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Angiogenesis is a key step in the initiation and progression of an invasive breast cancer.

Highmicrovessel density bymorphological characterization predicts metastasis and poor

survival in women with invasive breast cancers. However, morphologic characterization is

subject to variability and only can evaluate a limited portion of an invasive breast cancer.

Consequently, breast Magnetic Resonance Imaging (MRI) is currently being evaluated

to assess vascularity. Recently, through the new field of radiomics, dynamic contrast

enhanced (DCE)-MRI is being used to evaluate vascular density, vascular morphology,

and detection of aggressive breast cancer biology. While DCE-MRI is a highly sensitive

tool, there are specific features that limit computational evaluation of blood vessels.

These include (1) DCE-MRI evaluates gadolinium contrast and does not directly evaluate

biology, (2) the resolution of DCE-MRI is insufficient for imaging small blood vessels,

and (3) DCE-MRI images are very difficult to co-register. Here we review computational

approaches for detection and analysis of blood vessels in DCE-MRI images and present

some of the strategies we have developed for co-registry of DCE-MRI images and early

detection of vascularization.
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INTRODUCTION

Vascularization and Breast Cancer Initiation
Angiogenesis is a dynamic process and an important early step during breast cancer initiation
and progression (1, 2). The morphologic quantitation and characterization of blood vessels in
a biopsy specimen relies on indirect measures such as microvessel density (number of small
and tortuous vessels, immunohistochemistry (factor VIII, CD31, CD34)) (2–6). High microvessel
density predicts metastasis and poor survival in women with breast cancer, including women with
early-stage breast cancer (Stage 1) (7–16). While morphologic characterization of vascularity has
strong prognostic value, there is variability (1) between different pathologists—there is significant
inter- and intra-reader variability and (2) within a tumor—frequently a single tissue slice does
not adequately capture microvessel density of an entire tumor. The variability of morphological
characterization of blood vessels becomes particularly limiting when evaluating (1) response to neo-
adjuvant chemotherapy and (2) women who are at high-risk for developing a breast cancer (e.g.,
germline BRCA mutation). Consequently, imaging strategies are being developed and optimized
for early detection of vascularization, and ultimately, neovascularization.
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Breast DCE-MRI
Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is routinely used to screen women at high-risk for breast
cancer, evaluate the extent of local invasive breast cancer,
and assist in planning of neo-adjuvant and adjuvant therapy
(17). DCE-MRI utilizes timed pre- and post-contrast imaging;
consequently, the semi-quantitative dynamics of contrast uptake
and intensity (initial peak enhancements, delayed phase-
washout) are routinely used for radiologic evaluation of DCE-
MRI (18). DCE-MRI has proven to be highly sensitive and
has revolutionized early detection of breast cancers, particularly
in women who are at increased risk for breast cancer (19–
31). Consequently, breast DCE-MRI has become standard of
care and made it possible to obtain a high-resolution image
of breast cancers and their associated vasculature. Despite the
clinical success of breast DCE-MRI to image the breast with
high sensitivity and resolution, the ability of DCE-MRI to image
blood vessels with high precision remains a work in progress.
Recently, through the new field of radiomics, contrast dynamics
are being used to evaluate vascular density, vascular morphology,
and detection of aggressive breast cancer biology. In addition to
directly detecting and quantifying the vascularity, the indirect
effects of altered vascularity such as perfusion and blood oxygen
levels can be measured using both DCE-MRI alone and DCE-
MRI in combination with other imaging modalities. These
indirect approaches detect increased blood flow and hypoxia and
have been shown to be diagnostic of breast cancer and predictive
of treatment response (32–38). However, this review will focus on
efforts to detect vessels in DCE-MRI of the breast.

Importance and Limitations of MRI-Based
Vessel Detection in Breast Tissue and
Cancer
DCE-MRI is standard-of-care for high-risk cancer screening and
surgical staging and is not readily replaced. Furthermore, DCE-
MRI time-sequence imaging data provides an opportunity to
perform kinetic and pharmacokinetic modeling; this modeling
holds promise to better characterize tumors (28, 30, 39, 40),
monitor treatment effects (25, 31, 41), and plan radiation and
surgical interventions (29, 42–44). Given the importance of DCE-
MRI imaging, recent efforts have focused on detecting blood
vessels in DCE-MRI images. However, the detection of blood
vessels, particularly new blood vessels, in DCE-MRI images
presents significant challenges.

