53,13.53) 5.84 (2.53,13.53) 5.89 (1.37,10.88)	2.0 4.0 Effect (85%CI)	0.439 8.0 P for interaction 0.302 0.13 0.65 0.435	FB-4 22.67 >2.67	176 (0.66,4.65) 3.07 (2.06,4.63) 0.50	10 20 40 80 Effect (165%CI)	0838
22.07 >2.07 Subgroup Overall Crude Gender male Gender Mage years <00 Education High school High school Roorethan high school High school Poverty incomers <1 -1-3	2.66 (1.68.4.2) 3.06 (2.63.70) I.O I.O I.O I.O I.O I.O I.O I.O	20 40 Effect (05%C))	0.439 8.0 P for interaction 0.302 0.13 0.65 0.435	FB-4 22.67 ≻2.67	1.76 (0.86.4.65) 3.07 (2.06.4.63) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
22.67 >2.67 Subgroup Overall Overall Crude Adjusted Gender male Gender male Gender	2.66 (1.68.4.2) 3.06 (2.5.3.76) HR (95%CI) 3.05 (2.27,4.1) 3.79 (2.54,5.65) 3.86 (2.14.0.66) 3.94 (2.07,7.5) 2.43 (1.1,5.39) 5.12 (3.04,6.63) 5.12 (3.04,6.63) 5.12 (3.04,6.63) 5.12 (3.04,6.55) 10 3.66 (1.37,10.86) 3.96 (1.27,10.88) 3.96 (1.27,10.88) 3.96 (1.27,10.78) 3.96 (1.27,10	20 40 Effect (65%CI)	0.439 P for interaction 0.302 0.13 0.65 0.435	FB-4 22.67 ≥2.67	176 (0.68,4.65) 3.07 (2.08,4.65) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
22.87 >2.87 Subgroup Crude Crude Crude Adjusted Gender Adjusted Gender Adjusted Gender Adjusted Gender High school Rowerthan high scho Povertij income ra 40 1-3 23 Libanom	2.66 (1.68.4.2) 3.06 (2.5.3.76) HR (85%CI) 3.05(2.27.4.1) 3.79 (2.54.5.65) 3.86 (2.14, 0.96) 3.94 (2.07.7.5) 2.43 (1.1,5.39) 5.12 (3.04.8.63) 5.12 (3.04.8.63)	2.0 4.0 Effect (85%C))	0.439 8.0 P for interaction 0.302 0.13 0.65 0.435	FB-4 22.67 >2.67	1.76 (0.86,4.65) 3.07 (2.08,4.65) 0.50	1.0 2.0 4.0 8.0 Effect (195%CI)	0838
2.87 2287 2287 Subgroup Overall Crude Gender male Gender Maisea Gender Maisea Gender Mage.eass Age.eass	2.66 (1.68.4.2) 3.06 (2.63.70) HR (85%C) 3.05 (2.77.4.1) 3.79 (2.44.5.65) 3.86 (2.14.6.96) 3.94 (2.07.7.5) 2.43 (1.15.39) 5.12 (3.04.8.63) 3.06 (1.84.7.20) 5.12 (3.04.8.63) 3.00 3.00 (1.43.6.56) 3.9 (2.17.25) 3.9	20 40 Effect (05%C))	0.439 8.0 P for interaction 0.302 0.13 0.65 0.435	FB-4 22.67 ≻2.67	1.76 (0.86,4.65) 3.07 (2.06,4.63) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0 638 16 0
22.87 >2.87 Subgroup Overall Overal	2.66 (1.68.4.2) 3.06 (2.5.3.76) I.O I.O I.O I.O I.O I.O I.O I.O I.O I.O	20 40 Effect (65%C)	0.439 8.0 P for interaction 0.302 0.13 0.65 0.435	FB-4 22.67 >2.67	176 (0.68,4.65) 3.07 (2.08,4.65) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
22.07 >2.07 Subgroup Oveal Crude Gender male Gender Mage years <00 Education High school High school High school Southersone rate <1 1-3 -3 -3 Unknown Yes	266 (1.68.4.2) 3.06 (2.63.70) I I I I I I I I I I I I I	20 40 Effect (95%C))	0.439 P for interaction 0.302 0.13 0.65 0.435 0.929	FB-4 ≤2,67 ≥2,67	1.76 (0.86,4.65) 3.07 (2.08,4.65) 0.50	1.0 2.0 4.0 E.0 Effect (165%CI)	0838
22.67 >2.67 Subgroup Overall Crude Gender male Gender Maised Gender Basshan Nigh scho High schol more than high schol Poverty income ra <1 1-3 a3 Unknown Diabetes No	2.66 (1.68.4.2) 3.06 (2.63.76) HR (05%C) 3.06 (2.77.4.1) 3.79 (2.64.6.66) 3.69 (2.167.6) 3.69 (2.167.6) 3.69 (2.167.6) 3.69 (2.167.6) 3.69 (2.167.6) 3.69 (1.367.16.86) 3.60 (1.367.16.86) 3.60 (1.37.16.86) 3.60 (1.37.16.86) 3.69 (2.17.25) 4.2 (2.72.5) 3.60 (1.37.10.88) 3.69 (2.17.25) 4.2 (2.72.10.31) 15.27 (2.79.83.06) 4.28 (2.12.8.66) 3.63 (2.08.29)	20 40 Effect (65%C))	0.439 8.0 P for interaction 0.302 0.13 0.65 0.435 0.435	FB-4 22.67 >2.67	1.76 (0.68,4.65) 3.07 (2.08,4.63) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0 638 16 0
