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Alzheimer’s disease (AD) is the leading cause of dementia; however, men and women

face differential AD prevalence, presentation, and progression risks. Characterizing

metabolomic profiles during AD progression is fundamental to understand the metabolic

disruptions and the biological pathways involved. However, outstanding questions

remain of whether peripheral metabolic changes occur equally in men and women

with AD. Here, we evaluated differential effects of metabolomic and brain volume

associations between sexes. We used three cohorts from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI), evaluated 1,368 participants, two metabolomic platforms

with 380 metabolites in total, and six brain segment volumes. Using dimension

reduction techniques, we took advantage of the correlation structure of the brain

volume phenotypes and the metabolite concentration values to reduce the number of

tests while aggregating relevant biological structures. Using WGCNA, we aggregated

modules of highly co-expressed metabolites. On the other hand, we used partial

least squares regression-discriminant analysis (PLS-DA) to extract components of brain

volumes that maximally co-vary with AD diagnosis as phenotypes. We tested for

differences in effect sizes between sexes in the association between single metabolite

and metabolite modules with the brain volume components. We found five metabolite

modules and 125 single metabolites with significant differences between sexes. These

results highlight a differential lipid disruption in AD progression between sexes. Men

showed a greater negative association of phosphatidylcholines and sphingomyelins and

a positive association of VLDL and large LDL with AD progression. In contrast, women

showed a positive association of triglycerides in VLDL and small and medium LDL

with AD progression. Explicitly identifying sex differences in metabolomics during AD

progression can highlight particular metabolic disruptions in each sex. Our research study

and strategy can lead to better-tailored studies and better-suited treatments that take sex

differences into account.
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1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease and the
most common cause of dementia. In the U.S., 5.7 million people
lived with AD in 2018, and it is projected that by 2025, 7.1 million
people in the U.S. will have developed AD (1). Most cases of AD
and dementia occur in women, particularly in the most elderly
(2). For example, in the U.S., out of the 5.5 million people age 65
or older with AD, 3.4 million are women, and only 2 million are
men (1). Besides differences in prevalence, other sex differences
have been described, particularly in disease risk, presentation,
and progression. For example, the principal genetic risk factor of
AD, the presence of the ǫ4 allele in the apolipoprotein E gene
(APOEǫ4), confers a greater risk of developing AD in women
compared to men (3). Similarly, hippocampus atrophy rates
occur faster in women than men (4).

Because metabolic decline is one of the earliest symptoms
in AD progression, metabolomics has appeared as a relevant
area to identify metabolic disruptions across biofluids (5).
Furthermore, technological advances in high-throughput
metabolomics instruments have made it easier to measure
hundreds of metabolites and gain the ability to take fine-grained
snapshots of metabolic profiles during disease progression.
Because blood is a non-invasive and readily available biofluid,
significant efforts have been made to link changes in cognitive
decline with peripheral metabolomic changes in serum or
plasma. For example, preclinical biomarker-defined stages of AD
have been associated with altered levels of phosphatidylcholines
(PCs) and sphingomyelins (SMs), while changes in brain
volumes and cognition have been associated with long and short
acylcarnitines, valine, and α − AAA (6). Comparisons between
controls, mild cognitive impairment (MCI), and AD participants
have shown that polyamine and l-arginine metabolism are
implicated in differences across all three diagnostic groups (7).
Out of several blood metabolomic studies, the role of lipid
homeostasis appears to be fundamental in the development of
AD (5).

Some sex differences have been reported previously in the
association betweenmetabolites and AD biomarkers. Specifically,
acylcarnitines, histidine, valine, and proline have shown greater
effect sizes in females, while ether-containing PCs, threonine,
asparagine, glycine, and other acylcarnitines have shown greater
effects in males (8). These results highlight potential sex-specific
roles of energy metabolism and homeostasis in the progression of
AD (8).

Notwithstanding these advances, central questions remain.
For example, despite that AD progression can be characterized by
specific morphological and biomarker changes, its heterogeneity
is a hallmark (9). Therefore, in the face of heterogeneous
changes, how are sex differences displayed? Here, we analyzed
differential associations in metabolites and AD phenotypes
between sexes, to highlight metabolite differences in disease
progression that contribute to the observed sex differences
in AD. Using three cohorts from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), two metabolomics platforms,
and brain imaging to summarize AD progression, we evaluate
differential associations between sexes in single metabolites,

and in metabolite modules that bring together highly
correlated metabolites.

2. MATERIALS AND METHODS

2.1. Study Participants
The data used for this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI; adni.loni.usc.edu).
ADNI was launched in 2003 as a public-private partnership led
by Principal Investigator Michael W. Weiner, MD. The primary
purpose of ADNI has been to measure the progression from
mild cognitive impairment (MCI) to Alzheimer’s disease (AD)
through the use of serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessments. For up-to-date
information, see www.adni-info.org.

