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Purpose: The goal of this work is to explore the best optimizers for deep learning
in the context of medical image segmentation and to provide guidance on how to
design segmentation networks with effective optimization strategies.
Approach: Most successful deep learning networks are trained using two types of
stochastic gradient descent (SGD) algorithms: adaptive learning and accelerated
schemes. Adaptive learning helps with fast convergence by starting with a larger
learning rate (LR) and gradually decreasing it. Momentum optimizers are
particularly effective at quickly optimizing neural networks within the accelerated
schemes category. By revealing the potential interplay between these two types
of algorithms [LR and momentum optimizers or momentum rate (MR) in short], in
this article, we explore the two variants of SGD algorithms in a single setting. We
suggest using cyclic learning as the base optimizer and integrating optimal values
of learning rate and momentum rate. The new optimization function proposed in
this work is based on the Nesterov accelerated gradient optimizer, which is more
efficient computationally and has better generalization capabilities compared to
other adaptive optimizers.
Results: We investigated the relationship of LR and MR under an important problem
of medical image segmentation of cardiac structures from MRI and CT scans. We
conducted experiments using the cardiac imaging dataset from the ACDC
challenge of MICCAI 2017, and four different architectures were shown to be
successful for cardiac image segmentation problems. Our comprehensive
evaluations demonstrated that the proposed optimizer achieved better results
(over a 2% improvement in the dice metric) than other optimizers in the deep
learning literature with similar or lower computational cost in both single and
multi-object segmentation settings.
Conclusions: We hypothesized that the combination of accelerated and adaptive
optimization methods can have a drastic effect in medical image segmentation
performances. To this end, we proposed a new cyclic optimization method
(Cyclic Learning/Momentum Rate) to address the efficiency and accuracy
problems in deep learning–based medical image segmentation. The proposed
strategy yielded better generalization in comparison to adaptive optimizers.

KEYWORDS
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accelerated optimization

1. Introduction

Optimization algorithms are used in the training phase of deep learning, where the

model is presented with a batch of data, the gradients are calculated, and the weights and

biases are updated using an optimization algorithm. Once the model has been trained, it

can then be used for inference on new data.
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Stochastic gradient descent (SGD) algorithms are the main

optimization techniques used to train deep neural networks.

These algorithms can be divided into two categories: adaptive

learning rate methods (e.g., Adam and AdaGrad) and accelerated

schemes (e.g., Nesterov momentum). Both the learning rate (LR)

and momentum rate (MR) are important factors in the

optimization process. LR, in particular, is a key adjustable

parameter that has been extensively studied and modified over the

years. The momentum term was introduced to the optimization

equation by Rumelhart et al. in 1986 to allow for larger changes

in the network weights without causing oscillation (1).

There have been controversial results in the literature about the

characteristics of available optimization methods. Therefore, there

is a need for exploring which optimization method should be

chosen for particular tasks. Most neural network optimizers have

been evaluated and tested on classification tasks, which have

much lower output dimensions compared to segmentation tasks,

which have much higher output dimensions. Hence, these

differences between classification and segmentation problems

imply a different investigation and method for optimization. In

this paper, we develop a new optimization method by exploring

LR and MR optimizers for medical image segmentation problems

for the first time in the literature. Our proposed optimizer is

simple and promising because it fixes the problems with

traditional optimizers and demonstrates how a simple new

formulation can solve surprisingly these problems.
1.1. Non-adaptive vs. adaptive optimizers

SGD is the dominant optimization algorithm in deep learning,

which is simple and performs well across many applications.

However, it has the disadvantage of scaling the gradient

uniformly in all directions (for each parameter of network).

Another challenge in SGD is to choose an appropriate value for

LR. Since LR is a fixed value in SGD-based approaches, it is

critical to set it up appropriately since it can directly affect both

the convergence speed and prediction accuracy of neural

networks. There have been several studies trying to solve this

problem by adaptively changing the LR during training, which

are mostly known as “adaptive optimizers.” Based on the history

of changes in gradients during network optimization, LR is

adapted in each iteration. Examples of such methods consist of

ADAM (2), ADAGrad (3), and RMSProp (4). In general,

adaptive optimizers make training faster, which has led to their

wide use in deep learning applications.

The development of momentum in neural network optimizers

has followed a similar trajectory as the learning rate. Momentum

optimizers (5) were introduced to speed up convergence by

considering the changes from last iteration with a multiplier,

which is called momentum, in updating parameters in current

iteration. Selecting an appropriate value for the MR was initially

difficult, but this issue was addressed with the introduction of

adaptive optimizers like ADAM, which can adaptively adjust both

the MR and LR. These adaptive optimizers have become very

popular in the field because they quickly converge on training data.
Frontiers in Radiology 02
Although they are widely used, adaptive optimizers may

converge to different local minima compared to classical SGD

approaches, which can lead to worse generalization and out-of-

sample performance. This has been demonstrated by a growing

number of recent studies (6–8). To improve the generalization

ability of neural networks, researchers have returned to using

original SGD approaches but with new strategies for improving

convergence speed. For example, the YellowFin optimizer

demonstrated that manually tuning the learning rate and

momentum rate can lead to better results than using the ADAM

optimizer (8). Although it was a proof-of-concept study that

provided evidence for the counter-intuitive idea that non-adaptive

methods can be effective, however, in practical applications,

manually tuning these rates is challenging and time-consuming.