22.87 >2.87 Subgroup Overall Crude Adjusted Gender male Gender male Aggvars <60 Education High school High High school High school High school High High school High school High High school High	2.66 (1.68,4.2) 3.06 (2.5.3.76) IR (05%CI) J.0 3.05 (2.27,4.1) 3.79 (2.54,5.65) 3.86 (2.14,6.96) 3.46 (2.07,7.5) 2.43 (1.1,5.39) 5.12 (3.04,6.83) 3.64 (2.83,13.53) 3.64 (2.83,13.53) 3.60 (1.84,7.28) 3.60 (1.84,	20 40 Effect (65%C)	0.439 8.0 P for interaction 0.302 0.13 0.65 0.435 0.929	FB-4 22.67 >2.67	1.76 (0.68,4.65) 3.07 (2.08,4.65) 0.50	1.0 20 40 8.0 Effect (195%CI)	0838
22.07 >2.07 Subgroup Overal Crude Crude Gender male Gender Majusted Gender Age, years 40 Education Education Education Bios than high school more than high school more than high school To a 20 Education Disotethes Powerty income rar 41 1-3 23 Unknown Polabetes No Moderate physical Yes	266 (1.68,4.2) 3.06 (2.63,70) I I I I I I I I I I I I I	20 40 Effect (05%C))	0.439 P for interaction 0.302 0.13 0.65 0.435 0.929 0.372	FB-4 22.67 ≥2.67	1.76 (0.86,4.65) 3.07 (2.06,4.65) 0.50	1.0 2.0 4.0 6.0 Effect (165%CI)	0.638
22.67 >2.67 Subgroup Overall Crude Gender maile Gender Majusted Gender Gende	2 06 (1.08.4.2) 3.06 (2.5.3.70) I.O I.O I.O I.O I.O I.O I.O I.O	20 40 Effort (65%CI)	0.439 8.0 P for interaction 0.302 0.13 0.85 0.435 0.435 0.929 0.372	FIB-4 22.67 >2.67	1.76 (0.86,4.65) 3.07 (2.06,4.63) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0 638 16 0
22.87 >2.87 Subgroup Crude Crude Crude Adjusted Gender Adjusted Gender Adjusted Gender Adjusted Education Education Education Education High school High school High school Notestra high scho Poverfyricome ra 41 1-3 23 Unknown Moderate physicat Yes No Unknown	2.66 (1.68,4.2) 3.06 (2.5.3.76) IR (85%CI) IR (85%CI) 3.05 (2.47,4.1) 3.79 (2.45,6.56) 3.06 (2.47,4.1) 3.79 (2.45,6.56) 3.06 (2.46,0.60) 3.06 (2.47,2.6) 5.12 (3.04,6.03) 5.12 (20 40 Effect (65%C)	0.439 8.0 P for interaction 0.302 0.13 0.05 0.435 0.929 0.372	FB-4 22.67 >2.67	1.76 (0.86,4.65) 3.07 (2.08,4.65) 0.50	1.0 20 40 Effect (165%CI)	0838
22.07 >2.07 Subgroup Overall Crude Gender male Gender Majusted Gender Age, years 40 Education Education Education Bios than tigh school work than tigh school more than tigh school Diabetes Powerly income rar 41 1-3 2-3 Unknown Moderate physical Yes No Smoking statu	2.66 (1.68.4.2) 3.06 (2.63.70) I I I I I I I I I I I I I I I I I I I	20 40 Effect (05%C))	0.439 P for interaction 0.302 0.13 0.65 0.435 0.929 0.372	FB-4 22.67 ≥2.67	1.76 (0.68,4.65) 3.07 (2.08,4.63) 0.50	1.0 2.0 4.0 0.0 Effect (105%CI)	0.638
22.67 >2.67 Subgroup Overall Crude Gender male Gender Male Gender Ge	2 06 (1.08.4.2) 3.06 (2.5.3.70) I.O I.O I.O I.O I.O I.O I.O I.O	20 40 Effect (95%CI)	0.439 8.0 P for interaction 0.302 0.13 0.65 0.435 0.435 0.029 0.372 0.01	FIB-4 22.67 >2.67	1.76 (0.68,4.65) 3.07 (2.08,4.63) 0.50	1.0 2.0 4.0 8.0	0 638 16 0
≤2.67 >2.67 Subgroup Overal Crude Adjusted Gender male female Agoyaars <80	266 (1.68.4.2) 3.06 (2.5.3.70) IR (69%CI) IR (69%CI) 3.79 (2.44.6.69) 3.96 (2.14.8.96) 3.94 (2.07.7.5) 2.43 (1.1.5.39) 5.12 (3.04.8.63) 3.94 (2.07.7.5) 2.43 (1.1.5.39) 5.12 (3.04.8.63) 3.94 (2.07.7.6) 3.94 (2.07.7.7.6) 3.94 (2.07.7.7.6)		0.439 P for interaction 0.302 0.13 0.05 0.435 0.929 0.372 0.01	FB-4 22.67 >2.67	1.76 (0.86,4.65) 3.07 (2.08,4.65) 0.50	1.0 2.0 4.0 8.0 Effect (195%CI)	0838