Cohorts ADNI 1, ADNI GO, and ADNI 2 were included for
this study, employing imaging and metabolomic data from 1,368
participants. Because participants might be included in more
than one ADNI cohort, we only included those measurements
taken at baseline; therefore, data from participants included in
subsequent cohorts were excluded by definition. For example, for
a participant included in the ADNI 1 and ADNI GO cohorts, we
only considered themeasurement at baseline, in ADNI 1, and not
the one in ADNI GO. There were 621 females and 747 males,
and 92.5% (N = 1, 266) self-described as white. Descriptive
statistics of basic demographic information, APOEǫ4 condition,
and diagnosis can be observed in Table 1.

TABLE 1 | Sample information.

APOEǫ4 Age Education

Cohort Sex Category Count Mean Std Mean Std

ADNI 1 Female 0 142 75.4 7.1 15.1 3.1

1 104 74.0 6.0 14.5 3.0

2 33 69.4 6.2 14.6 2.4

Male 0 192 75.1 6.9 16.2 3.0

1 151 75.5 6.6 15.8 3.1

2 39 72.5 6.4 16.2 2.8

ADNI GO Female 0 35 72.0 8.6 15.5 2.5

1 15 68.0 8.4 14.5 3.0

2 3 62.8 6.0 17.3 3.1

Male 0 32 72.6 6.9 16.3 2.8

1 24 71.3 7.2 16.2 2.4

2 3 69.5 1.8 14.0 1.7

ADNI 2 Female 0 154 72.1 6.8 16.0 2.6

1 111 70.2 6.2 15.6 2.6

2 24 69.5 6.4 16.1 2.6

Male 0 174 73.3 6.9 16.9 2.5

1 97 73.2 7.0 16.9 2.4

2 35 72.1 7.4 16.4 2.8

Age and education average and standard deviation values stratified by ADNI cohort, sex,

and APOEǫ4 condition. APOEǫ4 counts stratified by cohort and sex.
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2.2. Metabolomics Data Acquisition
Two metabolomics platforms were used in this analysis: the
AbsoluteIDQ-p180 metabolomics kit (Biocrates Life Science AG,
Innsbruck, Austria) and the NMR metabolomics platform from
Nightingale (Nightingale Health Ltd., Helsinki, Finland). The
p180 platform is a targeted metabolomics platform that can
detect up to 188 metabolites distributed in five different classes.
Acylcarnitines, sphingolipids, and glycerophospholipids are
analyzed by flow injection analysis-tandem mass spectrometry
(FIA-MS/MS), while amino acids and biogenic amines are
analyzed using an ultra-performance liquid-chromatography
tandem mass spectrometer (UPLC-MS/MS) (10).

The Nightingale platform uses nuclear magnetic resonance
(NMR) for untargeted high-throughput detection of diverse
metabolites, including routine lipids, lipoprotein subclass
profiling with lipid concentrations within 14 subclasses, fatty
acid composition, and various low-molecular metabolites,
including amino acids, ketone bodies, and gluconeogenesis-
related metabolites (11).

2.3. Metabolomics Data Processing
The p180 metabolomics data was processed using previously
published protocols (6, 8, 10). Thirty-four metabolites were
removed for having 20% or more missing values. Cross-plate
mean normalization was estimated for each metabolite to
correct plate batch effects. Duplicates and triplicates were used
to estimate the coefficient of variation (CV) and intra-class
correlation (ICC) for eachmetabolite. Threemetabolites with CV
greater than 20% and 12metabolites with ICC less than 65%were
removed. Eighty-eight non-fasting participants were removed,
and one with missing data greater than 40%. Concentration
values in replicates were averaged to obtain a single estimation
per metabolite. The missing data source was evaluated, and
values were imputed when the missing value was lower than the
detection limit. The metabolites taurine and C5:DC:C6:OH were
removed because they showed values across several participants
greater than the highest calibration standard, and the internal
standard was out of range, respectively. All other missing values
were due to the concentration being lower than the limit of
detection (LOD) or because the concentration value was higher
than the LOD but lower than the calibration standard. Therefore,
278 missing data points across 26 metabolites were imputed
with half of the LOD value per metabolite per plate. Because
some LOD values were zero, a constant value of 1 was added
to all metabolite concentration values. Metabolite concentration
values were transformed using log2-transformation, z-score
normalization, and winsorizing values greater than 3 and –3.
Finally, 114 participants were removed based on a multivariate
outlier detection using the Mahalanobis distance and a Chi-
square of P < 0.001.

On the other hand, data processing for the NMR platform
involved the removal of five metabolites with 20% or more of
missing values, one participant with a missing value greater
than 40%, and 80 non-fasting participants. Concentration values
in replicates were averaged to obtain a single estimation per
metabolite. Various QC tags identified potential sources of
contamination of the blood samples. For example, “low ethanol”

indicated potential disinfectant contamination. Therefore, 33
participants with missing data with any QC tag except for “below
limit of quantification” were removed. The remainder of the
missing values were all due to the concentration value being
below the limit of quantification; therefore, data were imputed
using half of the minimum observed value. A total of 155
data points were imputed across 11 metabolites. Finally, data
transformation in concentration values involved the addition of
a constant of 1, log2-transformation, and z-score normalization.

Residuals from linear regressions were used to account for
medication intake. For each metabolite, a linear regression with
the medications as predictors was fitted after using a backward
selection strategy to keep only significant ones in the model (10).
After data processing, 1,475 participants and 135 metabolites
were retained in the p180 platform, and 1,562 participants and
245 metabolites in the NMR platform.

