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Background: Cadmium (Cd) accumulates in the body over time, damaging 
organs such as the liver, kidneys, and brain. Some researchers have 
suggested that elevated blood Cd levels may contribute to the onset and 
progression of nonalcoholic fatty liver disease (NAFLD). However, only a few 
studies have explored the relationship between Cd exposure and long-term 
health outcomes in patients with NAFLD. This study aimed to evaluate the 
predictive value of blood cadmium levels for mortality risk in patients with 
NAFLD.

Methods: This study analyzed data from 13,450 patients with NAFLD in the 
National Health and Nutrition Examination Survey (NHANES) database, covering 
the years 1999 to 2018. Patients were categorized into three groups based on 
their blood Cd levels. The relationship between blood cadmium concentrations 
and all-cause, cardiovascular, and cancer mortality in NAFLD patients was 
assessed using Cox proportional hazards regression while accounting for 
potential confounders. Results were visualized using Kaplan–Meier and 
restricted cubic spline (RCS) curves. Stratified analyses were performed for 
validation of the robustness of the results.

Results: After adjusting for all covariates, blood Cd levels were positively 
associated with all-cause, cardiovascular, and cancer mortality in patients 
with NAFLD, showing a significant linear dose–response relationship. 
Specifically, for each unit increase in Log-transformed blood cadmium 
concentration, the risk of all-cause mortality increased by 191% (HR = 2.91, 
95% CI: 2.39–3.53); cardiovascular mortality risk increased by 160% 
(HR = 2.6, 95% CI: 1.80–3.76); and cancer mortality risk increased by 279% 
(HR = 3.79, 95% CI: 2.54–5.65). Stratified analysis confirmed the robustness 
of these findings.
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Conclusion: Our study suggests that high Blood Cd levels adversely affect the 
prognosis of patients with NAFLD. Individuals with NAFLD should be aware of 
Cd exposure and take preventive measures. Moreover, stricter environmental 
protection policies may be necessary to reduce Cd exposure.

KEYWORDS

cadmium exposure, non-alcoholic fatty liver disease, NHANES, mortality, prognosis, 
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1 Background

Nonalcoholic fatty liver disease (NAFLD) represents a 
significant contributor to the prevalence of chronic liver disorders 
(1, 2). It is a metabolic disorder characterized by the presence of 
fatty degeneration in ≥5% of liver cells without other obvious 
causes, such as excessive alcohol consumption or viral hepatitis 
(3). The prevalence of NAFLD worldwide is approximately 
25%–30% and is steadily increasing (4, 5). NAFLD is associated 
with multiple systemic metabolic disturbances, putting patients at 
increased risk for cancer, cardiovascular diseases, and cirrhosis 
(6). Currently, there is no specific medication for NAFLD; 
treatment primarily focuses on modifying metabolic risk factors 
to improve long-term outcomes (7). NAFLD imposes a significant 
economic burden and has emerged as a major global 
public health issue (8, 9). Therefore, identifying biomarkers that 
may be  predictive of the prognosis of patients with NAFLD 
is crucial.

Cadmium (Cd) is a common environmental pollutant found 
in industrial production processes, contaminated rice and 
shellfish, batteries, pigments, cosmetics, and hair dyes. It enters 
the human body through food, air, soil, drinking water, and other 
pathways (10, 11). Cd accumulates in the liver, inducing extensive 
liver damage and ultimately leading to NAFLD (12, 13). It may 
promote the progression of NAFLD by inhibiting mitochondrial 
transfer and increasing intracellular lipid accumulation (14). 
Previous studies have reported the adverse effects of Cd exposure 
on the prognosis of the general U.S. population, postmenopausal 
women, and patients with hypertension (15–17). Some researchers 
have examined the relationship between blood Cd levels and 
NAFLD (18, 19). A recent review summarized existing 
epidemiological and laboratory research findings, suggesting an 
association between cadmium exposure and an increased risk of 
NAFLD as well as changes in liver damage markers (20). 
Furthermore, studies have indicated that early-life exposure to 
cadmium increases the risk of cognitive impairment in adulthood, 
potentially related to corticosterone responses and immune 
dysregulation (21, 22). Maternal exposure to cadmium may 
be  associated with the development of NAFLD in offspring. 
Additionally, experiments in mice have confirmed that early-life 
exposure to cadmium induces the occurrence of liver tumors (23). 
However, there is a lack of conclusive evidence regarding the 
effect of blood cadmium levels on the prognosis of patients 
with NAFLD.

