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As deep learning is widely used in the radiology field, the explainability of Artificial
Intelligence (AI) models is becoming increasingly essential to gain clinicians’ trust
when using the models for diagnosis. In this research, three experiment sets were
conducted with a U-Net architecture to improve the disease classification
performance while enhancing the heatmaps corresponding to the model’s
focus through incorporating heatmap generators during training. All
experiments used the dataset that contained chest radiographs, associated
labels from one of the three conditions [“normal”, “congestive heart failure
(CHF)”, and “pneumonia”], and numerical information regarding a radiologist’s
eye-gaze coordinates on the images. The paper that introduced this dataset
developed a U-Net model, which was treated as the baseline model for this
research, to show how the eye-gaze data can be used in multi-modal training
for explainability improvement and disease classification. To compare the
classification performances among this research’s three experiment sets and
the baseline model, the 95% confidence intervals (CI) of the area under the
receiver operating characteristic curve (AUC) were measured. The best method
achieved an AUC of 0.913 with a 95% CI of [0.860, 0.966]. “Pneumonia” and
“CHF” classes, which the baseline model struggled the most to classify, had the
greatest improvements, resulting in AUCs of 0.859 with a 95% CI of [0.732,
0.957] and 0.962 with a 95% CI of [0.933, 0.989], respectively. The decoder of
the U-Net for the best-performing proposed method generated heatmaps that
highlight the determining image parts in model classifications. These predicted
heatmaps, which can be used for the explainability of the model, also improved
to align well with the radiologist’s eye-gaze data. Hence, this work showed that
incorporating heatmap generators and eye-gaze information into training can
simultaneously improve disease classification and provide explainable visuals
that align well with how the radiologist viewed the chest radiographs when
making diagnosis.
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Introduction

Complex deep learning models have been more recently

incorporated into clinical radiology practices and have given

promising results to assist radiologists in identifying and

classifying various diseases and abnormalities, such as

pneumonia and congestive heart failure (CHF) (1).

Nevertheless, it is quite difficult for humans, including

radiologists, to understand how such deep learning models

arrived at their predictions (2). Unlike linear regression or

support vector machines that have fewer-dimensional

classification boundaries, which are easier to understand and

visualize, deep learning algorithms are often referred to as

black-box algorithms because of their computational

complexity and the fact that we are often unable to easily

observe the decision boundaries generated by those models

(1–4). In fact, performance and explainability have often been

traded-off, and models with better performance tend to be

worse in terms of explainability and vice versa (3, 5, 6).

Hence, the explainability of Artificial Intelligence (AI) models

that shows the part of the model’s inputs or the kind of

information the models focused on when making predictions is

crucial for the radiology field to gain and increase radiologists’,

patients’, and regulators’ trust in the use of the models for

diagnosis (2, 5). The explainability aspect of the models also helps

to verify the model’s conclusions and to identify models’ biases

(6–8). A model with improved classification and enhanced

explainability components will be able to assist the radiologists by

making the diagnosis process more efficient and minimizing the

risk of making mistakes (7). With the increase in explainability,

the model can also be widely used at medical facilities that

perform Chest x-Ray (CXR) imaging where there may not be

enough radiological expertise to identify and classify diseases.

The methods to establish the explainability of the models

can involve different data types, such as mathematical

computations, texts, or visualization with heatmaps or

saliency maps (1). In the radiology field, CXR images are one

of the essential components for diagnosing abnormalities or

conditions that affect chest and nearby organs, and many AI

models for radiology often use the chest radiographs as one of

their inputs (7, 9). Thus, the visualization aspect of

explainability on images with heatmaps is an impactful tool to

convey which part of the radiograph the model observed

closely for illness classification (1, 10).

Currently, there are several studies on using deep learning

models for disease classification that also involve heatmap

generation to visualize where the model’s focus was on the

given input CXR image (9, 11). Nonetheless, there are many

limitations in such research. For example, many publicly

available datasets that such studies use contain erroneous class

labels because the labels were often extracted from text

reports using natural language processing (NLP) models (9,

12), and the state-of-the-art NLP models still cannot achieve
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100% accuracy on texts interpretation. Additionally, many of

the models use only CXR images and disease class labels for

training, but many diseases can only be classified through

using other information the CXR images cannot necessarily

provide, such as symptoms, clinical signs, patients’ history,

and results from blood tests (9). Lastly, many of the studied

models do not consider the methods the radiologists usually

take to analyze the CXR images, such as the way they view

the chest radiographs to make diagnosis (12). It has been

shown that integrating eye-gaze information improves AI

models’ classification performance and has been validated that

eye-gaze data contains valuable information related to

focusing on important input features (13).

To increase the classification performance and the

explainability of AI models while mitigating such dataset and

labeling limitations, this work proposes and tests three

different methods that use a U-Net-based (14) model. The

methods verify whether incorporating various gradient-based

heatmap generators, such as guided back-propagation, in

addition to radiologists’ eye-gaze information, CXR images

and class labels into the model training can improve disease

classification while enhancing explainability. While utilizing

U-Net for generating heatmaps is not novel, the application of

the gradient-based heatmap generators in addition to the

radiologist’s eye-gaze data during model training has not been

fully studied before. This research used a dataset (12) that

contains not only the CXR images and corresponding class

labels (which are “normal”, “CHF”, and “pneumonia”), but

also a radiologist’s eye-gaze coordinates information received

when the radiologist was viewing the CXR image to perform

diagnosis. The focus of this paper is on improving the

classification performance, and hence, no quantitative

approach is employed for assessing explainability, which is a

limitation to be addressed in future works.