2.4. Phenotype and Covariate Data
Acquisition and Processing
Volumetric brain data from ventricles, hippocampus, entorhinal
cortex, fusiform gyrus, middle temporal gyrus, and the whole
brain were obtained from the data prepared for the Alzheimer’s
Disease Modeling Challenge in the Quantitative Templates for
the Progression of Alzheimer’s disease (QT-PAD). These regions
were selected because their volumes have been shown to be
affected by AD. Specifically, while all segments, including the
whole brain, show atrophy with AD development, ventricles
show an enlargement (12). We chose the number and type of
brain regions to strike a balance between more insight and
interpretability. Volumetric segmentation was performed using
the FreeSurfer software (13). ADNI 1 1.5T data was run with
FreeSurfer version 4.3, while ADNI 1 3T data was run with
FreeSurfer version 5.1. ADNI GO and ADNI 2 cohorts were run
with FreeSurfer version 5.1. Finally, to control for differences
in intracranial volume (ICV), each brain volume was divided
by ICV. The ventricle by ICV volume followed a non-normal
distribution and was thus log-transformed.

Covariate information including age, sex, years of education,
APOEǫ4, and diagnosis were extracted. The six diagnosis
categories (control, subjective memory complaints, mild
cognitive impairment, early mild cognitive impairment,
late mild cognitive impairment, and Alzheimer’s disease)
were consolidated into three categories by merging control
and subjective memory complaints into controls, and mild
cognitive impairment, early mild cognitive impairment, and
late mild cognitive impairment into mild cognitive impairment.
Participants with missing values in any phenotypes or covariates
were removed, resulting in 1,368 participants.

2.5. Dimension Reduction Techniques
Dimension reduction approaches were applied to reduce the
number of comparisons in the imaging phenotypes and the
metabolites. A partial least squares regression-discriminant
analysis (PLS-DA) was used to reduce the number of phenotypes
whilemaximizing their covariance with the diagnosis groups, and
therefore, with AD progression (14). PLS-DA aims to predict the
outcome from a set of predictors by extracting a set of orthogonal
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components that have the best predictive power (15). The six
brain phenotypes were used as the predictors and the three
diagnosis categories as outcomes after conversion to a dummy
categorical matrix. The first five components that explained 95%
of the variance were extracted and used for further analysis.
Finally, nine participants were removed based on a multivariate
outlier detection using the Mahalanobis distance and a Chi-
square of P < 0.001.

On the other hand, a weighted correlation network analysis
(WGCNA) extracted metabolite modules of highly co-expressed
metabolites. Although WGCNA has been generally applied to
gene expression data, application to metabolomics platforms
has been successful (16–18). WGCNA was applied to both
metabolomics platforms independently. First, a similarity
network was constructed based on the absolute value of the
correlation between metabolites. Then, a soft-threshold power
was selected based on the criteria of approximating a scale-free
topology to generate the adjacency matrix from the similarity
matrix. A soft-thresholding power β of 10 was used in both
platforms (Supplementary Figure S1). Finally, a topological
overlap matrix (TOM) was generated from the adjacency matrix
(19).

Hierarchical clustering with a dynamic tree cut approach was
used to generate metabolite modules, using a minimum cluster
size of 5 for the p180 platform and 10 for the NMR (20).
Highly correlated metabolite modules were merged (Pearson’s
r > 0.9), and the final set of metabolite modules was
obtained. Concentration values for each metabolite module were
summarized by using the module eigen-metabolite, which is the
first principal component from the concentration values (19).
Finally, each metabolite’s module membership (MM) value was
obtained as the Pearson correlation between the single metabolite
concentration value and the module eigen-metabolite.

2.6. Association Analysis and Sex
Differences Detection
A sex-stratified linear regression was fitted for each metabolite
module and every individual metabolite, using the brain volume
PLS-DA components as predictors. Age, years of education, and
APOEǫ4 were used as covariates. Two approaches were used to
detect sex differences in the metabolite-brain associations (8, 21).

Winkler et al. (21) have suggested detecting sex differences
using the sex difference test in the whole set of associations and
in a subset that passes a filtering criterion. The sex difference test
is defined by:

Zdiff =
βf − βm

√

se2
f
+ se2m

Where βf is the β from a regression in the female cohort, sef
is the standard error, and Zdiff follows a normal distribution.
Then, a Bonferroni-corrected α is used to detect significant sex
differences.

On the other hand, the filtering criterion is defined by a
significant metabolite-brain association in the merged cohorts.

A significant overall association from two cohorts can be
obtained by:

Zoverall =

βf

se2
f

+
βm
se2m

√

1
se2
f

+
1
se2m

An α = 10−5 was used to select significant overall associations.
Then, the sex difference test is applied to only this subset of
associations using a Bonferroni-corrected α. The logic behind
this two-fold approach is to increase the power to identify
different types of sex differences (21).