In another attempt, a cyclic learning rate (CLR) was introduced

by Smith (7) to change the LR according to a cycle (i.e, triangle or

Gaussian), proposing a practical solution to hand-tuning

requirements. The CLR’s only disadvantage was that a fixed MR

could limit the search states of LR and MR and cause them to

fail until finding an optimal solution. Our work will go beyond

this constraint.
1.2. Summary of our contribution

With motivation from the study by Smith (7), here we introduce

an improved version of CLR, called “Cyclic Learning/Momentum

Rate” (CLMR). This new optimizer alternates the values of the LR

and MR during the training, which has two benefits compared to

adaptive optimizers. First, it is computationally more efficient.

Second, it has better generalization performance. Furthermore,

CLMR leads to better results than conventional approaches such

as SGD and CLR. Finally, we investigate the effect of changing the

frequency of cyclic function in training and generalization and

suggest the optimum frequency values. We investigate several

optimizers commonly used in medical image segmentation

problems and compare their performance as well as generalization

ability in single and multi-object segmentation settings by using

cardiac MR images (Cine-MRI).

The rest of the paper is organized as follows. In Section 2, we

introduce the background information for neural network

optimizers, their notations, and their use in medical image

segmentation. In Section 3, we give the details of the proposed

method and network architectures on which segmentation

experiments have been conducted. Experimental results are

summarized in Section 4. Section 5 concludes the paper with

discussions and future work.
2. Background

2.1. Segmentation architectures

Over the past few years, there has been a dramatic increase in

the use of convolutional neural networks (CNN) in computer

vision and medical imaging applications; particular attention is
frontiersin.org
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focused on the U-Net style segmentors and, more recently,

combined with Transformers (9–13). Here, we briefly review the

mostly used segmentation architectures and their characteristics,

and choose common baselines for our current study.

In a foundational work detailed by Ciresan et al. (14), the

authors embarked on an innovative journey to explore semantic

segmentation through the lens of deep neural networks. By

employing a convolutional encoder, the authors translated input

images into a latent representation, preserving intrinsic

characteristics essential for pixel-level understanding. However,

their architecture’s decision to leverage fully connected layers

manifested a critical limitation. While aiming for fine-grained

pixel prediction, these layers inadvertently obfuscated the spatial

information integral to the image structure. The consequent

degradation in performance was both a challenge and a learning

curve, catalyzing further research and refinement in our

approach. This key observation not only uncovered essential

insights but also paved the way for subsequent advancements in

the field.

In a later work, Long et al. (15) introduced the transformative

concept of fully convolutional networks (FCNs) as a remedy to the

spatial information loss. Ingeniously architected, the FCN employs

a sequential cascade of convolutional blocks on the encoder path,

each comprising convolution, activation, and pooling layers. This

architecture captures the semantic essence of an image,

preserving the nuanced details. The elegance of the FCN’s design

lies in its decoding path. Employing a series of convolutional

layers and up-sampling operations, it reinvigorates the spatial

dimensions lost in the encoding phase. This progressive

expansion of spatial understanding culminates in fine-grained

segmentation results. This innovation by Long et al. heralded a

new era in semantic segmentation, deftly balancing complexity

with precision and illuminating a path toward a more refined

visual comprehension.

The origin of the famous U-Net model comes from the FCNs

and the encoder–decoder models. Ronneberger et al. developed the

U-Net (16) model for biomedical image segmentation in particular

and applied that in a variety of modalities, including CT (17–20),

MRI (21–26), US (27, 28), and PET (29, 30). U-Net operates

through a dual pathway. This first phase (contracting path) uses

convolutional blocks and a downsampling module to encapsulate

the essential themes of the image, much like summarizing the

chapters of an intricate novel. The second phase (expanding

path) magnifies spatial resolutions, often doubling them, to distill

the critical elements to a pixel-level classification. One of U-Net’s

most notable innovations is the skip connections, a revolutionary

design that creates a seamless thread between the contracting and

expansive paths. This ensures that vital high-resolution

information is not lost in translation but rather reused to fortify

the detailed picture with rich context. In essence, U-Net

transcends the ordinary, offering a new perspective in medical

imagery, where efficiency meets elegance in delivering

unparalleled insights.

Many available algorithms mentioned above and recent ones

are based on the U-Net kind of architectures or encoder–decoder

style approaches. One of the first works in this category was
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done by Badrinarayanan et al. (31), called SegNet, and it was

designed for semantic segmentation utilizing an encoder–decoder

strategy. Newer U-Net-based algorithms often enhance the

backbone architecture designs, bottleneck designs, or

architectural engineering to extract richer features. There are a

large number of U-Net-based architectures. For example, ResNet

(32) and DenseNet (33) (and their improved versions) have been

used extensively as backbones of the U-Net as well as rich

feature representation. In the case of DenseNet, its unique design

of connecting each layer to every other layer in a feed-forward

fashion ensures maximum information flow between layers. This

structure encourages feature reuse and strengthens gradient flow,

which can be particularly useful in the encoder part of the U-Net

for capturing intricate patterns. ResNet, on the other hand, is

known for its residual blocks that allow the network to skip

certain layers during training. This skipping mechanism helps in

mitigating the vanishing gradient problem, allowing for deeper

networks. When integrated into U-Net, ResNet can enable the

training of deeper models, thus capturing more complex features

in the encoder phase.

