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Quantitative myelin water imaging
using short TR adiabatic inversion
recovery prepared echo-planar
imaging (STAIR-EPI) sequence
Hamidreza Shaterian Mohammadi†, Dina Moazamian†,
Jiyo S. Athertya, Soo Hyun Shin, James Lo, Arya Suprana,
Bhavsimran S. Malhi and Yajun Ma*

Department of Radiology, University of California San Diego, San Diego, CA, United States

Introduction: Numerous techniques for myelin water imaging (MWI) have been
devised to specifically assess alterations in myelin. The biomarker employed to
measure changes in myelin content is known as the myelin water fraction
(MWF). The short TR adiabatic inversion recovery (STAIR) sequence has recently
been identified as a highly effective method for calculating MWF. The purpose
of this study is to develop a new clinical transitional myelin water imaging (MWI)
technique that combines STAIR preparation and echo-planar imaging (EPI)
(STAIR-EPI) sequence for data acquisition.
Methods: Myelin water (MW) in the brain has shorter T1 and T2 relaxation times
than intracellular and extracellular water. In the proposed STAIR-EPI sequence, a
short TR (e.g., ≤300 ms) together with an optimized inversion time enable
robust long T1 water suppression with a wide range of T1 values [i.e., (600,
2,000) ms]. The EPI allows fast data acquisition of the remaining MW signals.
Seven healthy volunteers and seven patients with multiple sclerosis (MS) were
recruited and scanned in this study. The apparent myelin water fraction (aMWF),
defined as the signal ratio of MW to total water, was measured in the lesions
and normal-appearing white matter (NAWM) in MS patients and compared with
those measured in the normal white matter (NWM) in healthy volunteers.
Results: As seen in the STAIR-EPI images acquired from MS patients, the MS
lesions show lower signal intensities than NAWM do. The aMWF measurements
for both MS lesions (3.6 ± 1.3%) and NAWM (8.6 ± 1.2%) in MS patients are
significantly lower than NWM (10 ± 1.3%) in healthy volunteers (P < 0.001).
Discussion: The proposed STAIR-EPI technique, which can be implemented in
MRI scanners from all vendors, is able to detect myelin loss in both MS lesions
and NAWM in MS patients.

KEYWORDS

myelin water imaging, STAIR, EPI, multiple sclerosis, aMWF

1. Introduction

Myelin is a lipid-protein bilayer that surrounds the axonal fibers of neurons (1). It plays

an essential role in normal brain function by facilitating the rapid conduction of action

potentials in the axon (2). Many neurological and degenerative diseases, such as multiple

sclerosis (MS), are characterized by myelin damage and loss (3, 4). Thus, evaluations of

demyelination and remyelination are essential for the accurate diagnosis and treatment

monitoring of these diseases. Conventional magnetic resonance imaging (MRI)

techniques, such as T1- and T2-weighted fast spin echo (T1w- and T2w-FSE), provide high
01 frontiersin.org
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soft-tissue contrast and are routinely used in the diagnosis of MS

and many other neurological diseases. However, these clinical

sequences are unable to distinguish demyelination lesions, such

as those observed in MS, from the ones caused by inflammation,

edema, axonal loss, or gliosis (5–7). Moreover, it is also difficult

for clinical MRI to detect myelin damage in brains that appear to

be normal (i.e., where there are no apparent lesions) (8).

Consequently, developing myelin-specific imaging techniques is

of critical importance to improved evaluation of neurological

diseases in clinical practice.

In the last two decades, many myelin water imaging (MWI)

techniques have been developed for the specific evaluation of

myelin changes. Myelin water (MW) is the water component

tightly bound or trapped in the myelin bilayer (9–14). It has

much shorter T1 and T2 relaxation times than intracellular/

extracellular water. Myelin water fraction (MWF), defined as the

signal ratio of MW to total water, is the biomarker used to

quantify MW content changes (15–18).

State-of-the-art MWI techniques like multi-echo spin echo T2

relaxometry (15), multicompartment analysis of T2* decay (16),

and multicomponent-driven equilibrium single-pulse observation

of T1 and T2 (mcDESPOT) (17) have been developed to quantify

MWF and have been applied for the assessment of MS. The high

correlation between the MRI-measured MWF and histologically

quantified myelin content has been demonstrated in brain

sample studies (19, 20). Moreover, all these techniques are able

to detect significant MWF decreases in demyelinated lesions in

patients with MS in comparison to the normal white matter

(NMW) in healthy individuals (15–17, 21, 22). Despite the

success of these myelin-specific techniques, studies have found

that these multicompartment modeling techniques are sensitive

to system flaws such as B1 and B0 inhomogeneities (23–27).

Different data post-processing strategies may also produce

different results (28–31). Consequently, these techniques suffer

from limited accuracy and robustness in terms of MWF

estimation, shortcomings that slow down their clinical translation.

Another promising technique that has been developed for

selective imaging of MW, known as direct visualization of short

transverse relaxation time component (ViSTa), is based on the

T1 difference between MW and long T2 intracellular/extracellular

water components (32). The T1 relaxation times for the long T2
components in white matter and gray matter range from 750 to

1,000 ms and from 1,300 to 1,800 ms, respectively, at 3T (32–34).

In contrast, the T1 relaxation times for MW components are

typically shorter than 600 ms (17, 18, 35, 36). This technique

employs a double inversion recovery (DIR) preparation to

robustly suppress all the long T1 water components in the brain.