On the other hand, Arnold et al. (8) have suggested
determining sex differences by selecting the associations that
fulfill any of the following criteria: (a) associations Bonferroni
significant in the entire cohort; (b) Bonferroni significant
associations in one sex; and (c) associations showing nominal
significance in one sex (P < 0.05) and a significant sex
difference test. This subset of associations is then categorized as
homogeneous if the sex difference P > 0.05 and heterogeneous
if the sex difference P < 0.05. Associations that are Bonferroni
significant in a single sex and with a sex difference P < 0.05 are
classified as sex-specific.

To adjust for multiple testing in the metabolite module and
brain component associations, a Bonferroni corrected α =

0.05/(M × C) was used, whereM is the number of modules, and
C is the number of brain phenotype components. The effective
number of independent tests was estimated to take into account
the correlation structure of single metabolites (22). Therefore,
in the single metabolite and brain component associations, a
Bonferroni corrected α = 0.05/I × C was used, where I is the
effective number of independent tests.

2.7. Software, Packages, and Code
Availability
The analysis was written in python (Python Software Foundation,
https://www.python.org/) and R (23), including several packages
(24–27). The code is stored in Zenodo, under the doi:
10.5281/zenodo.6049171. A README file contains instructions
for replicating the analysis, and a conda environment file
indicates the specific packages and versions used.

3. RESULTS

3.1. Phenotype and Metabolite Dimension
Reduction
The first five components of the PLS-DA applied to the
volumetric brain data distinguished between the three diagnosis
groups and explained 95% of the variance (Figures 1A–D). The
variable importance in projection (VIP) estimation established
that, considering all components, the hippocampus, entorhinal
cortex, and whole-brain volumes were the top three segments
contributing to the PLS-DA transformation (Figure 1C). All
brain segments contributed to brain component 1, which
explained 64% of the total brain volume variance and separated
all three diagnosis groups . AD progression in brain component
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FIGURE 1 | Partial Least Square - Discriminant Analysis (PLS-DA) using six brain volume segments as predictors and diagnosis groups AD, MCI, and CN as

outcomes. (A) Scores projected in the brain components 1–5 with diagnosis groups color-coded. (B) Weights of the predictors and outcomes projected on the brain

components 1–5. (C) Variable importance in projection (VIP) of each brain volume segment considering the brain components 1–5. (D) Scree plot showing the

proportion of variance explained by each brain component.

1 was characterized by relative atrophy of most brain segments
and an expansion of the ventricles (Figure 1B). On the other
hand, the segments that mainly contributed to brain component
2 were the whole-brain volume, followed by the hippocampus

and entorhinal cortex volumes. Brain component 2 explained
only 10% of the variance in brain volume and only separated
AD and MCI from CN. AD progression in brain component
2 was characterized by relative atrophy of the hippocampus,
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entorhinal cortex , and ventricles and an expansion of the whole
brain (Figure 1B).

Brain component 3 explained 9% of the total variance,
separated MCI from AD and CN, and its MCI progression was
characterized by relative atrophy of the hippocampus and an
expansion of the ventricles and the entorhinal cortex. Brain
component 4 explained 6% of the total variance in brain volume,
separated MCI and AD from CN, and it was characterized by a
relative expansion of the entorhinal cortex and the whole brain,
and atrophy of the middle temporal gyrus, and the fusiform
gyrus. Finally, brain component 5 explained 5% of the variance,
separated AD from MCI and CN, and it was characterized
by a relative expansion of the ventricles, whole brain, and
hippocampus, and atrophy of the entorhinal cortex (Figure 1B).

WGCNA applied to the metabolomic platforms produced
eight) modules in the p180 platform and seven modules
in the NMR platform . In both platforms the gray module
contained unassigned metabolites (Figure 2). The average
number of metabolites per module in the p180 platform was
11 and 45 metabolites were not assigned and included in
the gray module. The largest module was the turquoise with
21 metabolites, and the smallest was the black and pink
modules, both with five metabolites. In the p180 platform,
the pink, red, turquoise, yellow, black, and blue modules
contained mainly various phosphatidylcholines (PC). The brown
module contained sphingomyelins, and the green module
lysophosphatidylcholines (lysoPC). Finally, the gray module,
containing all unassigned metabolites, included amino acids,
biogenic amines, and acylcarnitines.

The average number of metabolites per module in the NMR
platform was 28. 49 metabolites were unassigned and, therefore,
included in the gray module. The largest module was the

turquoise with 42 metabolites, and the smallest was the black
with sixteen metabolites. The black module mainly contained
large and very large high-density lipoproteins (HDL), and the
green module included small and medium HDL, particularly
cholesterol. On the other hand, the brown module contained
all types of very low-density lipoproteins (VLDL), fatty acids,
and apolipoproteins. In contrast, the turquoise module included
small and medium HDL, specifically various lipid ratios, and
large, very large, chylomicrons and extremely large VLDL, and
the yellow module contained very small, small, and medium
VLDL lipid ratios. Finally, the blue module included primarily
small, medium, and large low-density lipoproteins (LDL), fatty
acids, and apolipoproteins, and the red module contained mainly
intermediate-density lipoprotein (IDL) and other lipids such as
PC and sphingomyelins. The unassignedmetabolites weremostly
ketone bodies, amino acids, glycolysis-related metabolites, and
fatty acids.