Although the proposed models, mostly had similar overall

average classification performances as the baseline model that

did not use heatmap generators in the training process, there

were greater improvements in classifying the “CHF” and

“pneumonia” classes, which were the classes the baseline

model struggled to correctly classify. Moreover, one of the

proposed models had a superior improvement in both the

overall average classification performance and the

performances on “CHF” and “pneumonia” classes.

The followings are the key contributions of this research:

- This research introduces three experiment sets that uniquely

use gradient-based heatmap generators, such as deconvNet,

and a radiologist’s eye-gaze data during models’ training.

- This study shows the experiment sets improved the

classification performance of the AI model, especially for

“pneumonia” and “CHF” classes. Hence, the proposed

model was able to decrease the number of false negatives

with the use of heatmap generators and eye-gaze data.
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- This research conveys that the use of the heatmap generators

and eye-gaze data can further enhance the explainability of

the model by training the model to observe the input

images in a similar manner to how the radiologist views

them. Such enhanced explainability for the improved

classifier can increase trust in the use of these AI models

among clinicians and patients.

Background

This section reviews the notion of the “explainability of AI”

used in this study. Furthermore, two prominent paths of

incorporating explainability into AI for radiology are specified,

which include visualizing with saliency maps and training

deep learning models to directly generate attention maps as

one of their outputs. In this research we only consider spatial

explainability because it is correlated with the eye-tracking

data available. Thus, the literature review is focused on the

spatial explainability of AI models.
Explainability of AI in radiology

The concept of “explainability of AI” is often defined as the

ability of someone to understand and see which extracted

features of the input data used by an AI model contributed to

the model’s predictions (1, 2, 5). It also helps to identify

models’ biases and understand how the model achieved its

predictions (7). Thus, methods for explainability of AI should

ensure that models did not operate on unrelated features (15).

There are two major key methods to showcase the

explainability aspects of AI models for the radiology field

when using chest radiographs as a part of a model’s training.

Firstly, various saliency maps (also known as attention-maps,

heatmaps, or sensitivity maps) generation methods can be

incorporated within or after training a deep learning model to

highlight the areas of the input chest radiographs the model’s

parameters focused on when making predictions. Secondly,

there are deep learning models that were developed to

simultaneously operate disease classification and heatmap

generation using image segmentation.

Various saliency maps and attention map
generators

Saliency maps show the parts of the input image that

contributed most to the model’s output predictions (16).

Some of the post-hoc, gradient-based methods that can be

used to obtain the saliency maps are Gradient-weighted Class

Activation Mapping (Grad-CAM) (17), deconvNet (18), back-

propagation, guided back-propagation (GBP) (7, 19), and class

activation maps (CAM) (20). Each of the generators produces

visually different heatmaps that highlight the section of the

image that corresponds to the class that a model predicted.
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All of them are variations of deconvolution and back-

propagation methods (21), where deconvolution attempts to

recreate the input image from the activations of the model’s

layer, while back-propagation is how a model’s weights

change during training time to decrease its loss. Back-

propagation is used to find the relevance of the input pixels

to the output predictions based on how the gradients were

assigned to those pixels (19). The generated heatmaps are the

visualization of such computations or gradients. Gradients

with a larger magnitude signify that the corresponding pixels

have more influence on the specific classification of the image.

Procedures for deconvNets and GBP are quite similar where

the difference between them is the way each backpropagates

through ReLU non-linearity. DeconvNets run the usual back-

propagation by using transpose convolution and undoing

pooling operations, and they back-propagate only the positive

error signals for the ReLU activation (19).

GBP maps are produced through the combination of the

deconvolution and back-propagation methods. The

deconvolution part shows which pixels contributed positively

to the model’s output through selectively back-propagating

the positive component of the gradients between the input

and the output of the models; meanwhile the back-

propagation part restricts the model to consider only the

positive inputs, which can result in GBP maps having more

zeros in the outputs than DeconvNets (18), and hence, GBP

maps tend to have higher resolution.

CAM (20) is another visualization map, which is produced

using a global average pooling layer in CNN models. CAM’s

pooling layer reduces each feature map into one number, so

that the weights connecting the pooling layer and the final

classification layer encodes the contribution and the

importance of each feature map to the final class prediction.

There are several modifications and improvements made on

CAM for image analysis and computer vision tasks. For

example, Pyramid Localization Network, also known as

PYLON, (15) was developed to produce higher resolution of

CAM heatmaps with greater preciseness using Pyramid

Attention mechanism and upsampling blocks.

Because CAM can only be produced using a specific set of

CNN models, such as those without fully connected layers,

Grad-CAM (17) was proposed as a generalization of CAM to

eliminate the necessity of a trade-off between model accuracy

and explainability and to avoid model retraining (1). It can be

applied to many variations of CNN models, including those

with fully connected layers (1, 3, 17). Grad-CAM focuses on

the gradients flowing into the last convolutional layer of the

model and assigns importance scores to each neuron to

generate localization maps. The importance score, which is the

contribution of a specific feature map to the model’s output, is

computed by finding the gradient values for a specific class

with respect to the activation map of a convolutional layer and

using global average pooling on the gradients. This results in a
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coarse heatmap that is the same size as the convolutional feature

map, and grad-CAM will only consider features that have a

positive influence on the specific class.