First challenge is that DCE-MRI is not able to directly image
biology. The presence of vessels is detected, both manually and
computationally, based on high contrast enhancement and their
linear morphology (shape). The fact that DCE-MRI provides
dynamic 3D images of all tissue is simultaneously both the reason
why it has so much potential benefit (wide-scale adoption and
utility) and the reason why vessel detection is so difficult.

Second challenge is the resolution of MRI. Although MRI
equipment with strong magnetic fields (>7.0 Tesla) can achieve
a resolution <200µm, the standard clinical MRI equipment
used for breast cancer screening employs significantly weaker
magnetic fields (1.5 or 3.0 Tesla) (45). This means that most MRI

can only resolve features between 0.5 and 1.0mm in size (46);
small blood vessels range in size between 4µm to <1mm (47).
Consequently, DCE-MRI lacks the resolution to detect small or
micro-vessels (48, 49).

A third issue is that breast tissue is inherently difficult to
image. Unlike other tissue, where blood vessel detection has
high accuracy, breast tissue presents many unique challenges
(50–54). The human breast is highly heterogeneous both within
the breast of individuals women and between women. Human
breasts vary in size, the ratio of glandular tissue to adipose tissue,
and the amount of collagen/extracellular matrix; furthermore,
the human breast is subject to hormonal fluctuations during
the menstrual cycle and undergoes complex changes during a
woman’s lifetime (puberty, pregnancy, lactation, involution, and
menopause). The heterogeneity of the human breasts requires
that imaging algorithms must be sufficiently flexible to have
general applicability. Since breast tissue spans a range of densities
and compositions, contrast enhancement changes within the
breast and the intensity between background and tissue are
not constant (48, 55). The breast also includes both adipose
and fibroglandular tissues and both can appear on DCE-MRI
images to have linear morphology (49, 55). Since blood vessels
are detected based on contrast enhancement and morphology,
accurately detecting blood vessels in the breast is very difficult.
Additionally, the breast is highly deformable so movement
during scans can change both the position and the shape of the
breast resulting in imaging artifacts and making blood vessel
detection even more difficult (49).

While it is challenging to perform vascular analysis of DCE-
MRI (particularly in 3D), DCE-MRI is standard-of-care for
breast cancer screening, surgical planning, and evaluation of
response to neo-adjuvant chemotherapy. The advantages of
DCE-MRI as a sensitive, non-invasive method tomonitor for and
detect lesions have made it a routine clinical procedure (19–21).
Given the importance of DCE-MRI in clinical care, it is unlikely
that it will soon or easily be replaced as the clinical standard-
of-care by another imaging modality. Therefore, it is important
to develop effective strategies to detect blood vessel density and
morphology inDCE-MRI images. In this article, we aim to review
computational approaches for detection and analysis of blood
vessels in DCE-MRI images and present some of the strategies we
have developed for co-registry of DCE-MRI images and detection
of blood vessels and neovascularization.

COMPUTATIONAL APPROACHES IN
BREAST DCE-MRI

Computational analysis of breast MRI images is an active
area of research that involves a wide range of methods and
research goals. Here, we will provide a brief review of the non-
vessel computational approaches used to analyse breast MRI
images. This review will serve to introduce the wide range of
computational and mathematical modeling approaches used for
different breast cancer research. These non-vessel approaches will
be used to inform and contrast with the derth of research in
vessel detection. In this section, we will separate our review topics
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into (1) tumor detection and characterization or (2) radiomic
analysis. The goal of radiomic analysis can either be detection
or characterization of lesions/tumors, the specific goal of the
analysis drives which approach is selected. Tumor Detection
and Characterization is performed by applying mathematical
and computational analysis to the imaging data. Radiomics
first extracts quantitative features from the imaging data, then
organizes the features in a database, and finally usesmathematical
and computational approaches to perform analysis on the
database (56). Here we will briefly survey and compare the
computational approaches used for (1) Tumor Detection and
Characterization and (2) radiomics.