22.07 >2.07 Subgroup Overall Crude Gender male Gender Majested Gender Gender Gender Age,years 40 200 Education Education Education Norethan high school Poverty income rar 41 1-3 23 Urknown Diabetes No Moderate physical Yos No Smoking status Yos No Cottalion Status Status No Cottalion Status No Cottalion Status No Cottalion Status No Cottalion Status No Cottalion Status No Cottalion Status No Cottalion Co	2.66 (1.68.4.2) 3.06 (2.63.70) I I I I I I I I I I I I I I I I I I I	20 40 Effect (05%C))	0.439 P for interaction 0.302 0.13 0.65 0.435 0.929 0.372 0.61	FB-4 22.67 >2.67	1.76 (0.68,4.65) 3.07 (2.08,4.63) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI)	0.638
22.87 >2.87 Subgroup Overall Crude Gender maile Gender demaile Ageyears 40 20 20 20 20 20 20 20 20 20 2	2 06 (1.08,4.2) 3.06 (2.5.3.70) I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0		0.439	FIB-4 22.67 >2.67	1.76 (0.68,4.65) 3.07 (2.08,4.65) 0.50	1.0 20 40 Effect (195%CI)	0838
22.07 >2.07 Subgroup Crude Crude Gender male Gender male Gender Gender Majusted Gender Majusted Gender Majusted Bes than ligh scho Poverly income rar 40 13.1 32 Unknown Moderate physical Ves No Socking status Yes No Cottinine.opmIn 20.1 Cottinine.opmIn 20.2 Cottinin	2 66 (1.68.4.2) 3.06 (2.63.70) I I I I I I I I I I I I I	20 40 Effect (05%C))	0.439 P for interaction 0.302 0.13 0.65 0.435 0.929 0.372 0.01 0.01	FB-4 22.67 ≥2.67	1.76 (0.68,4.65) 3.07 (2.08,4.65) 0.50	1.0 2.0 4.0 E.0 Effect (165%CI)	0838
22.07 >2.07 Subgroup Overall Crude Gender male Gender Males Gender G	2 06 (1.08,4.2) 3.06 (2.5.3.70) IR (05%C) IR (05%C)		0.439	FIB-4 22.67 >2.67	1.76 (0.68,4.65) 3.07 (2.08,4.63) 0.50	1.0 2.0 4.0 8.0 Effect (105%CI) 8.0	0.638
22.67 >2.67 Subgroup Crude Crude Adjusted Gender male female Agaysers 40 Education Education Education Education Forest han high scho High school more than high scho High school Motorate physical Vision No Substee Simoking status Vision Cottinine.nghoil 0.011-01 210 Dinking status Sinol	2 66 (1.68.4.2) 3.06 (2.5.3.76) IR (695/CL) IR (695/CL) 3.79 (2.44.5.69) 3.96 (2.14.8.96) 3.94 (2.07.7.5) 2.43 (1.1.5.39) 5.12 (3.04.8.63) 3.94 (2.07.7.5) 2.43 (1.1.5.39) 5.12 (3.04.8.63) 3.94 (2.07.7.6) 3.94 (2.07.7.6) 3.94 (2.07.7.6) 3.94 (2.07.7.6) 3.94 (2.07.7.6) 3.94 (2.07.7.6) 3.94 (2.07.7.6) 3.94 (2.07.7.6) 3.94 (2.07.7.6) 3.94 (2.01.7.10.86) 3.94 (2.15.7.71) 3.99 (2.16.7.37) 3.99 (2.16.7.37) 3.99 (2.16.7.37) 3.99 (2.16.7.37) 3.99 (2.16.7.37) 3.99 (2.16.7.37)		0.439 P for interaction 0.302 0.13 0.65 0.435 0.435 0.435 0.929 0.372 0.61 0.591	FIB-4 22.67 >2.67	1.76 (0.86,4.65) 3.07 (2.08,4.65) 0.50	10 20 40 Effect (165%CI)	0838
22.07 >2.07 Subgroup Overall Crude Gender male Gender Male Agayears 40 20 Education Iess than iph school 20 Education Iess than iph school 30 Education Moderate physical 13 23 Unknown Moderate physical Yes No Smoking status 0 Cottinien.op/ml 0,011-10 20 Dinking status 10 10 10 10 10 10 10 10 10 10	2.66 (1.68,4.2) 3.06 (2.63,70) I I I I I I I I I I I I I I I I I I I	20 40 Effect (05%C))	0.439 P for interaction 0.302 0.13 0.65 0.435 0.929 0.372 0.61 0.591 0.591	FB-4 22.67 >2.67	1.76 (0.68,4.65) 3.07 (2.08,4.65) 0.50	1.0 2.0 4.0 E.0 Effect (105%CI)	0.038
22.07 >2.07 Subgroup Queal Crude Gender male Gender Male 46 360 460 460 460 460 460 460 460 4	2 06 (1.08,4.2) 3.06 (2.5.3.70) I.O I.O I.O I.O I.O I.O I.O I.O		0.439 P for interaction 0.302 0.13 0.65 0.435 0.435 0.435 0.435 0.029 0.372 0.01 0.591 0.671	FIB-4 22.67 >2.67	1.76 (0.68,4.65) 3.07 (2.08,4.63) 0.50	1.0 2.0 4.0 8.0	0.038