There are multiple variations of grad-CAM, including

guided grad-CAM (22) and GradCAM++ (22). Guided grad-

CAM is an element-wise multiplication of GBP and grad-

CAM, which results in higher resolution, class-discriminative

maps. GradCAM++ focuses on the weighted average of the

positive partial derivatives of the last convolutional layer’s

feature maps with respect to a specific class for better object

localization and for recognizing multiple class objects in a

single image.

SmoothGrad (23) is a method that reduces noise in the

output saliency maps. This method first adds various noise

into an input image and then produces look-alike images.

Finally, the method uses those images to generate many

saliency maps that can be averaged to produce one saliency

map with less noise. It is addressed in response to the

possibility that the noise in the saliency maps is due to

irrelevant, local fluctuations in partial derivatives. It has been

shown that combining smoothGrad and GBP methods can

produce more visually coherent maps (23).

DeepLIFT (Deep Learning Important FeaTures) (24) also

uses back-propagation method for explainability. Specifically,

DeepLIFT employs “difference from reference” concept for

neurons’ activations to determine importance scores for each

input through back-propagating the model once.

Unlike the use of gradient-methods and back-propagation

related methods for explainability, LIME (Local Interpretable

Model-Agnostic Explanations) (25) creates an interpretable

model through approximating the explanations locally around

classifiers and providing a method that chooses several

combinations of example inputs and corresponding

explanations to address why the model should be trusted.

LIME can give explanations to model predictions for any

classifier or regressor.

Although there is much debate about the true effectiveness

of saliency map generation, the output maps give insights into

how a model arrives at its prediction output, and the maps

are often used post-training to visualize the model’s attention

on test data.
Deep learning models as heatmap
generators and classifiers

As opposed to the above heatmap generating methods that

can be inserted during or after training AI models, there are

several studies involving constructing deep learning models or

pipelines that focus on generating heatmaps as part of the

model’s outputs and on operating localization tasks. One of the

more widely used model architecture for image segmentation

tasks is U-Net (14), as it consists of several convolutional layers
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in both downsampling and upsampling paths while using skip

connections between the layers in those paths to maintain high

resolution and fine details of the model’s inputs throughout its

training time (9). U-Net’s decoder can produce attention maps

or recreate the input images depending on how the model is

trained, and hence U-Net architecture is often desirable for

joint image classification and localization tasks. Other

architectures that can be used for image localization include

YOLO, mask R-CNN, and faster R-CNN (9).

To tackle the localization problem in the case where the

annotated datasets are not large, the use of the combinations

of different techniques, such as a classifier and a localizer that

produces bounding boxes and probability heatmaps, is shown

to be effective (26). Some notable methods include Weakly

Supervised Learning (27–29), Self-Transfer Learning (30), and

other models, such as those introduced in (31).

For example, a proposed weakly supervised learning method

in (27) consists of a three-stage network for disease localization

that first generates class activation maps, and then feeds those

maps into a network that outputs pseudo labels. Finally, the

method uses the generated pseudo labels for image segmentation.

As another example, a self-transfer learning framework

introduced in (30) consists of three components (convolutional

layers, fully connected classification layers, and localization

layers), and its goal is to perform image localization. The

classification branch and localization branch of the model are

trained simultaneously with two losses. To ensure that the

localization component does not stray away, the weights on the

classification loss decrease through the training process while

the weights on the localization loss increase.

Although saliency maps are often produced and analyzed

post-training, there are several architectures that incorporate

attention maps and map-generating mechanisms in model

training to improve explainaibility and classification or

segmentation performance, such as those introduced in (32–36).

Kazemimoghadam et al. (32) incorporated saliency maps as

one of the inputs to multiple U-Net models for post-operative

tumor bed volume segmentation in CT images for breast

radiotherapy. Specifically, the saliency maps are encoded using

markers in CT images, which will be combined with the CT

images to guide the model to focus on higher intensity values in

the saliency maps to extract relevant features for a more

accurate segmentation. Ultimately, voting occurs among multiple

U-Net models to produce a final segmentation prediction.

Unlike how (32) focuses on using saliency maps for a

specific medical use case, (33) focuses on the general

perspective on attention maps and addresses that the existing

saliency map generators result in noisy maps. Since the model

gradients should highlight mostly only the relevant features

for consistent and accurate performance, (33) proposed

saliency-guided training that diminishes gradients on

irrelevant features without worsening model performance.

This is done through masking input features that results in
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lower gradient values, resulting in more sparse, precise

gradients. (33) also provides experiments that incorporate the

saliency-guided training on various modals (image, language,

and time series) for classification tasks to show the

framework’s effectiveness.

Wang et al. (35), on the other hand, recognizes that there is

substantial amount of overlaps between class-specific attention

maps, which could lead to more “visual confusion” for models

and classification errors. Hence (35), establishes an end-to-

end pipeline (called ICASC, Improving Classification with

Attention Separation and Consistency) that provides the

discrimination of class-specific attention and enforces the

discriminative features to be consistent across models’ CNN

layers to improve the overall classification performance.

Li et al. (34) also developed an end-to-end network (called

GAIN, Guided Attention Inference Network), which supervises

a model’s attention maps during training to guide the model to

make predictions based on relevant features of the inputs. (34)

states that GAIN was developed to tackle the problem that

attention maps (that are generated using only classification

labels), which are used as priors for segmentation or

localization tasks, tend to only cover smaller regions, and

hence the maps can be incomplete and less accurate. GAIN

uses two network streams, one is for classification and the

other is for attention mining, where the classification stream

helps the other by providing information on areas of the

inputs associated to classification task, while the other ensures

that all relevant parts are incorporated during classification.