Tumor Detection and Characterization
Tumor Detection and Characteristics analysis is conducted
both for research and to improve clinical decision making.
Analysis uses morphologic features, enhancement kinetics, or
a combination of both. To support clinical decision making,
clinical aided systems work with human experts to improve both
(1) early identification of tumors and (2) the sensitivity/specificity
of breast imaging (57, 58). Many clinical aided systems have been
developed and commercialized for mammography. In contrast,
development of clinical aided systems for breast DCE-MRI is
in its nascent stage and the systems that have been developed
have not been widely tested outside the data set for which they
were developed (58, 59). This lag in the development of clinical
aided systems for breast MRI is primarily the result of lack
of standardization of DCE-MRI across centres and institutions.
Key differences in DCE-MRI protocols include the (1) specific
gadolinium contrast agent used, (2) amount of contrast given,
(3) magnet strength, and (4) image acquisition strategy. Despite
these challenges, approaches have been developed and, within
their data set, demonstrate excellent sensitivity and specificity.

The first type of Tumor Detection and Classification methods
analyse the dynamics of the contrast agent. To identify tissue
with malignant potential, the earliest methods of this type used
kinetic curves, which show changes in contrast enhancement
over time. The kinetic curve was constructed by plotting the
signal intensity over time and classifying the curve based on
the rate of contrast uptake and then washout. The shape of
the washout curve was used to diagnose the tissue; benign or
indeterminate tissue has slow uptake or plateauing intensity over
time; malignant tissue has both rapid uptake and washout (60–
66). The rapid uptake/washout of malignant tissue is attributed
to the increased vascularity associated with tumors (66–68).
These models, however, are often considered semi-quantitative
and, due to inconsistencies between DCE-MRI protocols and
machines, need to be tuned and adapted for each new study
(59, 69). A more quantitative approach is to use pharmacokinetic
models that apply mathematical equations to model the flow
of contrast agent through the vasculature into the tissue (70);
the most common model is a variant of the Tofts model (70–
75). These flow models allow for measurement and comparison
of physiologically relevant parameters; parameters measuring
volume of contrast transferred (Ktrans) and vascular volume
(vp) are able to distinguish between malignant and benign
tumors (48, 69). The parameters Ktrans and vp, similar to

kinetic curves measuring contrast uptake/washout, are assumed
to correlate with the increased vascularity of malignant tissue.
When compared to classifying kinetic curves, pharmacokinetic
models have also been shown to out-perform kinetic curves (69,
76) and reduce the variability between DCE-MRI protocol and
noisy signal (77). These models, however, also make assumptions
about contrast flow and require multiple post-contrast time
points; these assumptions limit their general applicability (74, 77,
78).

The second type of Tumor Detection and Classification
methods involve machine learning. Machine learning approaches
have been employed frequently and span the machine learning
spectrum from clustering to deep learning neural networks. A
number of reviews about machine learning in breast DCE-MRI
focus on either the types of methods (79), the goal of the method
(58, 80), or the conclusions of the study (57, 81). Starting with
the machine learning approaches, we will provide a concise, non-
exhaustive survey of themore popularmachine learningmethods
being used and briefly describe each approach.

Fuzzy C-means clustering is one of the most widely used
unsupervised approaches to analyse breast DCE-MRI images.
The general strategy of Fuzzy-C means clustering algorithms
is to classify input data into groups based on algorithms that
minimizes in-group variability. Although many improvements
have been made to the algorithm (82–86), Fuzzy C-means
analysis of breast DCE-MRI images has been primarily limited
to segmenting the boundaries of a lesion (84).

Machine learning algorithms that use a supervised training
approach include logistic regression, linear discriminant analysis,
random forests, and support vector machines. All these
approaches require “training” on a fully classified set of data (i.e.,
DCE-MRI with all lesions labeled as either malignant or benign).
After a training set is analyzed, each of these approaches can then
be applied to a second labeled set (independent of the training)
to test sensitivity and specificity. Although they share a training
approach, these methods have important differences in how they
perform classification. Logistic regression (for two classes) and
linear discriminant analysis (for more than two classes) are both
linearmethods. Support vectormachines and random forests (for
both two and multi-class scenarios) are more robust non-linear
methods. All these supervised machine learning methods have
been used to classify malignant tissue (87–92).