By leveraging either DenseNet or ResNet as encoders, the U-Net

can benefit from their particular strengths. DenseNet can improve

the information flow, whereas ResNet can facilitate the training

of deeper models. Together, these architectures can be flexibly

assembled to create U-Nets of varying complexities and

capabilities, allowing researchers and practitioners to tailor the

network to specific segmentation challenges. For example, by

combining the concepts of ResNet and DenseNet, a new

architecture was introduced by Jégou et al. (34) in a U-Net-

shaped architecture to do segmentation. There are many more

architectures based on the U-Net style with adaptation from the

CNN and Transformers literature; a good review paper on this

can be found elsewhere (35).

In our current study, we conducted experiments in three

different (mostly used) segmentation architectures to demonstrate

the effect of the connections, as explained in the following

subsections: (1) Encoder–Decoder, (2) U-Net, and (3) Adaptive

U-Net (via DenseNet-based architecture in the encoder of

U-Net). For (3), we propose to use two versions; hence, we are

using four baselines for our experiments in total. Note that

we have dropped the use of U-Net architecture from the

DenseNet version (Dense-U-Net may be a correct terminology

when DenseNet is used as the backbone in U-Net) to

simplify the usage. One may increase the number of

architectures for more comparisons, but this is outside the

scope of our study.
2.2. Optimizers with fixed LR/MR

Optimizing a deep neural network, which is a high-

dimensional system with millions of parameters, is one of the

most challenging aspects of making these systems more practical.

Designing and implementing the best optimizer for deep network

training has received much attention in recent decades. These

studies mainly address two major issues: (1) making the network
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training as fast as possible (fast convergence) and (2) increasing the

generalizability of networks. SGD optimizers have been the most

popular optimizer in deep networks due to their low

computational cost and fast convergence. There have been major

modifications to the original SGD optimizer during the last

decade to increase the efficiency for training deep nets. The

following are some of the key optimization studies related to our

efforts.

SGD and Mini-batch gradient descent were first optimizers

used for training neural networks. The updating rule for these

optimizers include only the value of last iteration as shown in

Equation 1. Choosing appropriate value for an LR is challenging

in these optimizers since if LR is very small then convergence is

very slow, and if LR is set high, the optimizer will oscillate

around global minima instead of converging:

ui ¼ ui�1 � arui J(ui), (1)

where u are network parameters, a is LR, and J is the cost

function to be minimized [function of u, X(input), and

Y(labels)]. Equation 1 can be considered an updating rule for

SGD and mini-batch gradient descent by choosing X and Y as

whole samples, a single sample, or a batch of samples in a dataset.

The Momentum optimizer was designed to accelerate the

optimization process by taking into account the values from

previous iterations, weighted by a factor known as “momentum,”

as mentioned by Qian (5). The updating rule for this optimizer

is defined as

ui ¼ ui�1 � arui J(ui)� b(ui�1 � ui�2), (2)

where b denotes the MR. In the Momentum optimizer, the past

iterations do not play any role in the cost function, and the cost

function is calculated only for the current iteration. Also, similar

to LR, choosing a proper value for MR is challenging and it has

a correlation with LR too.

Nesterov accelerated gradient (36) (NAG) was then introduced

to address the limitation of momentum optimizers as well as to

accelerate the convergence by including information from

previous iterations in calculating the gradient of the cost function

as shown in the following equation:

ui ¼ ui�1 � arui J(ui � b(ui�1 � ui�2))� b(ui�1 � ui�2): (3)

Compared to optimizers with fixed LR/MR, the NAG optimizer

generally shows improved performance in both convergence

speed and generalizability.
2.3. Optimizers with adaptive LR and MR

A significant disadvantage of optimizers with a fixed LR/MR is

that they cannot incorporate information from the gradients of past

iterations in adjusting the learning and momentum rates. For
Frontiers in Radiology 04
instance, they cannot increase the learning rate for dimensions

with a small slope to improve convergence or reduce the learning

rate for dimensions with a steep slope to avoid oscillation around

the minimum point. AdaGrad (3) is one of fist adaptive LR

optimizers used in deep networks adapting the learning rate for

each parameter in the network by dividing the gradient of each

parameter by its sum of the squares of gradient, as follows:

ui ¼ ui�1 � a
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Gi þ e
p �rui J(ui), (4)

where Gi is a diagonal (square) matrix and each diagonal element

equal to the sum of the square of gradient of its corresponding

parameters:

Gi ¼
XI

i¼1

(rui J(ui))
2, (5)

where I is the current iteration.