Overall, there is no one single architecture that outperforms

others in terms of multi-task classification and segmentation

especially for medical domain, but prior work shows that

ensemble learning or multi-stage training performs better in

general for the multi-tasking (9). Additionally, much of the

published works incorporate transfer learning done on large

image datasets that contain common objects or organisms,

but they are not much work done on creating transferrable

models trained on medical datasets (30). To the best of our

knowledge, this research is the first to directly use GBP and

deconvNet heatmap generators and eye-gaze information in

model training to guide the U-Net model to improve disease

classification performance and to produce attention maps

similar to how the radiologists view CXR images for diagnosis.
1https://github.com/IMICSLab/

Classification_and_Explainability_in_Radiology
Dataset and methods

This section first gives an overview of the dataset (12) used

for this study and introduces two baseline experiments that are

established in (12), which showcased the usability of the dataset.

One of the baseline experiments and its corresponding results

are treated as the baseline model and baseline results for this

study. The comparison and analysis of the baseline

experiments’ results are also detailed. Secondly, this section
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further illustrates the motivation behind this research, which

came from assessing the effectiveness of adding a

segmentation component to a classifier. Finally, this section

outlines this study’s three proposed models, their

architectures, and their training methods.
Dataset and baseline experiments

Dataset
To incorporate the heatmap generators and radiologist’s

eye-gaze data on CXR images when training deep learning

models, this work used a dataset that contains 1,083 chest

radiographs, which preserve the high image quality as

DICOM files. The images were reviewed and reported by one

radiologist (12). The dataset also contains the transcribed

radiology report, the radiologist’s dictation audio and eye gaze

coordinates mapped onto the corresponding images, and the

associated disease class labels. The class labels include

“normal”, “CHF”, and “pneumonia”. Several CXR image

examples of each of the classes in the dataset can be seen in

Figure 1. The labels were all from formal clinical diagnoses,

and the dataset contains an equal number of datapoints for

each class. Because there was a misalignment between the csv

files provided in the dataset and several image IDs were

missing when generating eye-gaze heatmaps, all the

experiments ran in this work dealt with 1,017 images from

the dataset and their corresponding eye-gaze information. A

list of the 1,017 images used in this study is available on our

Github repository1. For training, this dataset was split into

training, validation, and test sets with the percentage of 80,

10, and 10, respectively. When splitting the data, unique

patient IDs were in only one of the training, validation, or

test datasets to prevent potential biases.

The eye-tracking data was used to teach the model about

how radiologists observed the CXR images. Thus, the eye-gaze

coordinates and fixation data were utilized to generate

temporal and static eye-gaze heatmaps (as can be seen in

Figure 2) using an open-sourced code (12) where static

heatmaps are concatenations of the corresponding temporal

heatmaps.

Baseline experiments
The paper (12) that introduced the dataset included two

experiments that were conducted to show how the dataset’s

eye-gaze information could be used when training a deep

learning model for a disease classification task. The models’
frontiersin.org
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FIGURE 1

Example CXR images for each of the three classes from (12).

FIGURE 2

Temporal and static eye-gaze heatmaps.
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performance was assessed using the area under the receiver

operating characteristic curve (AUC).

Karargyris et al. (12) used both the DICOM CXR images

and the temporal eye-gaze heatmaps as part of the inputs to

the model to operate disease classification. This experiment

was created to show how the temporal eye-gaze data in

addition to the chest radiographs can be fed into a deep

learning model as inputs. Their second set of experiments was

created to show how the eye-gaze data can be used for

explainability purposes by using them in training so that the

model’s decoder can produce probability maps that look

similar to the static eye-gaze heatmaps. It consisted of a U-
Frontiers in Radiology 06
Net structure as shown in Figure 3, with convolutional

encoder and bottleneck layers that use pre-trained

EfficientNet-b0 (37, 38), a classification head, and a

convolutional decoder. It computed and combined two sets of

losses (both using Binary Cross Entropy with Logits Loss

function); one was classification loss from the classification

head, and the other was a segmentation loss computed

between the static eye-gaze heatmap of the corresponding

CXR image and the U-Net’s output predicted heatmap from

the decoder. The average AUC values achieved using this

method are shown in “U-Net (treated as the baseline model

for this research)” section of Table 1. It appears that the
frontiersin.org
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FIGURE 3

(12)’s second experiment’s U-Net model architecture with the radiologist’s static eye-gaze data used as the ground truths for the decoder’s outputs
when computing the segmentation loss.

TABLE 1 Comparing the AUC values between (12)’s baseline model with no segmentation component and the U-Net architecture (the value
preceding the parenthesis is the 50th percentile value and the values in parenthesis are 2.5th and 97.5th percentile values, and the value after a
semicolon is the p-value).

Model Details Average AUC “Normal” AUC “CHF” AUC “Pneumonia”
AUC

U-Net (treated as the baseline model for this
research)

0.872 (0.840, 0.897) 0.923 (0.895, 0.945) 0.916 (0.871, 0.938) 0.781 (0.713, 0.851)

Model without the segmentation component 0.873 (0.838, 0.908);
0.128

0.878 (0.836, 0.918); 7.068 ×
10−14

0.934 (0.898, 0.975); 4.774 ×
10−3

0.805 (0.763, 0.886);
0.273
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model was able to classify the “normal” condition the best, while

it struggled most to correctly classify the “pneumonia”

condition.