The third type approaches used in Tumor Detection and
Classification include artificial neural networks and deep learning
(i.e., neural networks with multiple hidden layers). Neural
network architecture contains an input layer, at least one
hidden layer, and an output layer. Deep neural networks (i.e,
deep learning methods) perform both feature extraction and
classification. In the training phase, deep learning methods
“learn” what features best classify the input data (81, 93).
Because it is well suited for image recognition, the most common
neural network architecture for DCE-MRI is convolutional
neural networks (CNNs). The convolutional layers of a CNN
extract imaging features while maintaining spatial relationships
between features. The discovered features are aggregated by
pooling layers before the output layers generate a classification.
In addition to being applicable to Tumor Detection Classification
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(94, 95), the flexibility of CNNs address a wide range of
breast DCE-MRI related research issues including fibroglandular
tissue segmentation (96, 97); breast segmentation (95, 98); and
detection of lymph node metastasis (99). The disadvantage to
deep learning is that it requires a large, annotated training
data set. However, transfer learning, where a network is
pretrained on a large imaging database, has shown promise for
reducing the required size of training data sets (80, 95–97).
In other applications, deep learning has shown to out-perform
standard computer vision and experts (94, 100); however, in
MRI, deep learning approaches have not yet out-performed
experts (58).

Radiomics
Radiomics is a field of research that views medical images as
quantitative data; this data represents the phenotypic, genotypic,
and molecular characteristics of the tissue. The goal of radiomic
studies is to associate the quantitative features extracted from
images to both qualitative (e.g., clinical variables and outcomes)
and quantitative information (e.g., biomarkers, gene expression,
or other relevant -omic measurements). Radiomic approaches
have many research applications including diagnostic tools,
clinical decision support, and hypothesis testing and generation
(56, 101, 102). For comprehensive summary of radiomics
in breast cancer, many researchers review radiomics studies
based on their research goals (19, 56, 101–106). To achieve
these research goals, radiomics has employed wide range
of computational approaches. The computational approaches
can be categorized based on the three different parts of the
radiomic analysis: features extraction, feature selection, and
model building (56). The goal of features selection and model
building are, respectively, to classify features and then build
predictive models so that unlabelled images can be classified.
The main difference are the variables that are classified: in
addition to detecting benign vs. malignant tissue, radiomic
studies classify continuous variables to define cancer subtype,
diagnosis, and prognosis. Since features selection and model
building primarily usemachine learningmethods similar to those
described in the machine learning section of this section, we will
limit our review of computational approaches to those used in
feature extraction.

Feature extraction is the process of identifying features from

an image. The features can be any quantifiable data produced

from either the full image or a segmented region of interest

within the image. The main categories include morphology-,
histogram-, texture-, and transform-based features (56). This

process is not unique to radiomics and can include some

already discussed features such as contrast kinetic features (i.e.,
washout dynamics and pharmacokinetic parameters). However,

it is typically distinct from deep learning in that the extracted
features are selected manually and not discovered by an
algorithm (57).

The types of features extracted fall into two categories:
semantic and agnostic (101). Sematic feature extraction attempts
to capture prognostically meaningful characteristics such as the
BI-RADS defined features of a lesion (e.g., density, spiculation,

and vascularity). These features, which are visually identifiable by
radiologists, primarily fall into the morphology- and histogram-
based categories. Agnostic features are not directly observable
and have to be computed or extracted from the image.
The features most unique to radiomics are the texture- and
transform-based features. The gray-level co-occurrence matrix
(GLCM) is a texture-based feature used to represent tumor
heterogeneity. GLCM is calculated by determining the frequency
of neighboring pixels with specific intensities (106, 107).
This texture-based analysis captures the spatial distribution of
intensity. GCLMs and their second-order features have had
success identifying lesions (87, 90, 108), characterizing molecular
and histopathologic subtype (109–113), and predicting prognosis
and therapy response (114–118). Transform-based features are
features that are extracted after applying a function to the
image to generate a new image. Examples of transformations
include Fourier, Wavelet, and Laplacian of Gaussian transforms.
Instead of the spatial dimension, these transformations convert
the image to investigate texture in an alternative dimension
such as time or frequency. Although not as widely used
as GLCM, transform-based approaches in breast cancer have
also identified, characterized, and predicted response (119–
123).

The wide-spread adoption of radiomics has been hindered by
both the (1) large amount of data needed for training and (2)
limitations of DCE-MRI (e.g., contrast type and administration
protocols, magnetic strength, etc.) (19, 57, 104). Combining
radiomics with deep learning has shown promise for improved
accuracy. Transfer learning, in particular, may be a type of deep
learning that can reduce the size of data sets and time required
for training.