22.07 >2.07 Sudgroup Crude	2 66 (1.68,4.2) 3.06 (2.5.3.70) IR (95%CI) IR (95%C	20 40 Effect (95%C))	0.439	FB-4 22.67 ≥2.67	1.76 (0.86.4.65) 3.07 (2.06.4.65) 0.50	1.0 2.0 4.0 8.0 Effect (165%CI)	0838
22.07 >247 Subgroup Overall Crude Grude Gender male Gender Gender Gender Agiusted Gender	2 66 (1.68,4.2) 3.06 (2.63,70) IR (85%C) 3.06 (2.47,4.1) 3.79 (2.44,5.65) 3.94 (2.07,7.5) 2.43 (1.1,5.39) 5.12 (3.04,8.63) 3.64 (2.57,7.5) 2.43 (1.1,5.39) 5.12 (3.04,8.63) 3.64 (2.53,7.58) 3.64 (2.53,71.58) 3.64 (2.57,728) 4.2 (1.74,10.13) 15.21 (2.76,83.06) 3.64 (1.43,6.56) 3.63 (2.00,6.29) 3.63 (2.00,6.29) 3.64 (2.17,7.40) 3.64 (2.12,7.57) 2.25 (0.2,24,94) 3.67 (1.38,6.78) 3.99 (2.16,7.37) 4. (1.96,8.15) 3.99 (2.16,7.37) 4. (1.96,8.15) 3.97 (1.28,6.78) 3.99 (2.16,7.37) 4. (1.96,8.15) 3.97 (1.28,6.78) 3.99 (2.16,7.37) 4. (1.96,8.15) 3.97 (2.52,7.56) 3.77 (2.52,7.56	20 40 Effect (05%C))	0.439	FB-4 22.67 ≥2.67	1.76 (0.68,4.65) 3.07 (2.08,4.63) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI) 8.0	0.638
22.67 >2.67 Subgroup Crude Crude Adjusted Gender Adjusted Gender Adjusted Gender Adjusted Gender Adjusted Gender High school more than high scho High school more than high scho High school more than high scho High school Moderate physical Visto No Catining status Visto Catining status Diabetes No Catining status Diabetes No Catining status No No No	2 06 (1.08,4.2) 3.06 (2.5.3.70) HR (05%CI) 3.06 (2.37,41) 3.79 (2.44,5.65) 3.80 (2.14,0.00) 3.94 (2.07,7.5) 2.43 (1.1,5.39) 5.12 (3.04,8.33) 3.94 (2.07,7.5) 2.43 (1.1,5.39) 5.12 (3.04,8.33) 3.94 (2.07,7.5) 3.94 (2.07,7.5) 3.94 (2.07,7.5) 3.94 (2.07,7.6) 3.94 (2.07,7.6) 3.94 (2.07,7.6) 3.92 (1.7,25) 3.95 (2.02,24) 4.24 (1.51,7.74) 4.45 (2.62,7.57) 2.25 (0.2,24,94) 4.01 (2.45,6.56) 3.97 (1.38,0.78) 3.99 (2.1,6.37) 4.19 (2.45,6.56) 3.97 (1.38,0.78) 3.99 (2.1,6.37) 4.49 (2.71,7.40) 4.49 (2.71,7.40) 4.49 (2.71,7.40) 4.49 (2.71,7.40) 3.99 (2.16,7.37) 4.19 (2.45,6.56) 3.67 (1.38,0.78) 3.99 (2.16,7.37) 4.19 (2.45,6.56) 3.67 (1.38,0.78) 3.99 (2.16,7.37) 4.19 (2.45,6.56) 3.67 (1.38,0.78) 3.99 (2.16,7.37) 4.19 (2.45,6.56) 3.67 (1.38,0.78) 3.99 (2.16,7.37) 4.19 (2.45,6.56) 3.67 (1.38,0.78) 3.97 (2.52,7.58) 3.92 (1.02,6.44)		0.439	FIB-4 22.67 >2.67	1.76 (0.86,4.65) 3.07 (2.06,4.65) 0.50	10 20 40 80 Effect (195%CI)	0838
22.07 >2.07 Subgroup Crude Crude Crude Gender male Gender Gender Gender Gender Gender Gender Moset High school Destehen high scho Poverty income rar 41 13 43 Unknown mote han high scho Poverty income rar 41 13 23 Unknown Moserate physical Ves No Subknog statu 24 No Subknog statu 24 No Cottinie.opmint 20 Cottinie.opmint 20 Divisione statu 20 Cottinie.opmint 20 Divisione statu 20 Divisione statu 20 D	2.66 (1.68.4.2) 3.06 (2.63.70) IC IC IC IC IC IC IC IC IC IC IC IC IC	20 40 Effect (05%C))	0.439	FB-4 22.67 ≥2.67	1.76 (0.68.4.65) 3.07 (2.08.4.65) 0.50	1.0 2.0 4.0 E.0	0838
2.87 >2.87 Subgroup Overall Crude Gender maie Gender Agsyzers <00	2 66 (1.68,4.2) 3.06 (2.63,70) IR (85%C) 3.05 (2.77,4.1) 3.79 (2.44,6.66) 3.69 (2.14,0.90) 3.69 (2.14,0.90) 3.69 (2.14,0.90) 3.69 (2.14,3.90) 5.12 (3.04,8.63) 3.60 (1.84,7.20) 3.60 (1.84,7.20) 3.60 (1.84,7.20) 3.60 (1.43,6.65) 3.60 (1.43,6.65) 3.60 (1.43,6.65) 3.60 (1.47,10.13) 15.21 (2.76,83.00) 4.20 (7.74,0.13) 15.21 (2.76,83.00) 3.63 (2.00,6.20) 3.63 (2.00,6.20)		0.439	FIB-4 22.67 >2.67	1.76 (0.68,4.65) 3.07 (2.08,4.63) 0.50	1.0 2.0 4.0 8.0 Effect (95%CI) 8.0	0.038