3.2. Detection of Sex Differences
None of the associations, either using single metabolites or
metabolite modules in the p180 and NMR platforms, were
identified as different between sexes using the approach from
Winkler et al. (21). On the other hand, using the Arnold et al.
(8) approach resulted in various associations categorized as
heterogeneous between sexes and sex-specific.

3.2.1. P180 Platform

Three metabolite modules in the p180 platform, the blue, brown,
and yellow modules, were heterogeneous between sexes in brain
component 4 (Figure 3 and Supplementary Table S1). Males
showed a nominally significant positive association in the blue
(β = 0.103, P = 0.009), brown (β = 0.084, P = 0.032), and

FIGURE 2 | Weighted correlation network analysis (WGCNA) showing the dendrogram, metabolite modules generated indicated by their respective colors, and the

topological overlap matrix (TOM) displayed as a heatmap. Red colors in the heatmap indicate greater similarity between the metabolites.
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FIGURE 3 | Sex differences in the p180 metabolomics platform. (A) Effect sizes and their 95% confidence interval stratified by sex for each metabolite module, and

separated by brain PLS-DA components. (B) Network of the heterogeneous modules between sexes, yellow, blue, and brown, indicating the correlation between the

several metabolites. (C) Effect sizes in males and females across all brain PLS-DA components. Different types of metabolites are color coded.

yellow modules (β = 0.082, P = 0.038) indicating that lower
levels of the blue, brown, and yellow module metabolites were
associated with AD and MCI progression in brain component
4. The blue module contained 17 metabolites, including various
alkylacyl (ae) and diacyl (aa) PCs and a single lysoPC (lysoPC

a C24:0). The module membership (MM) values in the blue
module were larger than 0.8 for all included metabolites, except
for PC aa C38:5 and PC aa C40:5. Five metabolites, PC aa C40:3,
PC ae C42:2, PC ae C44:3, PC ae C42:1, and PC ae C42:3, had
MM values greater than 0.9. The yellow module contained eight
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metabolites, including various alkylacyl and diacyl PCs. The MM
values for the yellow module were greater than 0.8 except for
the only two diacyl PCs, PC aa C40:4 and PC aa C38:4. The
most relevant metabolites in the yellowmodules, withMM values
greater than 0.9, were the alkylacyl PCs, PC ae C38:4, PC ae
C38:5, PC ae C36:4, PC ae C40:4, and PC ae C40: 5. The brown
module contained seventeen metabolites, mostly sphingomyelins
and a few alkylacyl and diacyl PCs. All metabolites in the brown
module had MM values greater than 0.8 except for the diacyl
PC, PC aa C32:3, and the sphingomyelin SM C24:0. The most
relevant metabolites, with MM values greater than 0.9, were the
sphingomyelins SM (OH) C22:2, SM C16:0, and SM (OH) C16:1.

Forty-two metabolites were classified as heterogeneous
between sexes when considering single metabolites, and 10
were sex-specific (Figure 3 and Supplementary Table S2). Of
the heterogeneous metabolites, 13 showed nominally significant
associations and greater effect sizes in females. These were
mainly classified as acylcarnitines and were associated with brain
components 3, 4, and 5. All these metabolites were included in
the gray module except for one assigned to the yellow module.
For example, increased levels of four acylcarnitines, C10:2,
C7:DC, C14:1-OH, C9, were associated with AD progression in
brain component 5 in females but not males. The remaining
29 metabolites out of the 42 classified as heterogenous were
nominally significant and had greater effect sizes in males. These
mainly were alkylacyl and diacyl PCs and were predominantly
associated with brain component 4. However, several amino
acids also showed a nominal significance in males. For example,
lower aspartic acid, isoleucine, lysine, methionine, and valine
levels were associated with AD and MCI progression in
brain component 4 in males but not females. Similarly, lower
citrulline, isoleucine, and tyrosine levels were associated with
MCI progression in brain component 3 in males.

All 10 sex-specific metabolites were Bonferroni significant
and had greater effect sizes in males, and were predominantly
associated with brain components 2, 3, and 5. For example,
lower levels of lysoPC a C20:4, PC ae C36:5, and arginine were
associated with AD and MCI progression in brain component 2.
On the other hand, lower levels of the biogenic amines creatinine
and SDMA, and the acylcarnitine C10, were associated with AD
progression in brain component 5.

3.2.2. NMR Platform

The brown and turquoise metabolite modules were
heterogeneous between sexes in the NMR platform in brain
component 2 (Figure 4 and Supplementary Table S3).
The brown module showed a nominally significant
positive association in males (βf = −0.013, Pf = 0.76;
βm = 0.104, Pm = 0.0071), as well as the turquoise module
(βf = −0.046, Pf = 0.27; βm = 0.085, Pm = 0.027; Figure 4A).
In other words, increased brown and turquoise module
metabolite levels were associated with AD and MCI progression
in males but not females for brain component 2.