Therefore, this study aimed to provide evidence of the 
association between blood cadmium levels and the risk of 
mortality in patients with NAFLD using a large, nationally 

representative dataset from the National Health and Nutrition 
Examination Survey (NHANES) and the National Death Index 
(NDI). This research may facilitate timely and appropriate 
preventive and medical interventions to improve the prognosis of 
patients with NAFLD.

2 Methods

2.1 Study population

The NHANES, overseen by the Centers for Disease Control and 
Prevention (CDC), is a nationally representative survey aimed at 
evaluating the health and nutritional status of both adults and 
children in the United States. Informed consent from the National 
Centre for Health Statistics Institutional Review Board was obtained 
from all participants. Data from NHANES have been made publicly 
available online biennially since 1999 (24). Given the use of 
pre-existing de-identified data from NHANES and the waiver of the 
need for informed consent for this study, the National Center for 
Health Statistics Ethics Review Board granted an exemption for 
this research.

We included 55,081 adults aged ≥ 20 years from NHANES 1999–
2018 in the analysis. Exclusion criteria were as follows: (a) missing or 
below-detection-limit blood cadmium data (n = 18,078); (b) viral 
hepatitis (n = 3,325); (c) pregnancy or excessive alcohol consumption 
(n = 993); (d) lack of data for calculating hepatic steatosis index (HSI) 
and covariates (n = 5,901); (e) HSI ≤ 36 (n = 12,994); (f) White blood 
cell (WBC) count or platelet count is unknown (n = 27); and (g) Total 
energy intake is unknown (n = 313). Ultimately, 13,450 eligible 
participants were included in the analysis (Figure 1).

2.2 Cadmium exposure

Whole blood specimens were transported to the Laboratory 
Science Department, the National Center for Environmental Health, 
and the CDC for analysis. Blood Cd levels were assessed utilizing 
atomic absorption spectrometry from 1999 to 2002, and subsequently 
measured using inductively coupled plasma mass spectrometry from 
2003 to 2018. Detailed information on the experimental methods and 
quality assurance measures can be  found online (24). A natural 
logarithmic (log) transformation was applied to the blood Cd 
concentrations to reduce data skewness, as the distribution of blood 
Cd levels was highly skewed. This transformation helped normalize 
the data, allowing for more accurate statistical modeling 
and interpretation.
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2.3 Nonalcoholic fatty liver disease

NAFLD was defined as HSI > 36 (25). The calculation formula for 
HSI was as follows:  

( )
( )

( )
( )

alanine aminotransferase ALT /
HSI 8

aspartate aminotransferase AST ratio
body mass index BMI

2 for females; 2 for diabetes

 
= × + 

 

+ +

 (26).

2.4 Mortality ascertainment

NHANES data were linked to mortality data from the NDI. This 
study followed participants from participating in the survey until 31 
December 2019. The determination of causes of death was conducted 
based on the International Classification of Diseases, Tenth Revision 
(ICD-10). Outcomes included all-cause, cardiovascular, and cancer-
related mortalities.

2.5 Covariate definitions

The following covariate information was collected from NHANES 
for analysis: age, sex, race, education, marital status, poverty income 
ratio (PIR), BMI, diabetes, moderate physical activity, smoking status, 
blood cotinine concentration, drinking status, and presence of 
hypertension. PIR was categorized as PIR < 1 (low income), 
1 ≤ PIR ≤ 3 (medium income), and PIR > 3 (high income). Smoking 
status was classified as yes (lifetime smoking ≥ 100 cigarettes) or no 
(lifetime smoking < 100 cigarettes). Drinking status was categorized 

as yes (≥12 drinks per year) or no (<12 drinks per year). Diabetes was 
diagnosed based on the patient’s questionnaire responses, fasting 
blood glucose levels, and glycated hemoglobin levels. Hypertension 
was diagnosed on the patient’s medical history. Energy intake is 
defined as the total caloric intake per day. The FIB-4 index 

a4
platelet

ge ASTFIB
ALT

 ∗
− =  ∗ 

is used to represent the severity of 

liver fibrosis in patients. A FIB-4 index of ≥2.67 indicates advanced 
fibrosis (27).