FIGURE 4

Associations between blood cadmium concentration and all-cause (A), cardiovascular (B), and cancer (C) mortalities in different subgroups, adjusted for age, gender, race, education, marital status, poverty income ratio, body mass index, moderate physical activity, smoking status, cotinine, drinking status, hypertension, diabetes, WBC, energy intake and FIB-4.

participants consuming low-cadmium rice exhibited better blood pressure and renal function compared to those consuming rice with high levels of cadmium contamination (51). Our findings may enhance awareness of Cd exposure in patients with NAFLD and help healthcare professionals implement timely interventions to prevent disease progression. Finally, given the toxic nature of cadmium and its role in exacerbating liver damage, public health measures such as stricter regulation of industrial emissions, improved food safety standards, and targeted interventions in occupational settings could significantly reduce cadmium exposure.

Our study has several strengths. First, this study has the largest sample size to date examining the association between blood Cd levels and mortality in patients with NAFLD. Furthermore, this was a prospective cohort study that considered various potential confounding factors, including smoking status and blood cotinine levels, and conducted a stratified analysis, enhancing the credibility of our results. Additionally, we considered cause-specific mortality outcomes, making our study results more precise and practically valuable.

However, this study has some limitations. Occupational Cd exposure and dietary habits, which are known potential confounders, were not fully accounted for in this analysis due to data limitations. Future studies should aim to include these factors to reduce potential bias. Additionally, the predictive performance of individual factors on prognosis is limited. Future research could combine blood cadmium concentration with other environmental and dietary factors using machine learning algorithms to establish predictive models, which represents one of our future research directions. Finally, due to the limitations of the NHANES database, repeated measurements and long-term tracking of blood cadmium concentrations were not conducted; addressing this issue could potentially provide more accurate prognostic estimates.

5 Conclusion

In conclusion, our study demonstrated that blood Cd levels are independent risk factors for all-cause, cardiovascular, and cancerrelated mortality in individuals with NAFLD. However, the molecular mechanisms by which blood cadmium influences the prognosis of patients with NAFLD require further investigation.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found at: https://www.cdc.gov/nchs/nhanes/.

Ethics statement

The studies involving humans were approved by the National Center for Health Statistics Ethics Review Board. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.