One of the drawbacks of AdaGrad is gradient vanishing due to

accumulation of all past square gradients in the denominator of

Equation 6 during the training. This leads the gradients to

converge to zero after several epochs in training. However,

AdaDelta, RMSProp, and ADAM optimizers solved this problem

by considering a sum of the past samples within a pre-defined

window. ADAM optimizer’s updating rule uses past squared

gradient (as scale) and also like momentum, it keeps an

exponentially decaying average of past gradients. Hence, these

adaptive optimizers have advantages over the AdaGrad by

adaptively changing both LR and MR:

ui ¼ ui�1 � ai
b1ruJ(ui�2)� (1� b1)ruJ(ui�1)ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ e
p �rui J(ui): (6)

Adaptive learning methods are costly because they are required to

calculate and keep all the past gradients and their squares to update

the next parameters. Also, the adaptive learning optimizer may

converge into different minima in comparison with fixed

learning rate optimizers (6–8).

Alternatively, CLR was proposed to change the learning rate

during training, which needed no additional computational cost.

CLR is a method for training neural networks that involves

periodically changing the learning rate during training. As

mentioned earlier, the learning rate is typically adjusted

according to a predetermined schedule, such as increasing the

learning rate from a low value to a high value and then

decreasing it back to the low value over a set number of training

iterations. The learning rate is then reset and the process is

repeated. This can help the optimization process by allowing the

model to make larger updates at the beginning of training and

smaller updates as training progresses, potentially leading to

faster convergence and better model performance (7). Later in

Figure 3A, we show how we use CLR in our methodology.
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2.4. Cardiac image segmentation

Cardiovascular diseases (CVDs) are the leading cause of death

worldwide according to the World Health Organization (WHO).

CVDs lead to millions of deaths annually and are expected to cause

over 23.6 million deaths in 2030 (37). Cine-MR imaging can provide

valuable information about cardiac diseases due to its excellent soft

tissue contrast. For example, ejection fraction (EF), an important

metric measuring how much blood the left ventricle pumps out with

each contraction, can be measured with Cine-MRI. To this end,

radiologists often manually measure the volume of the heart at the

end of the systole (ES) and the end of the diastole (ED) to measure

EF. This is a time-consuming process with known inter- and intra-

observer variations. Due to its significance in functional assessment

of heart, there have been numerous machine learning–based

automated algorithms developed in the literature for measuring EF.

In this study, we dedicate our efforts for this application due to its

importance in the clinic.

There is a considerable amount of research dedicated to the

problem of cardiac segmentation from MR or CT images. Since

Xu et al. found a correlation between motion characteristics and

tissue properties, they developed a combined motion feature

learning architecture for distinguishing myocardial infarction

(38). In our another attempt, CardiacNet (39) proposed a

multi-view CNN to segment the left atrium and proximal

pulmonary veins from MR images following by an adaptive

fusion. The shape before information from deep networks was

used to guide segmentation network to delineate cardiac

substructures from MR images (40, 41). As previously stated,

the literature and methodologies for cardiac segmentation are

extensive. Readers are invited to consult the studies by

Bizopoulos and Koutsouris (42) and Zhuang et al. (43) for

more comprehensive information.
3. Methods

We approach the optimization problem from the perspective of

a significant medical image analysis application: segmentation.

Segmentation is rarely studied from an optimization perspective

in comparison to classification. We propose to use four baseline

segmentation architectures in our study and assess the

optimization procedure in comparison with skip connections,

residual connection, or densely connected layers. The medical

image segmentation field is so fast growing and there are

numerous incremental studies to the following baseline methods,

in addition to Transformer-based architectures recently becoming

an attractive choice. In our study, our aim is to explore the role

and effectiveness of optimization settings; therefore, we are not

restricted to any segmentation architectures in our optimization

evaluation platform. We hope in this study that we can manage

to give the landscape and behavior of the optimization functions,

and identify the need for developing efficient ones for

computationally heavy segmentation tasks. Baseline CNN

architectures used in the experiments are the following:
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1. Encoder–decoder architecture: This architecture simply

consists of the encoder and decoder parts as illustrated in

Figure 1, without considering red skip connections. The filter

size in all the layer are 3� 3, and each encoder and decoder part

includes five CNN blocks and each CNN block consists of

different number of layers as mentioned in Table 1. Also, the

number of filters in each CNN block is a fixed number and they

are mentioned in Table 1 for each layer. Each layer within the

CNN block includes Convolution + Batch normalization + ReLU as

an activation function (CBR).

2. U-Net architecture: The U-Net model is built entirely from

convolutional layers and does not contain any fully connected

layers. This makes it well-suited for image segmentation tasks, as

it can process input images of any size and output a

corresponding segmentation map. The U-Net model is known for

its ability to handle small, sparsely annotated training datasets,

making it a useful tool for medical image analysis where such

datasets are common. This architecture is similar to the Encoder–

Decoder architecture as illustrated in Figure 1 with red skip

connections from the encoder to the decoder. The number of

layers and filters for each block are mentioned in Table 1.