AUTOMATED VESSEL DETECTION

Vessel detection represents a small subset of breast MRI
research (Table 1). It has so far been used to either: (1)
compare the gross characteristics of the vascular network
between ipsilateral tumor bearing breast and the contralateral
tumor free breast; or (2) improve the detection specificity of
tumorous vs. benign lesions. In the context of breast cancer
research, vessel detection in breast MRI first used manual
detection of vessels by experts. Expert detection was typically
performed on two-dimensional (2D) projections of the three-
dimensional (3D) volumetric image. These 2D projections were
also used for the first fully computational detection algorithms.
Methods for full 3D computational detection of vessels in
MRI were first reported in the late 1990’s. However, 3D vessel
detection in research has only recently been reported. The
limited number of studies using 3D vessel detection are likely
due to the considerable challenges of vessel detection in breast
DCE-MRI.

Computational Challenges of Vessel
Detection in DCE-MRI
It is difficult to automatically detect blood vessels in a non-
specific imaging method such as DCE-MRI. DCE-MRI does
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TABLE 1 | Vessel detection studies in breast MRI.

References Number of dimensions

(2D or 3D)

Vessel detection

method

Findings

Lin et al. (49) 2D Hessian morphology

filter

Removing pixels belonging to large vessels reduced false positives when

identifying suspicious lesions

Fusco et al. (124) 2D Hessian morphology

filter

Ipsilateral increase in vascularity was associated with malignancy; vessel

detection performance: 79% true positive, 20% false positive, and 2% false

negative rates

Petrillo et al. (125) 2D Hessian morphology

filter

Tumor location in the breast correlated with feeding vessel location; vessel

detection demonstrated good agreement with expert assessment

Wu et al. (126) 2D Hessian morphology

filter

Vessel voxels and volume are reduced in neoadjuvant treatment responders

Kostopoulos et al. (127) 2D Seed growth Multiple texture-based parameters of vessels show statistically significant

differences between breasts with benign vs. malignant tumors

Gierlinger et al. (128) 3D Seed growth The algorithm detected similar vessel structure from two different scans

collected from the same individual

Vignati et al. (129) 3D Hessian morphology

filter

Vessel detection algorithm shown to have 89% detection rate with 98%

sensitivity

Vignati et al. (130) 3D Hessian morphology

filter

Removing vessel structures from images decreased false positive rate of

parenchymal lesions by 68%

Vignati et al. (131) 3D Hessian morphology

filter

Vessel volume was decreased in responders vs. non-responders of

neoadjuvant chemotherapy

Kahala et al. (55) 3D Hessian morphology

filter

A vessel detection algorithm with center line tracking to fill-in incomplete

vessels demonstrated 86% sensitivity and 88% specificity

Wu et al. (48) 3D Hessian morphology

filter

Malignant lesions have a greater number of lesion-associated vessels

not directly measure biology; therefore, the characteristics
of the breast tissue increase the computational difficulty of
measuring blood vessels. Initial efforts relied on experts who
manually identified, measured, and scored blood vessels in
DCE-MRI images. Since MRI provides no inherent method
to distinguish vessels, detection is performed based on both
their high enhancement in MRI due to rapid contrast uptake
and their linear, network-like appearance (i.e., morphology)
(49, 129, 132). Robust detection of wide range of vessels
sizes requires image analysis at multiple scales (or resolutions).
Some computational algorithms require reprocessing of an
image at different scales, since a linear structure, if magnified
sufficiently, no longer will appear linear. The number of and
increment between scales depends on the (1) sensitivity of
the algorithm and (2) MRI resolution. Finally, all contrast
enhancement in DCE-MRI is reported as a numerical intensity;
therefore, vessels can escape detection if: (1) nearby tissues
exhibit rapid contrast uptake which occludes vessels; or (2)
sufficiently small vessels do not contain enough contrast agent
to achieve sufficient enhancement (49, 55, 133). Both these
scenarios result in gaps appearing in the vascular network.
These missing data require computational strategies to both
detect and fill gaps when constructing a complete and accurate
vascular network.