Author contributions

CX: Conceptualization, Data curation, Formal analysis, Investigation, Visualization, Writing – original draft. ZL: Data curation, Formal analysis, Investigation, Writing – review & editing. SH: Data curation, Formal analysis, Investigation, Writing – review & editing. JZ: Data curation, Formal analysis, Investigation, Writing – review & editing. JL: Data curation, Formal analysis, Investigation, Writing – review & editing. KL: Data curation, Formal analysis, Investigation, Writing – review & editing. XW: Data curation, Formal analysis, Investigation, Writing – review & editing. YZ: Data curation, Formal analysis, Investigation, Writing – review & editing. GZ: Data curation, Formal analysis, Investigation, Writing – review & editing. MB: Data curation, Formal analysis, Investigation, Writing – review & editing. DL: Funding acquisition, Writing – review & editing. JW: Conceptualization, Funding acquisition, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. The present study was funded by the Hebei Provincial Key R&D Program Project (grant no. 22377745D) and the Hebei Natural Science Foundation Project (grant no. H2022108003).

Acknowledgments

We thank Jie Liu (Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital) for his helpful review and comments regarding the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. *Hepatology*. (2019) 69:2672–82. doi: 10.1002/hep.30251

2. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. *Nat Rev Gastroenterol Hepatol.* (2018) 15:11–20. doi: 10.1038/nrgastro.2017.109

3. Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. *Hepatology.* (2023) 77:1797–835. doi: 10.1097/HEP. 00000000000323

4. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. *Hepatology*. (2018) 67:123–33. doi: 10.1002/hep.29466

5. Le MH, Devaki P, Ha NB, Jun DW, Te HS, Cheung RC, et al. Prevalence of non-alcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in the United States. *PLoS One.* (2017) 12:e0173499. doi: 10.1371/journal. pone.0173499

6. Simon TG, Roelstraete B, Khalili H, Hagström H, Ludvigsson JF. Mortality in biopsy-confirmed nonalcoholic fatty liver disease. *Gut.* (2021) 70:1375–82. doi: 10.1136/gutjnl-2020-322786

7. Eslam M, Sarin SK, Wong VW-S, Fan J-G, Kawaguchi T, Ahn SH, et al. The Asian Pacific Association for the Study of the liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. *Hepatol Int.* (2020) 14:889–919. doi: 10.1007/s12072-020-10094-2

8. Paik JM, Golabi P, Younossi Y, Mishra A, Younossi ZM. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD. *Hepatology*. (2020) 72:1605–16. doi: 10.1002/hep.31173

9. GBD. 2017 cirrhosis collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. *Lancet Gastroenterol Hepatol.* (2020) 5:245–66. doi: 10.1016/S2468-1253(19)30349-8

10. Wang R, Sang P, Guo Y, Jin P, Cheng Y, Yu H, et al. Cadmium in food: source, distribution and removal. *Food Chem.* (2023) 405:134666. doi: 10.1016/j.foodchem.2022.134666

11. Kim K, Melough MM, Vance TM, Noh H, Koo SI, Chun OK. Dietary cadmium intake and sources in the US. *Nutrients.* (2018) 11:2. doi: 10.3390/nu11010002

12. He Z, Shen P, Feng L, Hao H, He Y, Fan G, et al. Cadmium induces liver dysfunction and ferroptosis through the endoplasmic stress-ferritinophagy axis. *Ecotoxicol Environ Saf.* (2022) 245:114123. doi: 10.1016/j.ecoenv.2022.114123

13. Souza-Arroyo V, Fabián JJ, Bucio-Ortiz L, Miranda-Labra RU, Gomez-Quiroz LE, Gutiérrez-Ruiz MC. The mechanism of the cadmium-induced toxicity and cellular response in the liver. *Toxicology*. (2022) 480:153339. doi: 10.1016/j.tox.2022.153339

14. Sun J, Chen Y, Wang T, Ali W, Ma Y, Yuan Y, et al. Cadmium promotes nonalcoholic fatty liver disease by inhibiting intercellular mitochondrial transfer. *Cell Mol Biol Lett.* (2023) 28:87. doi: 10.1186/s11658-023-00498-x

15. Shi J-W, Fan D-X, Li M-Q. The relationship between cadmium exposure and mortality in postmenopausal females: a cohort study of 2001–2018 NHANES. *Nutrients*. (2023) 15:4604. doi: 10.3390/nu15214604

16. Chen S, Shen R, Shen J, Lyu L, Wei T. Association of blood cadmium with all-cause and cause-specific mortality in patients with hypertension. *Front Public Health.* (2023) 11:1106732. doi: 10.3389/fpubh.2023.1106732

17. Li Z, Fan Y, Tao C, Yan W, Huang Y, Qian H, et al. Association between exposure to cadmium and risk of all-cause and cause-specific mortality in the general US adults: a prospective cohort study. *Chemosphere*. (2022) 307:136060. doi: 10.1016/j.chemosphere.2022.136060

18. Spaur M, Nigra AE, Sanchez TR, Navas-Acien A, Lazo M, Wu H-C. Association of blood manganese, selenium with steatosis, fibrosis in the National Health and nutrition examination survey, 2017-18. *Environ Res.* (2022) 213:113647. doi: 10.1016/j.envres.2022.113647