2.6 Statistical analyses

We used Cox proportional hazards regression analysis to assess the 
relationship between blood Cd levels in patients with NAFLD and 
all-cause, cardiovascular, and cancer mortality while considering possible 
confounders. Crude model unadjusted for covariates. Model 1 was 
adjusted for age, sex, race, and educational level. Model 2 included 
adjustments from model 1 and also considered marital status, PIR, BMI, 
and moderate physical activity. Model 3 was adjusted for the covariates 
in Model 2, plus smoking status, cotinine levels, drinking status, 
hypertension, diabetes, WBC, energy intake and FIB-4 index. 
Participants were grouped into tertiles based on blood Cd levels. Kaplan–
Meier curves were drawn, and log-rank tests were performed between 
groups. RCS regression models were employed to examine the 
association between blood Cd levels and mortality rate. Stratified 
analyses were performed to assess the robustness of the results. Statistical 
analyses were performed using R software (version 4.3.1) and the Free 
Statistics software version 1.8. Statistical significance was set at p < 0.05.

FIGURE 1

Flow diagram of patient inclusion from the NHANES database.
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3 Results

3.1 Participant characteristics

A total of 13,450 NAFLD patients were included in our analysis, 
with male participants accounting for 43%. Table  1 describes the 
patient characteristics stratified by tertiles of blood Cd levels. 
Compared to the T1 group, participants in the T3 group (higher blood 
Cd levels) were more frequently male, non-Hispanic white, widowed/
divorced/separated, with a PIR < 1, smokers with higher cotinine 
levels, drinkers, hypertension, higher WBC, higher energy intake, and 
lower FIB-4 index. Additionally, the T3 group had lower average age, 
education level, BMI, and moderate physical activity. As of December 
31, 2019, 2,261 (16.8%), 632 (4.7%), and 516 (3.8%) participants had 
died from all-cause, cardiovascular, and cancer-related causes, 
respectively.

3.2 Associations between blood Cd and 
all-cause mortality

During a mean follow-up time of 137.3 months, 2,261 patients 
died from all causes. Patients were categorized into tertiles based on 
blood Cd levels: T1 (<0.33 μg/L), T2 (0.33–0.55 μg/L), and T3 
(≥0.55 μg/L), with 406, 837, and 1,018 deaths from all causes in each 
group, respectively. After adjusting for various covariates, elevated 
blood Cd levels were strongly associated with an elevated all-cause 
mortality risk (Table 2).

After adjusting for all covariates, for each unit increase in 
log-transformed blood cadmium concentration, all-cause mortality 
risk in patients increased by 191% (HR = 2.91, 95% CI: 2.39–3.53). 
Compared to the T1 group, the T3 group exhibited a 59% increase in 
mortality risk (HR = 1.59, 95% CI: 1.41–1.8). Kaplan–Meier curves 
demonstrated that with longer follow-up, the cumulative survival rate 
of patients in the T3 group was significantly lower than that in the T1 
group (Figure  2A). The RCS plot indicated a clear linear dose–
response relationship between blood Cd concentration and all-cause 
mortality (nonlinear p = 0.497). When the HR is 1, the log-transformed 
blood cadmium concentration is −0.3872, which corresponds to a 
blood cadmium concentration of 0.415 μg/L at this point (Figure 3A).

3.3 Associations between blood Cd and 
cardiovascular mortality

In the T1, T2, and T3 groups, there were 119, 239, and 274 
cardiovascular deaths, respectively. After adjusting for various 
covariates, elevated blood Cd levels were significantly linked to an 
increased risk of cardiovascular mortality (Table 2).

After adjusting for all covariates, for each unit increase in 
log-transformed blood Cd concentration, cardiovascular mortality 
risk increased by 160% (HR = 2.6, 95% CI: 1.80–3.76). Compared to 
the T1 group, the T3 group had a 59% higher risk of mortality 
(HR = 1.59, 95% CI: 1.41–1.8). Kaplan–Meier curves demonstrated 
that with longer follow-up, the cumulative survival rate of patients in 
the T3 group was significantly lower than that in the T1 group 
(Figure  2B). The RCS plot indicated a clear linear dose–response 
relationship between blood Cd concentration and cardiovascular 

mortality (nonlinear p = 0.943). When the HR is 1, the log-transformed 
blood cadmium concentration is −0.3872, which corresponds to a 
blood cadmium concentration of 0.415 μg/L at this point (Figure 3B).