One example of the generated heatmaps using the

trained U-Net model from (12) given a CXR image can be

seen in Figure 4. In this paper, the terms generated

heatmap and predicted heatmap refer to the output of a

U-Net decoder which is trained for generating heatmaps.

Additionally, derived or calculated heatmap refers to the

results of GBP or deconvNet applied to a model. The

leftmost image is the model’s input chest radiograph; the

inner left heatmap is the output of running Grad-CAM

after training; the inner right heatmap is the static eye-

gaze heatmap from the dataset that was used as the

ground truth when computing the segmentation loss; and

the rightmost heatmap is the model’s predicted probability

mask generated from the U-Net’s decoder. Although the

U-Net’s predicted heatmaps seemed to be trained well to
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align more with the static eye-gaze heatmaps as was

expected from how the segmentation loss was computed,

the Grad-CAM results for explainability purposes did not

visually overlap well with the ground truth static eye-gaze

heatmaps, and hence the model’s focus when making

classification predictions seemed to not necessarily be

similar to the radiologist’s eye-gaze focus when making

diagnosis. This U-Net architecture, which used static eye-

gaze heatmaps as part of the segmentation loss

computation, and its corresponding AUC values were

treated as the baseline model and baseline AUC values for

this study.

Motivation for this study
To observe if adding the segmentation component to the

disease classifier contributes to improving the overall

classification AUC values, the performances of the U-Net

architecture (Figure 3) and a model without the
frontiersin.org
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FIGURE 4

Heatmaps generated from Grad-CAM and the (12)’s U-Net’s decoder for a pneumonia class example correctly classified.

FIGURE 5

Model architecture of the baseline model provided in (12) for the static eye-gaze experiment without the segmentation component.
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segmentation component (Figure 5) were compared using

the classification AUC values. The model without the

segmentation component was the baseline model that (12)

provided for the static eye-gaze heatmap experiment. This

model did not attempt to enhance the explainability

component simultaneously and only focused on the

classification task. The classification performance of the

non-segmentation model and the U-Net using the AUC

metric, which is depicted in Table 1, shows that the

overall average AUC values are similar for both models.

From these AUC results, it appears that the multitasking

of improving classification and incorporating the

explainability component to model training does not result

in improved mean AUC values. Nevertheless, when the

AUC values for each of the three classes were viewed

separately, it was concluded that U-Net architecture

improved to classify “normal” condition better than the

non-segmentation model, but “CHF” and “pneumonia”

classes had lower AUC values compared to those of the

non-segmentation model. Such observations suggest that

there could be improvements made for this U-Net

architecture that would incorporate the explainability
Frontiers in Radiology 08
component when attempting to improve the overall

classification AUC, particularly for the “CHF” and

“pneumonia” classes.
Defining segmentation loss using
heatmap generators

Given (12)’s two experiments, the dataset, and the different

heatmap generators for explainability improvement, this study

produced and experimented with three sets of proposed

models using the (12)’s U-Net architecture to observe if using

both the eye-gaze data and various heatmap generators during

model’s training time could result in improved AUC for the

classification task while enhancing the predicted heatmap

generation. Specifically, the experiments involved using the

heatmap generators (such as GBP and deconvNet) during

training and different ways of using the calculated heatmaps

when computing the segmentation loss. All the proposed

model sets used Binary Cross Entropy with Logits Loss

function when computing the segmentation loss as how (12)

used it.
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Since the major goal was to improve the classification

AUC, the average AUC value and the AUC values for each

of the three classes were used to evaluate the models’

performance on each of the experiments. Finally, the 95%

confidence interval (CI) (with 2.5th % and 97.5th % values)

in addition to the average AUC values were measured for

each of the three class labels over 55–60 samples with

resampling for 30 iterations using the test set.
Proposed model set 1
For the first proposed model set, the segmentation loss

was computed using heatmaps generated from the different

generators (which included GBP and deconvNet) during the

training time against the static eye-gaze heatmaps obtained

from the dataset, which were treated as ground truth, as

can be seen in Figure 6. This experiment attempted to

guide the model’s trainable parameters to mimic the static

eye-gaze heatmaps so that the model could learn to focus

on similar areas of the chest radiographs as how the

radiologist did.
Proposed model set 2
The second proposed model set was run with another

modification to the network training when computing the
FIGURE 6

Model architecture for the proposed model set 1 with the segmentation loss
and the static eye-gaze ground truth heatmaps from the dataset.
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segmentation loss. In contrast to the previous proposed model

that computed the segmentation loss using the heatmaps

generated from either GBP or deconvNet and the static eye-

gaze heatmaps, the segmentation loss for this proposed model

was computed using the differences between the outputs of

the U-Net’s decoder and heatmaps generated from either GBP

or deconvNets, as can be seen in Figure 7. This experiment

was run to assess if the model’s decoder can be trained to

generate heatmaps consistent with the outputs from either

GBP or decondNet.
Proposed model set 3
Since the previous two proposed model sets did not

focus on training the model’s decoder to generate

predicted heatmaps that appear similar to the gound-truth

static eye-gaze heatmaps, the third proposed model set

used a weighted average of two segmentation losses,

where one of which was computed using the differences

between the U-Net’s generated masks and the dataset’s

static eye-gaze heatmaps, while the other loss was

computed using the differences between the heatmaps

derived based on GBP or deconvNet and the dataset’s

static eye-gaze heatmaps as shown in Figure 8. This

modification in the segmentation loss computation
computed based on derived heatmaps using either GBP or deconvNet
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FIGURE 7

Model architecture for the proposed model set 2 with the segmentation loss computed based on derived heatmaps using either GBP or deconvNet
and the outputs from the U-Net’s decoder.