The brown module comprised 40 metabolites. It contained
various lipoprotein subclasses, including triglycerides in
IDL, large and medium LDL, large and very large HDL,
and very small VLDL. It also contained cholesterol and

cholesteryl esters in small, large, and very large VLDL,
and free cholesterol, phospholipids, and total lipids in very
small, small, and medium VLDL. Finally, among lipoprotein
subclasses, it contained the concentration of very small,
small, and medium VLDL particles. Different lipoprotein-
to-lipid ratios were also included, such as cholesteryl
esters and phospholipids to total lipid ratio in small and
medium LDL. Only six metabolites in the brown module had
MM values lower than 0.7, including all lipoprotein-to-lipid
ratios, glycoprotein acetyls, and triglycerides in large HDL. On
the other hand, the top five most relevant metabolites, with
MM values higher than 0.97, were the concentration of VLDL
particles, free cholesterol, cholesterol, phospholipids, and total
lipids in VLDL, and total lipids in small VLDL.

The turquoise module was composed of 42 metabolites.
Several lipoprotein subclasses were represented, specifically
triglycerides in most subclasses of VLDL, small LDL, and
small and medium HDL. Furthermore, it also contained free
cholesterol, phospholipids, and total lipids in large, very large,
chylomicrons and extremely large VLDL. Other lipoprotein
subclasses, such as cholesterol and cholesteryl esters in
chylomicrons and extremely large VLDL, and the concentration
of large, very large, chylomicrons and extremely large VLDL
particles were also included. Other metabolites included in the
turquoise module were total triglycerides and triglycerides in
HDL and VLDL, and various fatty acid ratios. Finally, several
lipoprotein-to-lipid ratios were among the metabolites included
in the turquoise module, specifically triglycerides to total lipids
ratio in small, medium, large, and very large HDL, phospholipids
to total lipids ratio inmediumHDL, free cholesterol to total lipids
ratio in small and medium LDL, and cholesterol and cholesteryl
esters to total lipids ratio in small and medium HDL.

Only two metabolites had MM values less than 0.7, including
the ratio of cholesterol and cholesteryl esters to total lipids
in small HDL. On the other hand, the turquoise module’s
most relevant metabolites, with MM values higher than 0.95,
included the concentration of very large VLDL particles, total
lipids, triglycerides, and phospholipids in very large VLDL, total
triglycerides, and triglycerides in VLDL.

Seventy-three (73) single metabolites were heterogeneous,
and one was classified as sex-specific in the NMR platform
(Figure 4 and Supplementary Table S4). Of the heterogeneous
metabolites, 27 were nominally significant and had greater effect
sizes in females. These were primarily associated with brain
components 1 and 5. Specifically, increased levels of triglycerides
in HDL and IDL, glycerol, and triglycerides to total lipids
ratio in small and medium LDL, as well as decreased levels of
cholesterol, cholesteryl esters, and free cholesterol to total lipids
ratio in LDL, were associated with AD progression in females
in brain component 1. On the other hand, decreased levels of
apolipoprotein B, remnant cholesterol, total cholesterol minus
HDL-C, cholesterol, and cholesteryl esters in medium VLDL,
among others, were associated with AD progression in brain
component 5.

The remaining 46 heterogeneous metabolites were nominally
significant and had greater effect sizes in males. Most were
associated with brain component 2 and were included in
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FIGURE 4 | Sex differences in the NMR metabolomics platform. (A) Effect sizes and their 95% confidence interval stratified by sex for each metabolite module, and

separated by brain PLS-DA components. (B) Network of the brown and turquoise modules indicating the correlation between all metabolites. (C) Effect sizes in males

and females in each brain PLS-DA component. Different types of metabolites are color coded.

the brown and turquoise modules. Besides those mentioned
above, five metabolites were associated with brain component 1.
Specifically, increased levels of free cholesterol to total lipids ratio
in very small VLDL, phospholipids to total lipids ratio in small
HDL, and triglycerides to total lipids ratio in large LDL, as well as
decreased levels of triglycerides to total lipids ratio in very large

VLDL, cholesterol to total lipids ratio in IDL, cholesterol to total
lipids ratio in large LDL were associated with AD progression
in males in brain component 1. Finally, four metabolites were
associated with brain component 5. Specifically, increased levels
of sphingomyelins, total phospholipids in lipoprotein particles,
and free cholesterol to total lipids ratio in large and small
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HDL were associated with AD progression in males in brain
component 5.

4. DISCUSSION

This study has identified sex differences in the association
between metabolites and AD brain imaging phenotypes.
Specifically, we have shown that diverse phosphatidylcholines
(PC), sphingomyelins (SM), acylcarnitines, amino acids, and
different lipids in very low-density lipoproteins (VLDL) and low-
density lipoproteins (LDL) have different associations between
men and women with AD progression. Our methodology
highlights the beneficial use of diverse multivariate techniques
to take advantage of the highly correlated structure of
biological systems.