A robust computational algorithm must detect blood vessels
with (1) similar accuracy between patients and (2) ideally, be
independent of the MRI machine and protocol used. Differences
in MRI machines can include different resolution (resulting
from different magnetic field strengths), ranges of enhancement

intensity, and software versions. Differences between breast
DCE-MRI contrast administration protocols can result in
contrast enhancement characteristics that cannot be directly
compared. These include differences in the type of contrast
agent, changes in contrast agent dose or administration rate, and
different acquisition protocols or number of scans. Some of these
factors can be minimized or corrected through analysis methods
and image processing. For example, pharmacokinetic modeling
avoids comparing intensities directly by instead comparing the
model parameters after fitting. Intensity functions can be applied
to the image before analysis to normalize the range of intensity
within a DCE-MRI image (48). The intensity transfer function
will enhance the low intensity tissue while suppressing the
image background. Intensity thresholds can also be applied
to remove background noise but generally require calibration
within each image so that low intensity features are not
lost (134).

Finally, a computational challenge that is specific to the
breast is image co-registration. Although co-registration is not
required for detecting vascularity in a single DCE-MRI image,
co-registration is required to detect changes in vascularity
(or other imaging feature) over time. Breast registration
is difficult because the breast is highly deformable which
results in a complex combination of both affine and non-
rigid transformations (135–138). Additionally, many times
the breast itself has changed over time either because of
either natural biological cycles or malignant transformation.
Together these make registration of serial breast MRI images
exceptionally challenging.
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Computational Blood Vessel Detection in
Breast MRI to Date
2-Dimensional Algorithms

There are relatively few computational methods used to detect
blood vessels. The majority of computational methods to
detect blood vessels in breast MRI have been conducted in 2-
dimensional (2D) projections of MRI images (Table 1). The
most useful type of projection for detecting blood vessels is
called the maximum intensity projection (MIP). This is an
image that takes only the pixel with maximum intensity along

one dimension of the 3D volume to create a 2D projection

(111, 139). The resulting image highlights the features that

exhibit the highest contrast enhancement. Since the contrast

agent is transported through vessels to the tissue, the difference

in enhancement between the pre-contrast scan and the first

post-contrast scan (subtraction image) is typically used as

the starting point to identify the vessels. In addition to
highlighting the high intensity blood vessels in the image, the
MIP image also reduces background noise which makes vessel
detection easier.

FIGURE 1 | Hessian-based Algorithm for Vessel Detection. The general steps for detecting filaments using a Hessian matrix-based approach. (A) (1) The MRI is

converted to either a 2- or 3-dimensional matrix where the intensity of each pixel is recorded as a numerical value. (2) Next, using the number of dimensions in the

image, the Hessian matrix is computed at each point of the intensity matrix. The Hessian matrix contains the second derivative of intensity with respect to each spatial

dimension. (3) Eigenvalues of the Hessian are computed and ordered based on their value to prepare for morphology selection. (4) Ordered eigenvalues can be filtered

to determine whether a pixel has filament-like morphology. The selection for filaments in both 2D and 3D attempt to identify pixels where the second derivative of

intensity is low, and the second derivative of all other dimensions is large and negative. Other morphologies such as spheres and sheets can also be identified using

different selection criteria. (B) To demonstrate how the eigenvalue criteria identify filament-like structure, a vessel containing subregion of a MIP image was selected

(left). The intensity in the selected 2D region was plotted as a surface after background normalization and an intensity transform function was applied (right). Forming a

sharp ridge, the high values of intensity correspond to a vessel. The eigenvalues of two points are annotated to describe how the filament selection criteria identify

vessel-like structures. Low rates of intensity change occur in the direction of the vessel (λ1) while large decreased in the rate of intensity change occur in the

orthogonal direction (λ2).
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Vessel detection strategies in MIP images primarily involve
the use of a morphology-based filter (Hessian-filter) that selects
linear or filamentary structures within the image (for a full
discussion of Hessian-filter method see the 3D detection section).
A number of studies have used MIP-based detection to analyze
blood vessel characteristics and proximity to malignant breast
tumors (49, 124–126).

A second computational method for blood vessel detection
uses a technique called regional seed growth. A seed growth
algorithm starts with seeded locations around an image and
expands the seeds to contingent pixels (140). The seed eventually
grows to include all similar adjacent pixels in the image.
Although not specific to vessel detection, this method would
appear well-suited to detecting the high intensity vascular
network in breast DCE-MRI. However, in breast DCE-MRI
images, the breast fibroglandular and adipose tissue (non-
vascular tissue) can be similar in appearance to blood vessels.
This similarity may explain why the regional seed growth is
not frequently used to analyze breast MRI images. Kostopoulus
et al. reported vessel detection for MIP images that used seed
growing algorithm (127). This study (1) calculated quantitative
metrics of both the vascular network and the non-vascular
portion of the breast and (2) compared these characteristics in
breast MRI images with malignant lesions vs. benign lesions vs.
no lesions. Although this study compared a number of metrics
calculated for the detected vessels, only the standard deviation
of intensity in pixels identified as vessels showed a significant
difference between malignant, benign, and normal breasts. They
suggested this was due to variation in pixel intensity near the
malignant tumors.