19. Nguyen HD, Kim M-S. Cadmium, lead, and mercury mixtures interact with nonalcoholic fatty liver diseases. *Environ Pollut.* (2022) 309:119780. doi: 10.1016/j.envpol.2022.119780

20. Tinkov AA, Aschner M, Santamaria A, Bogdanov AR, Tizabi Y, Virgolini MB, et al. Dissecting the role of cadmium, lead, arsenic, and mercury in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. *Environ Res.* (2023) 238:117134. doi: 10.1016/j.envres.2023.117134

21. Ouyang L, Li Q, Yang S, Yan L, Li J, Wan X, et al. Interplay and long-lasting effects of maternal low-level Pb, hg, and cd exposures on offspring cognition. *Ecotoxicol Environ Saf.* (2024) 287:117315. doi: 10.1016/j.ecoenv.2024.117315

22. Kampouri M, Zander E, Gustin K, Sandin A, Barman M, Sandberg A-S, et al. Associations of gestational and childhood exposure to lead, cadmium, and fluoride with cognitive abilities, behavior, and social communication at 4 years of age: NICE birth cohort study. *Environ Res.* (2024) 263:120123. doi: 10.1016/j.envres.2024.120123

23. Men H, Young JL, Zhou W, Zhang H, Wang X, Xu J, et al. Early-life exposure to low-dose cadmium accelerates Diethylnitrosamine and diet-induced liver Cancer. *Oxidative Med Cell Longev.* (2021) 2021:1427787. doi: 10.1155/2021/1427787

24. CDC. The National Health and Nutrition Examination Survey. (n.d.). Available online at: https://www.cdc.gov/nchs/nhanes/. (Accessed June 5, 2024).

25. Zou J, Gu Q, Gu D. Association between phthalates exposure and non-alcoholic fatty liver disease under different diagnostic criteria: a cross-sectional study based on NHANES 2017 to 2018. *Front Public Health*. (2024) 12:1407976. doi: 10.3389/fpubl.2024.1407976

26. Lee JH, Kim D, Kim HJ, Lee CH, Yang JI, Kim W, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. *Dig Liver Dis.* (2010) 42:503–8. doi: 10.1016/j.dld.2009.08.002

27. Lei Y, Tao S, Yang Y, Xie F, Xie W. Association between prognostic nutritional index and all-cause mortality and cardiovascular disease mortality in American adults with non-alcoholic fatty liver disease. *Front Nutr.* (2025) 12:1526801. doi: 10.3389/fnut.2025.1526801

28. Pokharel A, Wu F. Dietary exposure to cadmium from six common foods in the United States. *Food Chem Toxicol.* (2023) 178:113873. doi: 10.1016/j.fct.2023.113873

29. Liu H, Liu M, Qiao L, Yang Z, He Y, Bao M, et al. Association of blood cadmium levels and all-cause mortality among adults with rheumatoid arthritis: the NHANES cohort study. *J Trace Elem Med Biol.* (2024) 83:127406. doi: 10.1016/j.jtemb. 2024.127406

30. Weng L, Xu Z, Chen C. Associations of blood cadmium and lead concentrations with all-cause mortality in US adults with chronic obstructive pulmonary disease. *J Trace Elem Med Biol.* (2024) 81:127330. doi: 10.1016/j.jtemb.2023.127330

31. Park SK, Sack C, Sirén MJ, Hu H. Environmental cadmium and mortality from influenza and pneumonia in U.S. Adults. *Environ Health Perspect*. (2020) 128:127004. doi: 10.1289/EHP7598

32. Zhu K, Zhang Y, Lu Q, Geng T, Li R, Wan Z, et al. Associations of exposure to lead and cadmium with risk of all-cause and cardiovascular disease mortality among patients with type 2 diabetes. *Environ Sci Pollut Res Int.* (2022) 29:76805–15. doi: 10.1007/s11356-022-21273-z

33. Zhang J, Wang X, Ma Z, Dang Y, Yang Y, Cao S, et al. Associations of urinary and blood cadmium concentrations with all-cause mortality in US adults with chronic kidney disease: a prospective cohort study. *Environ Sci Pollut Res Int.* (2023) 30:61659–71. doi: 10.1007/s11356-023-26451-1

34. Young JL, Cave MC, Xu Q, Kong M, Xu J, Lin Q, et al. Whole life exposure to low dose cadmium alters diet-induced NAFLD. *Toxicol Appl Pharmacol.* (2022) 436:115855. doi: 10.1016/j.taap.2021.115855

35. Hassanein EHM, Alotaibi MF, Alruhaimi RS, Sabry M, Sayed GA, Atwa AM, et al. Targeting TLR4/NF-κB signaling, oxidative stress, and apoptosis by farnesol mitigates cadmium-induced testicular toxicity in rats. *Tissue Cell.* (2025) 94:102813. doi: 10.1016/j.tice.2025.102813