4.1. Brain Volume Changes in AD
The sex differences identified in this study were common
across brain components. Brain component 1 contains the most
common pattern of volumetric changes in AD , which includes
atrophy of the hippocampus, entorhinal cortex, fusiform gyrus,
middle temporal gyrus, and the whole brain, and an enlargement
of the ventricles (28). Brain component 1 also explains most of
the variance in brain volume, 64%, while the remaining brain
components explain a similarly low percentage of the variance in
brain volume and together account for only 30% of the variance.
Although these lower components can separate diagnosis groups,
the low percentage of variance explained can be interpreted as
rare cases of brain volume changes due to AD or MCI. For
example, brain component 2 only explains 10% of the variance
and is characterized by relative atrophy of the hippocampus,
entorhinal cortex, and ventricles and relative enlargement of the
whole brain. However, because the brain segments are corrected
by intracranial volume (ICV), caution needs to be taken when
interpreting the contribution of the different segments. In this
case, whole-brain enlargement can be better interpreted as a
relatively greater proportion of the whole brain to ICV associated
with AD progression. Furthermore, although the progression of
AD and MCI from CN is at the core of the construction of
the PLS-DA components, which is evident given the separation
of diagnosis groups in brain component 1, the phenotypes
addressed in this study are changes in brain volume and not
diagnosis groups. In other words, changes in brain volume
associated with AD or MCI progression might also be occurring
in individuals without symptoms. The results from the PLS-DA
emphasize the fact that different patterns of brain atrophy can
emerge with cognitive decline and highlight the heterogeneity
of AD (9). Furthermore, our study emphasizes the notion that
unique patterns of cognitive decline are also relevant to sex
differences. Most importantly, it highlights that depending on
how AD progression is defined (i.e., what particular biomarkers,
surveys, or imaging information are used), different patterns of
sex differences can emerge.

4.2. Lipid Sex Differences in AD
One of the major categories in which we observed sex
differences of metabolites with brain components was with

various lipid categories. Triglycerides, PCs, SMs, acylcarnitines,
and cholesterol showed differences in various brain components
between sexes. Both PCs and SMs are central components of
cellular membranes and neuronal membranes. PCs are a type of
glycerophospholipid characterized by having a choline group in
the sn-3 position (29). PCs can contain an ester-linked acyl chain
in the sn-2 position, and can contain acyl-, ether-, or vinyl-ether
bonds in the sn-1 position, and are classified into diacyl, alkylacyl
or alkenylacyl PCs, respectively (30). On the other hand, SMs are
one of the most common types of sphingolipids and are found in
plasma, plasma lipoproteins, and cellular membranes (31).

Altered levels of PCs and SMs have been associated with AD
development (32). However, several inconsistencies have been
found (33). For example, levels of SM in the brain have been
found to be greater (34, 35) and lower (36) in AD compared
to normal controls. Similarly, SM in blood samples has been
found to be lower (33, 37) and greater (35) when comparing
AD or memory-impaired participants to controls. Similar
inconsistent results have also been found in PC. Plasma PC
have been found to be lower (38–42) and higher (6, 37) in AD
or MCI compared to controls. Due to these discrepancies, it
has been hypothesized that PC and SM have shifting roles
during different stages of AD progression, with higher levels in
pre-clinical stages and lower ones post-impairment (6, 43, 44)
. Although the specific mechanisms linking blood PC and SM
to AD progression are not well understood, several hypotheses
have been outlined. For example, PC and SM alteration have
been implicated with the immune system (30, 45), providing
another functional mechanism linking AD and inflammation
(6, 46). Furthermore, PC and SM alterations have also been
associated with other diseases known to be AD risk factors
(47), such as diabetes mellitus (48), type 2 diabetes (49), insulin
resistance (50), and cardiovascular risk factors like BMI and
alcohol consumption (51).

This study found that lower plasma levels of diacyl and
alkylacyl PC and SM are associated with AD and MCI
progression in men but not women in brain component
4. However, we also found that increased levels of SM are
associated with AD progression in brain component 5 in men
only. Our findings, that sex differences exist in metabolite-AD
associations but are specific to a brain volume pattern, might help
reconcile previous inconsistent findings. For example, sample
composition, specifically sex ratios, might affect the associations
deemed significant and the ability to compare across studies.
Furthermore, while a particular pattern of AD progression might
be associated with increased lipid levels, a different pattern might
show the opposite association. Our results also highlight the
potential sex-specific nature of AD risk factors. For example,
although diabetes has been shown to pose a greater risk in women
compared to men in developing AD (52, 53), some studies have
shown a stronger association between diabetes and MCI in men
compared to women (54). Sex differences in lipid metabolism
have been previously found. Particularly interesting is the find
that alkylacyl PC has a stronger negative association with aging in
men compared to women (55). Whether the concentration levels
of PC and SM are a cause, effect, or how the different pathologies
interact is beyond the scope of this study, but they highlight the
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need to take into account correlational structures that might be
particular to each sex.

Increased levels of triglycerides have been associated with the
development of AD and other forms of dementia, like vascular
dementia (56–58). Due to the clear causal connection between
hypertriglyceridemia and the development of atherosclerotic
cardiovascular disease (ACVD) (59), there is an increased
understanding of the role of triglycerides as shared risks factors
with ACVD and dementia (57). Similarly, LDL, specifically LDL
cholesterol content, has been implicated in cognitive impairment
(60). Nevertheless, conflicting results have also been found for the
role of triglycerides (60) and LDL (61) in AD. Our study indicates
that lipid composition in LDL has differential associations
between sexes with AD progression in brain component 1.
Specifically, less cholesterol and more triglyceride content in
LDL is associated with AD and MCI progression, but while
women show a significant association only with small and
medium LDL, men show a significant association only with
large LDL. Our results highlight the complexity of the role of
lipid contents of LDL on AD and the sex-specific role they
might play.