3.4 Associations between blood Cd and 
cancer mortality

In the T1, T2, and T3 groups, there were 90, 177, and 249 cancer-
related deaths, respectively. After adjusting for various covariates, 
elevated blood Cd levels were closely associated with an increased risk 
of cancer mortality (Table 2).

After adjusting for all covariates, for each unit increase in 
log-transformed blood Cd concentration, the risk of cancer mortality 
in patients increased by 279% (HR = 3.79, 95% CI: 2.54–5.65). 
Compared to the T1 group, the T3 group had a 75% higher risk of 
mortality (HR = 1.71, 95% CI: 1.32–2.21). Kaplan–Meier curves 
demonstrated that with longer follow-up, the cumulative survival rate 
of patients in the T3 group was significantly lower than that in the T1 
group (Figure  2C). The RCS plot indicated a clear linear dose–
response relationship between blood Cd concentration and cancer 
mortality (nonlinear p = 0.521). When the HR is 1, the log-transformed 
blood cadmium concentration is −0.3872, which corresponds to a 
blood cadmium concentration of 0.415 μg/L at this point (Figure 3C).

3.5 Subgroup analysis

In the subgroup analyses, a robust positive association was observed 
between blood Cd concentration and all-cause, cardiovascular, and 
cancer mortality rates (Figure  4). Stratified analysis did not reveal 
significant interactions (p > 0.05). For overall mortality, there was a trend 
indicating a greater adverse impact of blood cadmium on prognosis in 
patients with advanced fibrosis (FIB-4 index ≤ 2.67 vs. FIB-4 index > 
2.67: 2.66 [1.68, 4.20] vs. 3.06 [2.50, 3.76]), although the difference was 
not statistically significant (p = 0.439). Regarding cardiovascular 
mortality, a similar trend was observed in the advanced fibrosis 
subgroup, with blood cadmium showing a greater adverse effect on 
prognosis (FIB-4 index ≤ 2.67 vs. FIB-4 index >2.67: 1.76 [0.66, 4.65] vs. 
3.07 [2.08, 4.53]), but again, the difference was not statistically significant 
(p = 0.638). For cancer mortality, there was also a trend suggesting a 
more pronounced adverse effect of blood cadmium on prognosis in the 
advanced fibrosis subgroup (FIB-4 index ≤ 2.67 vs. FIB-4 index > 2.67: 
2.59 [1.01, 6.59] vs. 4.06 [2.70, 6.12]), although the difference did not 
reach statistical significance (p = 0.437).

4 Discussion

Our large prospective cohort study reveals a significant positive 
correlation between blood Cd levels and all-cause, cardiovascular, as 
well as cancer-related mortality in patients with NAFLD, even after 
adjusting for multiple covariates. Subgroup analyses corroborate the 
robustness of these findings. Furthermore, a significant linear dose–
response relationship was observed between blood cadmium levels 
and mortality, with a threshold of 0.415 μg/L associated with a 
markedly increased risk of all-cause, cardiovascular, and cancer 
mortality. This indicates that NAFLD patients should aim to maintain 
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TABLE 1 Participants baseline characteristics by blood cadmium tertiles.

Variables Blood cadmium p

Total (n = 13,450) T1 (n = 4,279) T2 (n = 4,614) T3 (n = 4,557)

Age, Mean ± SD, years 52.0 ± 16.5 50.1 ± 16.4 54.4 ± 16.4 51.5 ± 16.5 <0.001

Gender, n (%) <0.001

  Male 5,781 (43.0) 2,051 (47.9) 1,768 (38.3) 1,962 (43.1)

  Female 7,669 (57.0) 2,228 (52.1) 2,846 (61.7) 2,595 (56.9)

Race, n (%) <0.001

  Mexican American 2,931 (21.8) 1,057 (24.7) 1,116 (24.2) 758 (16.6)

  Other Hispanic 1,049 (7.8) 411 (9.6) 361 (7.8) 277 (6.1)

  Non-Hispanic White 6,038 (44.9) 1,749 (40.9) 2,005 (43.5) 2,284 (50.1)

  Non-Hispanic Black 2,714 (20.2) 841 (19.7) 900 (19.5) 973 (21.4)

  Other Race 718 (5.3) 221 (5.2) 232 (5) 265 (5.8)

Education, n (%) <0.001

  Less than high school 3,971 (29.5) 1,081 (25.3) 1,384 (30) 1,506 (33)

  High school 3,352 (24.9) 981 (22.9) 1,105 (23.9) 1,266 (27.8)