3.DenseNet architecture (adapted intoU-Net for segmentation):

DenseNet is another convolutional neural network architecture that

was developed to improve upon the efficiency of training deep

networks. The key idea behind DenseNet is to connect all layers in

the network directly to every other layer, rather than only

connecting each layer to its immediate neighbors as is done in

traditional convolutional networks. This allows the network to

learn more efficient feature representations and reduces the risk of

overfitting. DenseNets have been successful in a number of

applications and have achieved state-of-the-art performance on

image classification and segmentation tasks. We will use two

different DenseNet architectures in our segmentation experiments.

First, the architecture in Figure 1 with dense blocks (DBs) and

skip connections is DenseNet_1. Then, in order to use higher

growth rate (GR), in DenseNet_2, at the end of each block a

convolution layer with a kernel size of 1� 1 is used to decrease the

number of its input filters by C rate, which C is equal to 2 in this

paper. The GR in DenseNet_2 increased to 24 (from 16 in

DenseNet_1) while the number of parameters is decreased

(Table 1). The number of CBR layers and also the number of

parameters are mentioned in Table 1. Note that we use the

terminology of DenseNet here for adapted version of

segmentation; original jargon for DenseNet is used only for

classification/recognition tasks.
3.1. Dense block

Within the DB, a concatenation operation is done for

combining the feature maps [through direction (axis) of the

channels] for the last three layers. So, if the input to lth layer is

Xl , then the output of lth layer is

F(Xl) ¼ CBR(Xl): (7)
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TABLE 1 Number of layers in each block of different architectures and number of parameters.

Enc_Dec U-Net DenseNet_1 (GR=16) DenseNet_2 (GR=24)
Block 1 6 layers, #filters=32 6 layers, #filters=32 6 layers 6 layers

Block 2 8 layers, #filters=64 8 layers, #filters=64 8 layers 8 layers

Block 3 11 layers, #filters=128 11 layers, #filters=128 11 layers, 11 layers

Block 4 15 layers, #filters=256 15 layers, #filters=256 15 layers 15 layers

Block 5 20 layers, #filters=512 20 layers, #filters=512 20 layers 20 layers

Block 6 20 layers, #filters=512 20 layers, #filters=512 20 layers 20 layers

Block 7 15 layers, #filters=256 15 layers, #filters=256 15 layers 15 layers

Block 8 11 layers, #filters=128 11 layers, #filters=128 11 layers 11 layers

Block 9 8 layers, #filters=64 8 layers, #filters=64 8 layers 8 layers

Block 10 6 layers, #filters=32 6 layers, #filters=32 6 layers 6 layers

# of params (in million): 77.5 79.1 7.7 8.8

FIGURE 1

CNN architecture is used for pixel-wise segmentation. The architecture with CNN blocks without red skip connections is the Encoder–Decoder
architecture. The architecture with red skip connection (Figure 2A) is called U-Net; if connections are with dense block (Figure 2B), it is called
Tiramisu (DenseNet for segmentation).
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Since we are doing concatenation before each layer (except the first

one), the output of each layer can be calculated only by considering

the input and output of first layer as follows:

F(Xl)¼ F
l0 ¼ l � 1

_

l0 ¼ 0
F(Xl0 )

0
@

1
A for l � 1

and l ¼ {1, 2, . . . , L, },

(8)

where _ is the concatenation operation. In addition, for

initialization, F(X�1) and F(X0) are considered as {} and X1,

respectively, where {} is an empty set and there are L layers

inside the block.

Assuming the number of output features for each layer is Kout

(channel out) and the number of input features for first layer is Kin1

(channel in). Then, the feature maps growth (channel out) for

second, third, …, and Lth layer are Kout þ Kin1 , 2Kout þ Kin1 , …,
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and (L� 1)Kout þ Kin1 , respectively. The growth rate for the DB

is the same as the fourth layer.
3.2. Cyclic learning/momentum rate
optimizer

Smith (7) argued that a cyclic learning may be a more effective

alternative to adaptive optimizations especially from a

generalization perspective. Basically, cyclic learning includes a

pre-defined cycle (such as triangle or Gaussian function) in

which the learning rate is changing according to that cycle. Here,

we hypothesize (and show later in the results section) that

having a cyclic momentum in Nesterov optimizer (Equation 2)

can lead to a better accuracy in segmentation task in the

generalization phase. As a reminder, momentum in Equation 2

was used to consider the past iterations by a coefficient called

momentum. So, choosing the proper value for momentum is
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FIGURE 2

(A) CNN block used in Enc–Dec and U-Net architectures. (B) Dense block used in the Tiramisu architecture.
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challenging. To this end, we propose changing the MR in the same

way in which we changed the LR, and we considered the cyclic

triangle function for both MR and LR as illustrated in Figure 3.

cyclelr and cyclemr determine the period of triangle function for

LR and MR and are defined as

cyclelr ¼ Clr � It, (9)

cyclemr ¼ Cmr � It, (10)

where Clr and Cmr are positive even integer numbers, and It is

number of iteration per each epoch.

In Figures 3A, B, the cyclic function for different values of Clr

and Cmr are illustrated. LR during whole training can be

determined from Equation 11:

LR ¼ 2� maxlr �minlr
Clr�It � iþminlr , for N� cyclelr � i , 2Nþ1

2 � cyclelr

�2� maxlr �minlr
Clr�It � iþ 2maxlr �minlr , for 2Nþ1

2 � cyclelr � i , (Nþ 1)� cyclelr,

(

(11)

where maxlr and minlr are the maximum and minimum values of

LR function, respectively. i is the iteration indicator during whole

training process and i [ {1, 2, . . . , It � Ep}, where Ep is the total

number of epochs in training and N is a set of natural numbers.