36. Sadighara P, Abedini AH, Irshad N, Ghazi-Khansari M, Esrafili A, Yousefi M. Association between non-alcoholic fatty liver disease and heavy metal exposure: a systematic review. *Biol Trace Elem Res.* (2023) 201:5607–15. doi: 10.1007/s12011-023-03629-9

37. Sun J, Yan L, Chen Y, Wang T, Ali W, Ma Y, et al. TFAM-mediated intercellular lipid droplet transfer promotes cadmium-induced mice nonalcoholic fatty liver disease. *J Hazard Mater.* (2024) 465:133151. doi: 10.1016/j.jhazmat.2023.133151

38. Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, et al. The effect of oxidative stressinduced autophagy by cadmium exposure in kidney, liver, and bone damage, and neurotoxicity. *Int J Mol Sci.* (2022) 23:13491. doi: 10.3390/ijms232113491

39. Gu J, Kong A, Guo C, Liu J, Li K, Ren Z, et al. Cadmium perturbed lipid profile and induced liver dysfunction in mice through phosphatidylcholine remodeling and promoting arachidonic acid synthesis and metabolism. *Ecotoxicol Environ Saf.* (2022) 247:114254. doi: 10.1016/j.ecoenv.2022.114254

40. Alruhaimi RS, Hassanein EHM, Alnasser SM, Alzoghaibi MA, Abd El-Ghafar OAM, Mohammad MK, et al. The sesquiterpene alcohol farnesol mitigates cadmium hepatotoxicity by attenuating oxidative stress and NF-kappaB/NLRP3 inflammasome axis and upregulating PPARgamma in rats. *EXCLI J.* (2024) 23:1356–74. doi: 10.17179/excli2024-7488

41. Chen Z, Qu H, Sun J, Wang T, Yuan Y, Gu J, et al. CPT1 deficiency blocks autophagic flux to promote lipid accumulation induced by co-exposure to polystyrene microplastic and cadmium. *Front Pharmacol.* (2024) 15:1533188. doi: 10.3389/fbhar.2024.1533188

42. Chowdhury R, Ramond A, O'Keeffe LM, Shahzad S, Kunutsor SK, Muka T, et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. *BMJ*. (2018) 362:k3310. doi: 10.1136/bmj.k3310

43. Martins AC, Lopes ACBA, Urbano MR, de Fatima H, Carvalho M, Silva AMR, et al. An updated systematic review on the association between cd exposure, blood pressure and hypertension. *Ecotoxicol Environ Saf.* (2021) 208:111636. doi: 10.1016/j.ecoenv.2020.111636

44. Fanfani A, Papini S, Bortolotti E, Vagnoni G, Saieva C, Bonaccorsi G, et al. Cadmium in biological samples and site-specific cancer risk and mortality: a systematic review of original articles and meta-analyses. *Cancer Epidemiol.* (2024) 92:102550. doi: 10.1016/j.canep.2024.102550

45. Wang M, Yu Q. Association between blood heavy metal concentrations and skin cancer in the National Health and nutrition examination survey, 2011-2018. *Environ Sci Pollut Res Int.* (2023) 30:108681–93. doi: 10.1007/s11356-023-29674-4

46. Deubler EL, Gapstur SM, Diver WR, Gaudet MM, Hodge JM, Stevens VL, et al. Erythrocyte levels of cadmium and lead and risk of B-cell non-Hodgkin lymphoma and multiple myeloma. *Int J Cancer*. (2020) 147:3110–8. doi: 10.1002/ijc.33136

47. Derkacz R, Marciniak W, Baszuk P, Wysokińska M, Chrzanowska N, Lener M, et al. Blood cadmium level is a marker of Cancer risk in Men. *Nutrients*. (2024) 16:1309. doi: 10.3390/nu16091309

48. Ali Hussein M, Kamalakkannan A, Valinezhad K, Kannan J, Paleati N, Saad R, et al. The dynamic face of cadmium-induced carcinogenesis: mechanisms, emerging trends, and future directions. *Curr Res Toxicol.* (2024) 6:100166. doi: 10.1016/j.crtox.2024.100166

49. Zhang L, Wang Y, Li T, Zhuo W, Zhu Y. Elevated serum and hair levels of cadmium as a risk factor for liver carcinoma: a Meta-analysis. *Nutr Cancer*. (2023) 75:1438–47. doi: 10.1080/01635581.2023.2192887

50. Cirovic A, Satarug S. Toxicity tolerance in the carcinogenesis of environmental cadmium. *Int J Mol Sci.* (2024) 25:1851. doi: 10.3390/ijms 25031851

51. Huang L, Liu L, Zhang T, Zhao D, Li H, Sun H, et al. An interventional study of rice for reducing cadmium exposure in a Chinese industrial town. *Environ Int.* (2019) 122:301–9. doi: 10.1016/j.envint.2018.11.019