  More than high school 6,127 (45.6) 2,217 (51.8) 2,125 (46.1) 1,785 (39.2)

Marital status, n (%) <0.001

  Married/living with partner 8,260 (61.4) 2,830 (66.1) 2,906 (63) 2,524 (55.4)

  Widowed/divorced/separated 3,281 (24.4) 843 (19.7) 1,141 (24.7) 1,297 (28.5)

  Never married 1,772 (13.2) 573 (13.4) 511 (11.1) 688 (15.1)

  Unknown 137 (1.0) 33 (0.8) 56 (1.2) 48 (1.1)

Poverty income ratio, n (%) <0.001

  <1 2,468 (18.3) 668 (15.6) 726 (15.7) 1,074 (23.6)

  1–3 5,396 (40.1) 1,645 (38.4) 1,837 (39.8) 1,914 (42)

  ≥3 4,488 (33.4) 1,638 (38.3) 1,633 (35.4) 1,217 (26.7)

  Unknown 1,098 (8.2) 328 (7.7) 418 (9.1) 352 (7.7)

Body mass index, Mean ± SD, Kg/m2 32.9 ± 5.9 33.2 ± 6.4 33.0 ± 5.8 32.6 ± 5.6 <0.001

Diabetes, n (%) 0.186

  Yes 3,255 (24.2) 1,052 (24.6) 1,143 (24.8) 1,060 (23.3)

  No 10,195 (75.8) 3,227 (75.4) 3,471 (75.2) 3,497 (76.7)

Moderate physical activity, n (%) <0.001

  Yes 5,229 (38.9) 1,793 (41.9) 1,835 (39.8) 1,601 (35.1)

  No 8,024 (59.7) 2,452 (57.3) 2,710 (58.7) 2,862 (62.8)

  Unknown 197 (1.5) 34 (0.8) 69 (1.5) 94 (2.1)

Smoking status, n (%) <0.001

  Yes 7,141 (53.1) 1,417 (33.1) 2,114 (45.8) 3,610 (79.2)

  No 6,309 (46.9) 2,862 (66.9) 2,500 (54.2) 947 (20.8)

Cotinine, Median (IQR), ng/mL 0.1 (0,36.2) 0 (0,0.1) 0 (0,0.3) 102 (0.1,238) <0.001

Drinking status, n (%) <0.001

  Yes 9,597 (71.4) 3,037 (71) 3,108 (67.4) 3,452 (75.8)

  No 3,853 (28.6) 1,242 (29) 1,506 (32.6) 1,105 (24.2)

Hypertension, n (%) <0.001

  Yes 5,861 (43.6) 1,716 (40.1) 2,087 (45.2) 2,058 (45.2)

  No 7,589 (56.4) 2,563 (59.9) 2,527 (54.8) 2,499 (54.8)

WBC, 1,000 cells/uL 7.5 ± 2.2 7.3 ± 1.9 7.3 ± 2.2 8.0 ± 2.3 <0.001

Energy intake, Mean ± SD, kcal 2046.2 ± 958.2 2105.5 ± 946.0 1982.3 ± 910.2 2055.1 ± 1011.9 <0.001

(Continued)
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blood cadmium levels below 0.415 μg/L. Notably, the impact of blood 
Cd concentration on all-cause, cardiovascular, as well as cancer-
related mortality tends to be amplified in populations with advanced 
liver fibrosis, although the differences were not statistically significant.

Cd, a toxic heavy metal widely present in the environment, is 
classified as a Group 1 carcinogen. Human exposure to cadmium 
mainly occurs through food, tobacco smoke, and occupational 
exposure (28). Previous studies have linked high blood cadmium 

TABLE 2 The association between blood cadmium (μg/L) and mortality in patients with NAFLD.