The two metabolite modules classified as heterogeneous
between sexes in the NMR platform can be interpreted together;
while the brown module contains mostly small VLDL, the
turquoise module contains large VLDL. However, while the top
metabolites for the brown module were free cholesterol and
cholesterol in VLDL, the principal metabolites in the turquoise
module were triglycerides in VLDL. Therefore, different VLDL
sizes and constituent lipids on VLDL impact sex differences.
VLDLs are a class of triglyceride-rich lipoproteins whose function
is to carry triglycerides synthesized in the liver to adipose tissue
and muscle for energy production (62). Elevated VLDL, either
due to an overproduction or failure in clearance, can lead
to hypertriglyceridemia or an excess of triglycerides in blood
(63). As mentioned before, increased triglycerides pose a risk
of developing AD. Moreover, previous studies have found that
lipid content, specifically cholesterol and triglycerides in VLDL,
is associated with AD risk (64).

On the other hand, we also found that a reduction in
cholesterol and increased triglycerides in VLDL is associated
with AD progression in women in brain component 5. These
seemingly contradictory results highlight the complexity of the
role of lipids in AD progression. While the increase in lipids
might be associated with a greater risk of AD development, the
reduction of the same lipid might also be associated with an
increased risk, either in a different pattern of AD progression or
in a different sex.

4.3. Amino Acids Sex Differences in AD
Altered levels of amino acids are relevant in the process of aging,
as well as aging-related diseases, including AD (65). Several
amino acids have been shown to be altered in AD and MCI
compared to controls, both in cerebrospinal fluid (CSF) and
blood (66). For example, it has been found that polyamine,
lysine, and tryptophan metabolism, and glycine and valine levels
are altered in blood samples across AD, MCI, and CN groups

(67, 68). Various studies have also explored the role of amino acid
intake in the progression of AD; however, most research is still
speculative due to the lack of specific underlying mechanisms
(69). Our study found that decreased levels of arginine and
serine are associated with AD and MCI progression in brain
component 2 , and decreased levels of asparagine, methionine,
and threonine are associated with MCI progression in brain
component 3 in men but not women. These results underscore
a potential heightened sensitivity to amino acid alteration in
AD progression only in men. Authors have cautioned about the
interpretation of amino acids due to their variation on nutritional
status, specifically the difference in levels between fasting and
non-fasting participants (67). In the case of our study, we retained
only fasting individuals for analysis.

4.4. The Importance of Metabolomics
Platforms
The two metabolomic platforms show different strengths and
weaknesses when combined withWGCNA. In the p180 platform,
even though we could detect three metabolite modules as
heterogeneous between sexes, most were assigned to the
gray module when evaluating single metabolite associations.
On the other hand, we detected two metabolite modules
as heterogeneous between sexes in the NMR platform, and
when evaluating single metabolites, most (61%) sex different
metabolites were already assigned to one of those modules. In
other words, the use of WGCNA for this particular study was
more successful in the NMR platform than in the p180 because
it could assign relevant metabolites into modules. This difference
is due to the correlation structure of the metabolites, which is
very different between the two platforms. While the metabolites
in the NMR platform showed a highly correlated structure, the
metabolites in the p180, except for some highly correlated group
of metabolites, generally showed a loose correlation structure.
This difference might be due to the technical nature of the
platforms; while NMR is an untargeted platform, p180 is a
targeted one. The decision to include particular metabolites in
the p180 platform needs to balance the coverage of distinct
biological pathways with covering highly correlated metabolites
in the same ones.

Even though we found sex differences using the approach of
Arnold et al. (8), we were not able to find sex differences with the
approach of Winkler et al. (21). The approach of Winkler et al.
(21) is more stringent and has been tested through simulations
and real data to evaluate valid type I error rates and power in the
decision criteria. On the other hand, the approach of Arnold et al.
(8) has not been evaluated under such strict testing.

4.5. Limitations
Our study has limitations. Notably, using dimension reduction
techniques to define the phenotypes leads to a data-driven
approach that can detect patterns in the data without using
previous knowledge. On the other hand, the same strength leads
to a much more challenging interpretation of the phenotype and
limits the potential use in clinical settings. The lack of significant
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results using theWinkler et al. (21) approach indicates a potential
lack of power to detect sex differences, mainly because the data
needs to be stratified. Therefore, our results need to be taken with
caution, and further replications will be needed to establish the
significance of these conclusions.

However, our study presents several strengths. We evaluated
the multidimensional aspect of AD progression, an underlying
element in the differences in results across studies, and explicitly
attempted to identify sex differences. Much research takes sex as
a covariate to control for or as a research question secondary to
primary analyses. Such a strategy might only be warranted when
sample sizes do not allow for the stratification of the cohorts.
However, when explicitly evaluating sex differences, common
elements and particular results in each sex are easier to evaluate.
Furthermore, in AD, as well as other diseases, it is clear that sex
and gender play fundamental roles (70, 71).
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