FIGURE 8

Model architecture for the proposed model set 3 with the segmentation loss computed using the weighted average of the two loss coponents.
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incorporated the different heatmap generators so that the

model’s trainable parameters would learn to focus on

similar areas as the ground truth static eye-gaze heatmaps,

while simultaneously guiding the model’s decoder to

generate predicted heatmaps that look similar to the
Frontiers in Radiology 10
ground truth static eye-gaze heatmaps. The ratio of the

combination of the two segmentation losses was treated as

an adjustable hyperparameter. This method of computing

the segmentation loss emphasizes how the radiologist

viewed the CXR images during model training.
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Results

Proposed model set 1

For the first experiment set, the use of GBP as the heatmap

generator when computing the segmentation loss resulted in

the highest average AUC values compared to the AUC values

obtained using deconvNet and the baseline AUC values as can

be seen in Table 2. This difference between the use of GBP

and deconvNets is understandable due to the nature of the

computation differences between GBP and deconvNets, where

GBP is based on deconvNet but sets the negative gradients for

inputs to zero, and hence GBP highlights the important regions

of inputs even more (39). For both GBP and deconvNet cases,

the average AUC values were higher than that of the baseline

model, and the greatest improvement in AUC values occurred

for classifying “pneumonia” with 5% increase when using GBP

and 2.5% increase when using deconvNet. Additionally,

classifying “CHF” also had 3% improvement when using GBP

and 1.9% improvement when using deconvNet. Although both

“CHF” and “pneumonia” classification improved in this

experiment set with the use of the heatmap generators during

the model’s training time, this experiment did not result in a

great improvement for average AUC values because the AUC

values for classifying the “normal” class was lower with the use

of the heatmap generators when computing segmentation loss

compared to the baseline values.

As can be seen in Figure 9, the GBP (shown in the top row)

and deconvNet’s (shown in the bottom row) heatmaps

highlighted areas near the lungs and heart similarly to the

ground truth static eye-gaze heatmaps. Additionally, there was

a correlation between the greater vividness of GBP’s heatmaps

and the slightly higher AUC values compared to those from

deconvNets as can be seen in Table 2. However, the model’s

predicted heatmaps appeared to be quite different from that of

static eye-gaze heatmaps. This was because the segmentation

loss was computed without the U-Net’s predicted heatmap in

attempts to align the model’s parameters to highlight similar

areas as the static eye-gaze heatmaps, and hence the decoder

was not trained to produce predicted heatmaps that appear

similar to the static eye-gaze heatmaps.
TABLE 2 Comparing the output AUC values between (12)’s U-Net model and
Experiment Set 1 (the value preceding the parenthesis is the 50th percenti
values, and the value after a semicolon is the p-value).

Model and heatmap generator’s
details

Average AUC “Nor

U-Net (baseline) 0.872 (0.840, 0.897) 0.923

Guided back-propagation 0.891 (0.847, 0.939);
3.210 × 10−2

0.896 (0.85

DeconvNet 0.884 (0.843, 0.935); 0.874 0.916 (0.88
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Proposed model set 2

Similarly to the first proposed model set, the GBP method

performed the best compared to the baseline and the

deconvNet method for the proposed model set

2. Furthermore, the outcome of using GBP for this had a

slight improvement in the average AUC value compared to

the first one. The greatest improvement occurred for the

“pneumonia” class AUC, with 6.9% increase in AUC, which

contributed to the 2.5% increase in the average AUC values

when using GBP compared to the baseline AUC values.

For this experiment, the U-Net was trained so that the

decoder would attempt to mimic the heatmaps derived from

the GBP or deconvNet when outputting its predicted

heatmap, which can be observed in the rightmost images

Figure 10. The use of GBP as the heatmap generator (outputs

shown in the top row of Figure 10) resulted in the U-Net’s

generated masks having higher intensity than those produced

when using deconvNets (outputs shown in the bottom row of

Figure 10).

Although the U-Net’s predicted heatmaps appeared to not

mimic the heatmaps derived using GBP or deconvNet, there

seems to be a correlation among the heatmaps’ intensity

differences and the differences in the U-Net’s predicted

heatmaps’ intensity and in the locations of focus when using

different heatmap generators. Additionally, there was a

correlation between the greater intensity of the calculated

heatmaps from GBP or deconvNet and the predicted

heatmaps and the higher average AUC values when

comparing the use of GBP and deconvNet, which can be seen

in Table 3.
Proposed model set 3

This experiment with the combination of two segmentation

losses incorporated the heatmap generators in training time to

guide the model’s parameters to focus on similar areas as how

the radiologist viewed, while guiding the model to produce

predicted heatmaps that look similar to the static eye-gaze

heatmaps for explainability purposes.
a U-Net with different derived heatmaps (GBP or deconvNet) for the
le value and the values in parenthesis are 2.5th and 97.5th percentile

mal” AUC “CHF” AUC “Pneumonia” AUC

(0.895, 0.945) 0.916 (0.871, 0.938) 0.781 (0.713, 0.851)

4, 0.945); 1.086 ×
10−3

0.946 (0.891, 0.979);
1.417 × 10−4

0.831 (0.763, 0.923); 4.471 ×
10−4

4, 0.943); 8.061 ×
10−6

0.935 (0.905, 0.959);
8.855 × 10−4

0.806 (0.715, 0.918); 0.707
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FIGURE 9

Model’s output heatmaps using GBP (top) and deconvNet (bottom) as the heatmap generator for Experiment Set 1 for the correctly classified CHF
(top) and pneumonia (bottom) classes.