Although 2D vessel detection is less difficult conduct than in
3D, 2D detection has drawbacks. First, the 2D projection loses
spatial information in the direction of the projection. Therefore,
it is not possible to measure either the (1) distance between
vessels and other imaging features (e.g., tumor) and (2) 3D
characteristics of the vessels (i.e., curvature, torsion, tortuosity,
and volume). Second, enhancing tissue can completely occlude or
obscure vessels. Despite these limitations, MIPs remain a useful
visualization tool and have been used as a guide to improve
machine learning detection of malignant lesions (141).

3-Dimensional Algorithms

To date, there have only been a few studies that have reported
computational detection of vessels in 3D breast MRI (48,
55, 130). One modification of a seed growth algorithm has
recently been reported and applied to a single test case
(128), but all other 3D vessel detection algorithms are based
around calculating the Hessian to construct a morphologic
filter (Table 1).

The Hessian was first applied to imaging data to detect vessels
by Frangi et al. in 1998 (132). The Hessian approach uses a simple
series of steps that ultimately select for different morphological
structures present in the image (Figure 1A). First, the MRI is
converted to a matrix of intensity values. Second, the Hessian is
calculated on the intensity at each pixel or voxel in the image.
The Hessian is a matrix of second derivatives which determines
the change in the rate of change (acceleration) of the intensity

in all directions. Third, eigenvalues are used to determine the
directions in which the second derivatives of intensity are the
largest. Finally, a morphologic filter is applied which allows
selection of either sphere-, sheet-, or filament-like structures in
the image. Conceptually, this filter identifies intensity features
where the rate of change in intensity is small in one dimension
and large and negative in all others (Figure 1B). Most methods
additionally apply both preprocessing to normalize or filter
intensities and postprocessing to remove small unconnected lines
(noise) and fill in gaps in the vascular network.

The Hessian approach has been applied to breast DCE-MRI
to detect vessels with some success. Vignati et al. detected the
vascularity so that the vasculature could be removed thereby
improving tumor detection (130). In a later study, Vignati
et al. showed a difference in vessel count and vessel volume in
responders vs. non-responders after neoadjuvant chemotherapy
(131). Kahala et al. developed a vessel detection algorithm
with a sensitivity and specificity of 86 and 88%, respectively
(vs. vascular networks detected by radiologists) (55). The most
comprehensive study was reported by Wu et al. (48). This study
used detected vascular networks to compare vessel characteristics
and pharmacokinetic parameters between benign and malignant
tumors. The vessel count and two blood flow parameters
(volume transfer coefficient and plasma volume fraction) from
their models showed a significant increase in malignant tumors
(relative to benign lesions). The observed differences were used
to develop a multivariate logistic regression model to improve
malignant tumor detection.

Although the application of the Hessian-based morphologic
filter is straight-forward, the difficulties in this method arise
when tuning the preprocessing, postprocessing, and morphology
selection parameters. These parameters require careful tuning
so that the algorithm is robust within a particular data set.
Additionally, an algorithm developed and successful detecting
vessels on one data set is not necessarily transferable to another
data set with a different MRI machine or protocol. However, the
advantages of 3D vessel detection outweigh the reduced difficulty
of 2D. One of the primary disadvantages of 2D detection is
the loss of spatial relationship in the direction of the projected
dimension. For an example of how the projection of 3D structure
on to 2-dimensions can cause unconnected fibroglandular tissue
to appear more like vessels, see Figure 2.