Blood cadmium Crude Model 
[HR(95%CI)]

Model 1 [HR(95%CI)] Model 2 [HR(95%CI)] Model 3 [HR(95%CI)]

All-cause mortality

Continuous# 2.3 (1.98,2.66) 3.77 (3.17,4.47) 3.46 (2.91,4.11) 2.91 (2.39,3.53)

Tertiles

 T1 Reference Reference Reference Reference

 T2 1.61 (1.43,1.81) 1.21 (1.08,1.37) 1.22 (1.09~1.38) 1.2 (1.06,1.35)

 T3 2.11 (1.88,2.37) 1.82 (1.62,2.05) 1.77 (1.57~1.99) 1.59 (1.41,1.8)

P for trend <0.001 <0.001 <0.001 <0.001

Cardiovascular mortality

Continuous# 1.98 (1.49,2.63) 3.21 (2.3,4.49) 2.99 (2.13,4.18) 2.6 (1.8,3.76)

Tertiles

 T1 Reference Reference Reference Reference

 T2 1.57 (1.26,1.95) 1.15 (0.92,1.43) 1.17 (0.94~1.47) 1.18 (0.94,1.48)

 T3 1.94 (1.56,2.4) 1.64 (1.32,2.03) 1.6 (1.29~2) 1.52 (1.21,1.91)

P for trend <0.001 <0.001 <0.001 <0.001

Cancer mortality

Continuous# 3.05 (2.27,4.1) 5.15 (3.67,7.22) 4.96 (3.52,6.99) 3.79 (2.54,5.65)

Tertiles

 T1 Reference Reference Reference Reference

 T2 1.55 (1.2,2) 1.22 (0.95,1.58) 1.23 (0.95,1.59) 1.16 (0.9,1.5)

 T3 2.35 (1.85,2.99) 2.11 (1.66,2.7) 2.08 (1.63,2.65) 1.71 (1.32,2.21)

P for trend <0.001 <0.001 <0.001 <0.001

Crude Model: unadjusted. Model 1: adjusted for age, gender, race, and education. Model 2: adjustments for model 1 plus marital status, poverty income ratio, body mass index, and moderate 
physical activity. Model 3: adjustments for model 2 plus Smoking status, Cotinine, Drinking status, Hypertension, Diabetes, WBC, Energy, and FIB-4. #Blood cadmium concentrations 
underwent logarithmic transformation. T1: <0.33 μg/L, T2: 0.33–0.55 μg/L, T3: ≥0.55 μg/L.

Variables Blood cadmium p

Total (n = 13,450) T1 (n = 4,279) T2 (n = 4,614) T3 (n = 4,557)

FIB-4, n (%) <0.001

  ≤2.67 5,424 (40.3) 1,894 (44.3) 1,617 (35) 1,913 (42)

  >2.67 8,026 (59.7) 2,385 (55.7) 2,997 (65) 2,644 (58)

All-cause mortality, n (%) <0.001

  No 11,189 (83.2) 3,873 (90.5) 3,777 (81.9) 3,539 (77.7)

  Yes 2,261 (16.8) 406 (9.5) 837 (18.1) 1,018 (22.3)

Cardiovascular mortality, n (%) <0.001

  No 12,818 (95.3) 4,160 (97.2) 4,375 (94.8) 4,283 (94)

  Yes 632 (4.7) 119 (2.8) 239 (5.2) 274 (6)

Cancer mortality, n (%) <0.001

  No 12,934 (96.2) 4,189 (97.9) 4,437 (96.2) 4,308 (94.5)

  Yes 516 (3.8) 90 (2.1) 177 (3.8) 249 (5.5)

T1: <0.33 μg/L, T2: 0.33–0.55 μg/L, T3: ≥0.55 μg/L.

TABLE 1 (Continued)
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levels to increased mortality in the general U.S. population, older 
adults, postmenopausal women, patients with type 2 diabetes, 
individuals with hypertension, rheumatoid arthritis, chronic 
obstructive pulmonary disease, and patients with chronic kidney 
disease (15–17, 29–33). Our study provides reliable evidence for the 
association between blood Cd levels and increased all-cause, 
cardiovascular, and cancer mortality in patients with NAFLD.

Animal experiments have demonstrated that Cd exposure 
exacerbates hepatic steatosis induced by a high-fat diet, primarily 
through the induction of oxidative stress, inflammatory responses, cell 
signaling, and lipid metabolism (12, 34–38). First, cadmium promotes 
the production of reactive oxygen species (ROS), which enhances 
oxidative stress. This, in turn, leads to lipid peroxidation and hepatic 
steatosis. ROS can also damage DNA and proteins, resulting in 
hepatocyte apoptosis (14, 20, 39). Second, cadmium induces the 
production of inflammatory factors, such as tumor necrosis factor-
alpha (TNF-α) and interleukin-6 (IL-6), in hepatocytes, leading to an 
inflammatory response in the liver. Chronic inflammation 
subsequently results in liver fibrosis (35). Additionally, cadmium may 
activate the NF-κB and MAPK signaling pathways, promoting 
fibroblast proliferation and collagen deposition, thereby facilitating 

the progression of hepatic fibrosis (40). Finally, cadmium-induced 
interference with lipid metabolism leads to increased fatty acid 
synthesis and decreased oxidation, resulting in the accumulation of 
excess fatty acids in hepatocytes, which contributes to steatosis (41).