FIGURE 10

Model’s output heatmaps using GBP (top) and deconvNet (bottom) as the heatmap generator for Experiment Set 2 for the correctly classified CHF
class.
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TABLE 3 Comparing the output AUC values between (12)’s U-Net model and a U-Net with different derived heatmaps (GBP or deconvNet) for the
Experiment Set 2 (the value preceding the parenthesis is the 50th percentile value and the values in parenthesis are 2.5th and 97.5th percentile
values, and the value after a semicolon is the p-value).

Model and heatmap
generator’s details

Average AUC “Normal” AUC “CHF” AUC “Pneumonia” AUC

U-Net (baseline) 0.872 (0.840, 0.897) 0.923 (0.895, 0.945) 0.916 (0.871, 0.938) 0.781 (0.713, 0.851)

Guided back-propagation 0.897 (0.848, 0.921); 1.410 × 10−3 0.907 (0.863, 0.946); 3.732 × 10−2 0.922 (0.888, 0.956); 0.103 0.850 (0.792, 0.900); 8.989 × 10−9

DeconvNet 0.881 (0.828, 0.907); 0.776 0.885 (0.836, 0.928); 2.932 × 10−11 0.922 (0.890, 0.952); 0.412 0.827 (0.732, 0.901); 6.953 × 10−3

TABLE 4 Comparing the output AUC values between (12)’s U-Net model and a U-Net with different derived heatmaps (GBP or deconvNet) for the
Experiment Set 3 (the value preceding the parenthesis is the 50th percentile value and the values in parenthesis are 2.5th and 97.5th percentile
values, and the value after a semicolon is the p-value).

Model and heatmap
generator’s details

Average AUC “Normal” AUC “CHF” AUC “Pneumonia” AUC

U-Net (baseline) 0.872 (0.840, 0.897) 0.923 (0.895, 0.945) 0.916 (0.871, 0.938) 0.781 (0.713, 0.851)

Guided back-propagation 0.913 (0.860, 0.966); 1.281 × 10−6 0.921 (0.866, 0.968); 1.981 × 10−16 0.962 (0.933, 0.989); 0.684 0.859 (0.732, 0.957); 5.144 × 10−79

DeconvNet 0.860 (0.806, 0.907); 0.213 0.907 (0.856, 0.962); 3.928 × 10−4 0.934 (0.891, 0.974); 5.039 × 10−7 0.741, (0.643, 0.840); 5.239 × 10−2
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As can be seen in Table 4, the use of deconvNet resulted in

lower AUC values than the baseline model except for the “CHF”

classification, which improved by 1.8%. These AUC results appear

to be associated with how the U-Net’s decoder was unable to

mimic the static eye-gaze heatmaps when creating the predicted

heatmap, as can be seen in the bottom row of Figure 11.

On the contrary, the use of GBP for this segmentation loss

computation had improvements in most of the AUC values, and

the model’s decoder was also able to generate the predicted

heatmap that highlighted similar areas as the static eye-gaze

heatmaps as shown in the top row of Figure 11. Specifically,

when using GBP, the average AUC value improved by 4.1%,

the “CHF” classification improved by 4.6%, and the

“pneumonia” classification improved by 7.8% compared to the

baseline model that did not use the heatmap generators

during the training time. Hence, this modification in the

segmentation loss computation using GBP produced the best

AUC values across all of the experiments in this research.

Overall, the vividness of the heatmaps derived using GBP or

deconvNet and the similarity between the U-Net’s predicted

heatmaps and the dataset’s static eye-gaze heatmaps seemed

to be correlated with how well the average AUC values

improved for the experiments. This further confirms that the

radiologist’s eye-gaze information is valuable in improving the

classification performance when used with the heatmap

generators during model training for multitasking.
Discussion

AI models for radiology are improving dramatically for

disease classification or localization tasks, but there is often a

trade-off between performance and explainability, as higher
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performing models tend to be deeper and more complex.

Hence, explainability for AI in medical domain is gaining

more attention to give insight into how the models arrived at

their predictions and to increase trust in the use of such

models. Additionally, from the legal point of view, although

explainability is currently not a strict requirement for the AI

use in clinical situations, food and drug administration states

that some level of transparency, which can include open

communication regarding inputs and outputs of the AI model

and its algorithm, is required to ensure transparency to the

patients and the physicians (6). Furthermore, explainaibility

will likely become a stricter requirement as more AI models

are incorporated into clinical use (40). Therefore, this study

highlights integrating the explainability aspect into both

model training and model outputs with the goal of improving

disease classification.

There exist several AI studies that together classify diseases

and generate heatmaps. Nonetheless, they have several issues.

For example, the publicly available datasets that such research

uses sometimes contain incorrect labels obtained from NLP,

and the research oftentimes use only the CXR images and

class labels without incorporating the other methods or data

the radiologists usually use when making diagnoses.

Thus, this research proposed three model sets that take a U-

Net architecture with distinct loss function computations using

a dataset that contains eye-gaze information from a radiologist.