MR can also be determined as

MR ¼ 2� maxmr �minmr
Cmr�It � iþminmr , for N� cyclemr � i , 2Nþ1

2 � cyclemr

�2� maxmr �minmr
Cmr�It � iþ 2maxmr �minmr , for 2Nþ1

2 � cyclemr � i , (Nþ 1)� cyclemr,

(

(12)

where maxmr and minmr are the maximum and minimum values of

the MR function, respectively.

Equations 11 and 12 are used to determine the values of LR

and MR in each iteration during training. One of the challenges

in using these cyclic LR and MR functions are determining the

values of some variables in the equations including maxlr , minlr ,

and Clr for LR; and maxmr , minmr , and Cmr for MR. For finding
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maxlr and minlr values, as it suggested by Smith (7), one can run

the networks with different LR values for a few epochs and then

these values are chosen according to how the network accuracy

changes. When both LR and MR change dynamically the one

value can affect the other one (considering the optimizer

formula), it is more challenging to find the CLMR optimum

parameters by the proposed solution. It means we need to train a

large number of networks in order to determine the optimum

values of maxlr , minlr , max,r , and minmr , which is not

computationally feasible. Also, a heuristic method was suggested

by Smith (7) to find the best value of Clr .

In this paper, we propose an alternative way to find best cyclic

functions with minimum computational cost. We set fixed values

for maxlr , minlr , max,r , and minmr parameters and make sure

that the selected values cover a good range for both LR and MR

in practice (illustrated in Figure 3). Then, we did a

computationally reasonable heuristic search for finding the

appropriate amount of Clr and Cmr from the values shown in

Figure 3. Since changing the values of Clr and Cmr leads to

change in the values of LR and MR in different iterations, there

is no need to find the optimum values for minimum and

maximum, and we did search in 2D space of Clr and Cmr to find

their optimal values.
4. Experiments and results

4.1. Data

For investigating the performance of proposed method, a

dataset from the Automatic Cardiac Diagnosis Challenge

(ACDC-MICCAI Workshop 2017) was used (44). This dataset

includes 150 cine-MR images: 30 normal cases, 30 patients with

myocardial infarction, 30 patients with dilated cardiomyopathy,

30 patients with hypertrophic cardiomyopathy, and the

remaining 30 patients with abnormal right ventricle (RV). While

100 cine-MR images were used for training (80) and validation
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FIGURE 3

LR and MR functions in cyclic learning setting. (A) Learning rate triangle function for different Clr values with minlr ¼ 0:0005 and maxlr ¼ 0:05.
(B) Momentum rate triangle function for different Cmr values with minmr ¼ 0:85 and maxmr ¼ 0:95.
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(20), the remaining 50 images were used for testing with online

evaluation by the challenge organizers. For a fair validation in

training procedures, four subjects from each category were

chosen. The binary masks for ground truths of three

substructures were provided by the challenge organizers for

training and validation while a test set was evaluated online

(unseen test set). Three substructures are RV, myocardium of left
Frontiers in Radiology 08
ventricle(Myo.), and left ventricle (LV) at two time points of ES

and ED.

The MRIs were obtained using two MRI scanners of different

magnetic strengths (1.5 and 3.0 T). Cine-MR images were acquired

with an steady-state free precession (SSFP) sequence in short axis

while on breath hold (and gating). In particular, a series of short

axis slices cover the LV from the base to the apex, with a thickness
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FIGURE 4

Validation loss and dice index for DenseNet_2 architecture with different values of Clr and Cmr . (Upper) Cross entropy loss in the validation set for
DenseNet_2 architecture. (Lower) Dice index in the validation set for U-Net architecture (zoomed).
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of 5mm (or sometimes 8mm) and sometimes an inter-slice gap of

5mm. The spatial resolution goes from 1.37 to 1.68mm2/pixel and

28–40 volumes cover completely or partially the cardiac cycle.

The use of test, validation, and training data can be summarized

as follows. The performance of models during optimization can be
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monitored using both training and validation datasets. Monitoring

the model’s performance on the training data typically allows us

to see how well the model is learning from the data it is being

trained on. We have used the training data to observe a decreasing

loss on the training data until it converges. However, training loss
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TABLE 2 DI in the test data set with online evaluation.

Adam Nesterov CLR CLMR
Enc_Dec RV 0.3272 0.1309 0.3833 0.4336

U-Net 0.8574 0.5968 0.8618 0.8820

DenseNet_1 0.8802 0.6936 0.8961 0.8957

DenseNet_2 0.8781 0.7232 0.8910 0.9049

Enc_Dec Myo 0.1473 0.1492 0.1692 0.1686

U-Net 0.8628 0.6486 0.8588 0.8631

DenseNet_1 0.8787 0.7170 0.8834 0.8960

DenseNet_2 0.8796 0.7196 0.8904 0.8999
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is not a good indicator of the model’s ability to generalize unseen

data. Therefore, we used validation data to illustrate our results. By

monitoring the model’s performance on a validation dataset, we

prevented overfitting too. In our experiments, we made sure that

early stopping criteria were used to avoid overfitting, where

training loss always decreased to the point where the epochs were

stopped. For simplicity, and generalization purposes, we presented

the validation loss curves in the experimental results section.