DISCUSSION

The promise of MRI is as a non-invasive, quantitative assessment
of an individual’s tumor. The goal is to be able to make
personalized clinical decisions based on the information obtained
from MRI. This is demonstrated by the large field of existing
research which uses breast MRI to characterize breast cancer,
identify cancer subtype, and predict both prognosis and
treatment response. However, detection and assessment of the
vessels is seldom performed in this large body of research.
Despite increased vascularity causing the contrast dynamics
that allow tumor detection, detection of the vascularity and
subsequent analysis remains sparse (66–68). In comparison with
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FIGURE 2 | Vessel Detection Performed in 2- and 3-Dimensions. A

Hessian-based approach was applied to both 2D MIP and full 3D MRI using a

single sample from our data set. The vessel detection algorithm was based on

a combination of methods described by Vignati et al. (130) and Wu et al. (48)

with parameters determined using our data set. The MIP images shows many

filamentary-like enhancing structures at the base of the breast. These

structures were consequently detected as vessels in the 2D approach.

However, the distance between these structures on the z-axis are not

preserved when projected to 2-dimensions. When detecting vessels using the

full 3D image, these enhancing structures prove to be unconnected and are,

therefore, not detected as vessels.

MRI research in general, the scope of research involving vessel
detection from breast MRI is less broad: it shows increased
vascularity to be associated with tumors and invasion (142–146).
Given the important role vessels play in nearly all aspects of breast
tumors, the lack of research attention to detect vessels in MRI is
likely due to the challenges presented and not a lack of interest.

Breast MRI presents significant challenges for any quantitative
assessment. Although these challenges are not unique to vessel
detection, many of these challenges (e.g., fibroglandular tissue,
small size of vessels, etc.) make vessel detection particularly
challenging. However, MRI is data-rich and has proved to
contain information that can be translated into clinical diagnosis,
prognosis, and therapeutic assessment.We think the information
encoded in the vessels will further improve the clinical impact of
breast MRI in the future.

FUTURE DIRECTIONS

Currently, blood vessel detection in DCE-MRI lags far behind
other research and clinical application of other computational
analysis. This is not only because of the challenges presented
by MRI-based detection and breast tissue but also because
the utility of vessel detection has largely been limited to aid
lesion detection and characterization. In the short term, research
involving vessel detection in MRI can progress on two fronts:
improved reproducibility and more clinically relevant tumor

characterization and prognosis. Longer term, more advanced
vessel detection methods from computer science can both
advance the field and lower the barrier for applying vessel
detection algorithms to clinical research.

Although current vessel detection algorithms have shown
relatively high sensitivity and specificity within a single data
set, no vessel detection algorithm has been compared between
data sets. To become more widely adopted for research and,
eventually, clinical purposes, vessel detection algorithms must
be shown to be robust and reproducible. This will require
developed algorithms to be performed in and compared
between studies that use different MRI machines and different
MRI protocols. While challenging, a robust and reproducible
blood vessel detection algorithm would provide important
clinical and scientific information. The solution to many of
these technical challenges fall within the domain of computer
science and computer vision research which can be either
developed or adopted to MRI-based research. The development
of deep learning algorithms could also reduce the difficulty of
implementing vessel detection in the research setting. Currently,
vessel detection algorithms are both custom built for the dataset
and time intensive. Previously reported vessel detection studies
can provide a framework for developing new algorithms, but
because of differences in imaging parameters and machines,
parameter tuning and optimizing the algorithm are still required.
These steps are challenging and must be repeated when applying
any developed algorithm to new datasets. Designing vessel
detection algorithms that are more transferable between datasets
would reduce the barriers to research applications. Transfer
learning paired with an optimization procedure that uses a small
subset of images from a new dataset could be one solution to
algorithms that are more widely and easily applicable.

Toward the application of vessel detection for research
purposes in breast MRI, we are currently developing a vessel
detection algorithm to associate vascular characteristics with
aggressive tumor growth. Using a breast screening database
that contains examples of both aggressive and slow-growing
tumors, we plan to assess both global and tumor-associated vessel
characteristics. To determine whether changes in the vasculature
can be associated with aggressive tumors, we plan to compare
those characteristics between the aggressive and slow-growing
tumors. The characteristics will be derived from both hypothesis-
driven quantitative metrics and machine-learning approaches
to extract features from the vessel-segmented images. We view
this as a radiomic-like approach to vessel analysis which has
not previously been attempted. To build this capability, we
have developed both 2D MIP-based and 3D vessel detection
algorithms by adapting previous approaches to our data set
(Figure 2). Using radiomic and deep learning approaches, our
goal is to identify texture-based features of the vessels to help
identify biologically aggressive from slow-growing tumors.
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