This study showed that using a radiologist’s eye-gaze data and

derived heatmap (specifically GBP or deconvNet) in model

training can improve disease classification AUC, especially for

“CHF” and “pneumonia” classes that help reduce false

negatives. Moreover, by guiding the model’s gradients to align

to the radiologist’s eye-gaze heatmaps, the model is able to

produce enhanced heatmaps that can be used for
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FIGURE 11

Model’s output heatmaps using GBP (top) and deconvNet (bottom) as the heatmap generator for Experiment Set 3 for the correctly classified CHF
class.
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explainability purposes. Furthermore, this study confirms that

using different types of data other than just the CXR images

and disease class labels and following radiologists’ methods

for diagnosis when establishing and training AI models can

boost the classification performance.

The heatmap visualization outputs of the three proposed

model sets highlight areas of CXR images that the model

focused on when making predictions. The outputs of the first

proposed model set for both GBP and deconvNet show that

each generator appeared to focus on similar areas as the static

eye-gaze heatmaps did, but the U-Net’s predicted heatmaps

seemed to not focus well, which is understandable due to the

way the segmentation loss was calculated for this model set.

The outputs of the second proposed model set using

deconvNet as the heatmap generator (shown in the bottom

row of Figure 10) convey that since the derived heatmap

showed more sparse intensities compared to the dataset’s

static eye-gaze heatmaps, the intensity of the model’s

predicted heatmaps was also lower and covered a wider area

of the chest compared to the outputs from the other

experiments. On the contrary, there seemed to be a

correlation between the greater vividness and intensity for U-

Net’s predicted heatmap and the higher AUC values when

comparing between the use of GBP or deconvNet.

Finally, the visualization outputs of the third proposed

model set clearly showcased that the use of GBP method as
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the heatmap generator for this training method performed

superior compared to others. Both the U-Net’s predicted

heatmaps and the heatmaps created from GBP focused on

similar areas as the eye-gaze heatmaps, suggesting that the

model is learning to produce explainable heatmaps while

predicting the disease class.

Viewing the results from the three experiment sets,

particularly focusing on the AUC values in Table 4, the

multitasking of improving classification and generating

reasonable heatmaps for enhancing explainability during

model training using the U-Net architecture was shown to be

effective when applying GBP as the heatmap generator.

Although the confidence intervals of the AUC values for the

proposed model set 3’s GBP method had some overlap with

the baseline’s confidence intervals, this new method not only

had improvements in the average AUC value (4.1%), but it

also had greater improvements for the “CHF” (4.6%) and

“penumonia” (7.8%) classes, which were the classes the

baseline struggled to classify. Since the major focus for disease

classification tasks is on correctly identifying the non-

“normal” disease classes and decreasing the false negatives,

these improvements with the use of GBP heatmap generator

during the training time was significant. Furthermore, the

experiments’ results suggest that the use of heatmap

generators (particularly GBP) in training time could also

enhance the model’s predicted heatmaps generation for
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explainability purposes to better convey where the model’s

attention was on the input chest radiographs.

The major limitation of this research is the small size of

the dataset and the potential bias the dataset may have

because the eye-gaze data was collected from, and the

diagnosis was done by one radiologist (12). Thus, other

medical imaging datasets that are larger and contain eye-

gaze information from multiple radiologists may be used to

further validate the disease classification improvements

produced by using heatmap generators and eye-gaze data

during model training. Furthermore, with other datasets,

the out-of-distribution generalization of the model should

be confirmed in the future studies to assess the model’s

potential biases (41).

To further validate the classification decisions this study’s

models made and to increase trust in the model’s predictions,

DOCTOR’s Totally Black Box scenario (42) can be used after

the model makes class predictions on given CXR images.

DOCTOR is a discriminator that can be used to detect if each

of the predictions made by the AI model can be trusted or

not irrespective of in- or out- distribution the data is coming

from, and it does not require any prior knowledge on the

dataset or model architecture. DOCTOR’s decisions can signal

physicians to take a second look at the CXR images and the

associated class prediction the model made if DOCTOR

rejects the predictions. When applying DOCTOR, there will

be a trade-off between the number of samples that are

rejected and the threshold value for false detection and

acceptance rate, and ensuring that more misclassified samples

are being rejected results in more samples, including some

that are correctly classified, being rejected as well.

Nonetheless, employing DOCTOR in this research’s model

will be valuable because it is essential to eliminate model’s

misclassifications particularly in radiology field and the overall

medical domain.
Conclusion

In this research, three proposed model sets that use

heatmap generators in the U-Net model’s training time

were investigated for the radiology field to simultaneously

improve the disease classification performance and better

highlight the model’s attention spots by generating

explainable heatmaps. The experiments used a dataset that

contain chest radiographs, eye-gaze coordinates from one

radiologist, and the corresponding images’ class labels. The

confidence intervals of the AUC values for each experiment

that incorporated the static eye-gaze information and the

heatmap generators during the model’s training time were

computed. The proposed model in Figure 8 that used the

weighted average of two segmentation losses (one computed

between the heatmaps generated from GBP and the
Frontiers in Radiology 15
dataset’s static eye-gaze heatmaps, and the other computed

between the predicted heatmaps from the U-Net’s decoder

and the static eye-gaze heatmaps) performed superior

compared to the baseline model provided in (12) and the

other models that were tested in this research. As a future

work, a larger medical imaging dataset with eye-gaze

information from multiple radiologists could be used to

further validate the disease classification improvement

achieved by this method. Moreover, DOCTOR can be

employed to estimate how much each of the predictions

made by the model is trustworthy or not to further increase

trust in the model’s predictions.
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