Furthermore, we enlisted convergence speed and test error.

Accuracy and performance of the results are given on the test data.

Enc_Dec LV 0.4950 0.3260 0.4972 0.5418

U-Net 0.9238 0.7670 0.8936 0.9360

DenseNet_1 0.9376 0.8465 0.9351 0.9393

DenseNet_2 0.9196 0.8449 0.9378 0.9478

Enc_Dec Ave. 0.3232 0.1687 0.3499 0.3814

U-Net 0.8813 0.6708 0.8714 0.8937

DenseNet_1 0.8988 0.7524 0.9049 0.9103

DenseNet_2 0.8924 0.7626 0.9064 0.9176

Bold values indicate the best performances.
4.2. Implementation details

The networks were trained for a fixed number of epochs (100)

and it was confirmed that they are fully trained; we made sure that

all the networks have the same initialization parameters/weights for

a fair comparison. All the images were resized to 200� 200 in

short axis by using B-spline interpolation. Then, as a

preprocessing step, we applied anisotropic filtering and histogram

matching to the whole dataset. The total number of 2D slices for

training was about 1,690 and batch size of 10 were chosen for

training. Hence, the number of iteration per epoch is 1, 690
10 ¼ 169

and we have a total number of iteration 100� 169 ¼ 16,900 in

training. The Cross Entropy (CE) loss function was chosen for

minimization. All the networks were implemented on Tensorflow

with using NVIDIA TitanXP GPUs.
4.3. Results

We calculated dice index (DI) and also CE loss on the

validation set for investigating our proposed optimizer along with

other optimizers. DI, or dice similarity coefficient (DSC), is a

statistical measure used to evaluate the accuracy of the

segmentation by comparing the predicted segmentation with the

ground truth (the reference standard or manual segmentation). A

higher DSC indicates better segmentation accuracy and

performance. In Figures 4, the CE and DI curves vs. iterations

for U-Net architecture for different optimizers are illustrated. As

these curves show, the DI in U-Net with ADAM optimizer is

increasing rapidly and sharply at the very beginning and then it

is almost fixed afterwards. Although our proposed optimizer

[CLMR(C_lr¼20, C_mr¼20)] is not learning as fast as ADAM

optimizer at very beginning in U-Net, it gets better accuracy than

ADAM finally. This phenomenon is clearer in CE curves. The

quantitative results on the test set in Table 2 support the same

observation and conclusion. Furthermore, the same pattern

happens for the DenseNet_2 architecture in Figure 5. This

confirms our hypothesis that adaptive optimizers converge faster

but to potentially different local minimas in comparison with

classical SGD optimizers.

Figure 4 shows the behavior of the U-Net architecture with the

CLMR optimizer performing 2% increase in dice index (in all three

substructures as well as average) than its CRL optimizer

counterpart. This proves that having a cyclic momentum rate can
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yield better efficiency and accuracy than having a simple cyclic

learning rate. The results on the test set comparing CLR and

CLMR optimizers in Table 2 support this conclusion too.

Moreover, the curves of DI and CE among different

architectures, trained by ADAM and CLMR, are demonstrated in

Figures 6. Although the DenseNet_2 has less parameters in

comparison with other architectures, it gets better results than

the other architectures. These curves reveal some other important

points about using different architectures: first, for all different

architectures, the proposed CLMR optimizer works better than

the ADAM optimizer, indicating the power of the proposed

cyclic optimizer. Second, DenseNet architectures are getting

better results than U-Net and Enc_Dec architectures, which are

highly over-parameterized architectures than DenseNet and their

saturation can be linked to this information too. Third, a

comparison between the curves of DenseNet_1 and DenseNet_2

shows that having a higher GR in dense connections is more

important than having a dense block with high number of

parameters. DenseNet_2, with GR = 24, reached better results in

comparison with DenseNet_1 with twice of number of

parameters in the end of each dense block in comparison to

DenseNet_2 and GR¼16. These results are supported by the dice

metric obtained from test data and are mentioned in Table 2.

Finally, the DI on test data with online evaluation for different

architectures with different optimizers are summarized in Table 2.

In order to have a better comparison, the box plot of all methods

are drawn in Figure 7. As the figure shows, the dice statistic

obtained from CLMR is better than other optimizers most of the

time in addition to its superior efficiency. In addition, qualitative

results for different methods are shown in Figures 8 and 9: the

contours for RV, Myo., and LV in ED for different methods and

architectures and also ground truth across four slices from Apex

to Base. Usually, segmentation of RV near the Apex is harder

than others because RV is almost vanishing at this point. As a

result, some methods may not even detect the RV at slices near

the Apex. Figure 9 shows the contours for RV, Myo., and LV in
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FIGURE 5

Validation loss and dice index for U-Net architecture with different values of Clr and Cmr . (Upper) Cross entropy loss in the validation set for DenseNet_2
architecture. (Lower) Dice index in the validation set for U-Net architecture (zoomed).
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ES for different methods and architectures and also ground truth

across four slices from Apex to Base. Since heart is at minimum

volume at ES, it is more difficult to segment its substructures.