Cd may contribute to atherosclerosis through oxidative stress, 
inflammation, and endothelial cell damage (42). It may also elevate 
blood pressure through vascular effects, inflammation, and blockade 
of calcium signaling pathways, thereby increasing the cardiovascular 
mortality rate in NAFLD patients (43).

Previous studies have shown controversial results regarding the 
association between Cd exposure and cancer risk (44–49). A recent 
review summarizing epidemiological and laboratory findings showed 
that Cd is a multi-organ carcinogen, with its exposure linked to 
tumors in the lungs, kidneys, pancreas, and breasts, as well as the 
progression of hepatocellular carcinoma (50). Our study on the 
NAFLD population confirmed a positive correlation between blood 
Cd levels and cancer mortality.

These findings have vital clinical and medical implications. 
Elevated blood Cd levels can serve as predictive biomarkers of 
mortality in patients with NAFLD. Furthermore, a interventional 
study conducted in cadmium-contaminated areas demonstrated that 

FIGURE 2

Kaplan–Meier survival curves depicting the association between blood cadmium concentrations in the T1, T2, and T3 groups with all-cause (A), 
cardiovascular (B), and cancer (C) mortalities in patients with NAFLD.

FIGURE 3

Dose–response curves of the relationship between log-transformed blood cadmium concentrations and the HRs for all-cause (A), cardiovascular (B), 
and cancer (C) mortalities. All models were adjusted by age, gender, race, education, marital status, poverty income ratio, body mass index, moderate 
physical activity, smoking status, cotinine, drinking status, hypertension, diabetes, WBC, energy intake and FIB-4.
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FIGURE 4

Associations between blood cadmium concentration and all-cause (A), cardiovascular (B), and cancer (C) mortalities in different subgroups, adjusted 
for age, gender, race, education, marital status, poverty income ratio, body mass index, moderate physical activity, smoking status, cotinine, drinking 
status, hypertension, diabetes, WBC, energy intake and FIB-4.

https://doi.org/10.3389/fpubh.2025.1573760
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Xu et al. 10.3389/fpubh.2025.1573760

Frontiers in Public Health 09 frontiersin.org

participants consuming low-cadmium rice exhibited better blood 
pressure and renal function compared to those consuming rice with 
high levels of cadmium contamination (51). Our findings may 
enhance awareness of Cd exposure in patients with NAFLD and help 
healthcare professionals implement timely interventions to prevent 
disease progression. Finally, given the toxic nature of cadmium and its 
role in exacerbating liver damage, public health measures such as 
stricter regulation of industrial emissions, improved food safety 
standards, and targeted interventions in occupational settings could 
significantly reduce cadmium exposure.

Our study has several strengths. First, this study has the largest 
sample size to date examining the association between blood Cd levels 
and mortality in patients with NAFLD. Furthermore, this was a 
prospective cohort study that considered various potential confounding 
factors, including smoking status and blood cotinine levels, and 
conducted a stratified analysis, enhancing the credibility of our results. 
Additionally, we considered cause-specific mortality outcomes, making 
our study results more precise and practically valuable.

However, this study has some limitations. Occupational Cd 
exposure and dietary habits, which are known potential 
confounders, were not fully accounted for in this analysis due to 
data limitations. Future studies should aim to include these factors 
to reduce potential bias. Additionally, the predictive performance 
of individual factors on prognosis is limited. Future research could 
combine blood cadmium concentration with other environmental 
and dietary factors using machine learning algorithms to establish 
predictive models, which represents one of our future research 
directions. Finally, due to the limitations of the NHANES database, 
repeated measurements and long-term tracking of blood cadmium 
concentrations were not conducted; addressing this issue could 
potentially provide more accurate prognostic estimates.

5 Conclusion

In conclusion, our study demonstrated that blood Cd levels are 
independent risk factors for all-cause, cardiovascular, and cancer-
related mortality in individuals with NAFLD. However, the molecular 
mechanisms by which blood cadmium influences the prognosis of 
patients with NAFLD require further investigation.
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