The contours generated with the DenseNet_2 method is more

similar to the ground truth in both ED and ES, which shows the
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generalizability of the proposed method with an efficient

architecture choice.

To ensure reproducibility of the models’ final accuracy in

validation and test data, we repeated the experiments for only

selected configurations due to the high computational costs
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FIGURE 6

Validation loss and dice index for four different architectures with ADAM and CLMR optimizers. (Upper) Cross entropy loss in the validation set for four
different architectures. (Lower) Dice index in the validation set for four different architectures (zoomed).
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associated with rerunning all experiments multiple times. It is

important to note that the results obtained from the validation

and independent test data sets in the study align with each other.

For analysis, we have specifically chosen three best configurations

comprising DenseNet-2 with CLMR optimizer, DenseNet-2 with

CLR optimizer, and DenseNet-1 with Adam optimizer. These
Frontiers in Radiology 12
experiments were repeated to compare the average dice index on

the validation set and determine if there were any significant

differences between them. The resulting P-values for these

configurations were 0.805, 0.544, and 0.633, respectively. These

P-values indicated that no significant differences were observed

between the repeated experiments (P . 0:05).
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FIGURE 7

Box plots for DI in test data set for RV, Myo., and LV and their average (Ave).
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5. Discussions and conclusions

We proposed a new cyclic optimization method (CLMR)

to address the efficiency and accuracy problems in deep

learning–based medical image segmentation. We hypothesized

that having a cyclic learning/momentum function can yield

better generalization in comparison to adaptive optimizers. We

showed that CLMR is significantly better than adaptive

optimizers by considering momentum changes inside the

Nesterov optimizer as a cyclic function. Finding the parameters

of these cyclic functions are complicated due to the correlation

existing between LR and MR function. Thus, we formulated

both LR and MR functions and we suggested a method to find

the parameters of these cyclic functions with reasonable

computational cost.

Our proposed method is just a beginning of a new generation

of optimizers, which can generalize better than adaptive ones.

One of the challenges in designing such optimizers is to set up

the parameters of cyclic functions that need further

investigation in a broad sense. One can learn these parameters

with a neural network or reinforcement learning in an efficient

manner: i.e., maxlr , minlr , max,r , minmr , Clr , and Cmr can be

learned by a policy gradient reinforcement learning approach.

In this study, our focus was only on supervised learning

methods. However, the proposed method can be generalized to

semi-supervised or self-supervised methods as well. This is
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outside the scope of the current paper and can be thought of as

a follow-up to what we proposed here.

In our study, our focus was in a particular clinical imaging

problem: segmenting cardiac MRI scans. We assessed the

optimization problem with single and multi-object settings. One

may consider different imaging modalities and with different,

and perhaps with newer, architectures to explore the architecture

choices vs. optimization functions. We believe that, based on our

comparative studies, the architecture choice can affect the

segmentation results such that more complex architectures

require optimization algorithms to be selected wisely.

The choice of optimization algorithm can depend on the

specific characteristics of the dataset and the model being

trained, as well as the computational resources available.

Therefore, our results may not be generalizable to every situation

in medical image analysis tasks. For instance, if the medical data

are noisy or uncertain, it may be more difficult for the model to

accurately predict the labels. This can make the optimization

process more sensitive to the choice of optimization algorithm

and may require the use of regularization techniques to prevent

overfitting. For another example, if the dataset is highly

imbalanced, with many more examples of one class than the

other, it may be more difficult for the model to accurately

predict the minority class. This can make the optimization

process more challenging and may require the use of techniques

such as class weighting or oversampling to improve the
frontiersin.org

https://doi.org/10.3389/fradi.2023.1175473
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 8

Qualitative results for ground truth and different methods for same subject in end-diastole from Apex to Base for four slices (from right to left). Green,
yellow, and brown contours show RV, Myo., and LV, respectively.
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FIGURE 9

Qualitative results for ground truth and different methods for same subject in end-systole from Apex to Base for four slices (from right to left). Green,
yellow, and brown contours show RV, Myo., and LV, respectively.
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performance of the model. Last but not least, if the dataset has a

large number of features or the features are highly correlated, it

may be more difficult to find a good set of weights and biases

that accurately model the data. This can make the optimization

process more challenging and may require the use of more

advanced optimization algorithms.

Our study has some other limitations too. The use of second-

order optimization methods are in high demand recently. However,

we did not focus on such methods due to their high computational

cost. Second-order optimization methods, which take into account

the curvature of the loss function, have shown promising results in

a variety of deep learning applications. These methods can be more

computationally expensive than first-order methods, which only

consider the gradient of the loss function, but may be more

effective in certain situations. Furthermore, we focused on the

segmentation problem with traditional deep network architectures

while reinforcement learning and generative models can require

development of new algorithms tailored to specific types of

problem.
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