Moreover, not only is ViSTa less sensitive to B1 and B0
inhomogeneities, but it does not require any complicated

modeling to quantify MWF. That being said, ViSTa’s scan time

is too long for clinical use for whole brain coverage (∼3 min per

slice).

Most recently, Ma et al. have developed a short TR adiabatic

inversion recovery (STAIR) technique in combination with a 3D

Cones acquisition (STAIR-Cones) for time-efficient selective

MWI in the whole brain (37). This technique uses a short TR to
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suppress long T1 water components with a variety of T1s. Similar

to ViSTa, the STAIR sequence is relatively insensitive to B1 and

B0 inhomogeneities because it uses an adiabatic full passage

(AFP) pulse for signal inversion; however, because the 3D Cones

sequence is not a clinically available sequence (it is primarily

available in GE research scanners), the STAIR-Cones sequence is

currently limited in its potential for clinical translation.

In this study, we proposed a new clinically translational MWI

sequence for whole-brain MWI and quantification, which is a

combination of the STAIR technique and echo-planar imaging

(EPI) readout. Unlike the research-dedicated Cones sequence, the

EPI sequence is a routinely used clinical sequence that is

available to all vendors, posing the proposed STAIR-EPI as a

technique with greater potential in clinical translation than

STAIR-Cones. Moreover, similar to the ViSTa and STAIR-Cones

techniques, the proposed STAIR-EPI does not require

complicated post-processing such as solving the ill-conditioned

problems for those multicompartment modeling techniques

(15–17). We investigated the feasibility of the proposed

STAIR-EPI technique for the quantification of MWF and

compared its values in the lesions and normal-appearing white

matter (NAWM) of seven MS patients against the values of

NWM of seven healthy volunteers on a clinical 3 T MRI scanner.
2. Materials and methods

2.1. STAIR-EPI sequence

Figure 1 shows a diagram of the STAIR-EPI sequence. After an

AFP pulse and duration of longitudinal magnetization recovery, a

blipped multi-shot EPI is used for fast data acquisition. The EPI

starts with a 90° radiofrequency (RF) excitation pulse. Inversion

time (TI) is determined as the time interval between the center

of AFP to the center of the excitation pulse. A short TR between

180 and 300 ms is typically used in the STAIR sequence and,

with an appropriate TI (37), signals from long T1 water

components with a broad range of T1s (in this case, 600–

2,000 ms) can be well suppressed.

The signal equation for the STAIR-EPI sequence is expressed

as follows:

SSTAIR ¼ M0(1� Qe�TR=T1 � (1� Q)e�TI=T1 )e
�TE

T�
2 : (1)

M0 ¼ [MMW
0 , ML

0 ] are the longitudinal magnetizations of MW

and long T1 water components in the equilibrium state.

SSTAIR ¼ [SMW
STAIR, SLSTAIR] are the signal intensities of MW and

long T1 water components in STAIR-EPI imaging. Q represents

the inversion efficiency for the AFP pulse with a range of −1
(full inversion) to 1 (no disturbance to the z-magnetization). For

long T1 water components, Q is assumed to be −1. However, for

MW with a short T2* of 10 ms, Q is set to −0.75 (i.e.,

QMW ¼ 0:75) when a relatively long AFP pulse (i.e., 8.64 ms) is

utilized for signal inversion based on Bloch simulation (37–40).

Our previous numerical simulation demonstrated that a TR
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FIGURE 1

Sequence diagrams for the STAIR-EPI sequence. An AFP pulse and a short TR (e.g., 250 ms) together with an optimized TI in STAIR-EPI enables robust
long T1 water suppression. The EPI allows fast data acquisition of the remaining MW signals.
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range of [180, 300] ms provides a reasonable contrast-to-noise ratio

(CNR) efficiency in STAIR MWI (37). Similar to the STAIR-Cones

for MWI, a TR of 250 ms was selected for STAIR-EPI imaging in

this study. The corresponding optimal TI (i.e., TIoptimal) of the

STAIR-EPI sequence is determined by minimizing the signals of

long T1 components with a wide range of T1 values [i.e., (600,

2,000)ms] [see Equation (11) in Ref. (37)]. With the determined

TIoptimal, the MW signal can be expressed as follows:

SMW
STAIR ¼MMW

0 (1�QMWe�TR=T1 � (1�QMW)e�TIoptimal=T1,MW )e
� TE

T�
2,MW :

(2)

T1,MW and T�
2,MW are T1 and T�

2 of MW respectively. To

facilitate the quantification of apparent MWF (aMWF), a proton

density-weighted EPI (PD-EPI) sequence is also scanned for total

water imaging. The signal equation of the PD-EPI sequence is

expressed as follows:

SPD ¼ Mtotal
0 e

� TE
T�
2,total : (3)

M0,total and T�
2,total are the equilibrium longitudinal

magnetization and T�
2 of total water respectively.

aMWF is defined as the PD ratio of MW to total water, and is

expressed as follows:

aMWF ¼ MMW
0

Mtotal
0

: (4)

With known signal intensities of MW and total water (i.e., SMW
STAIR

and SPD), the aMWF can be easily computed by the division

operation between Equations (2) and (3). The T1 and T2* values

of MW (T1,MW and T�
2,MW) are set to 220 and 10 ms respectively

(16–18, 23, 35, 36). The T2* of total water (T�
2,total) is set to

60 ms (16, 23).
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2.2. In vivo study

This study was approved by our institutional review board

(IRB) and informed consent was obtained from all participants.

Seven healthy volunteers (mean age: 39.9 ± 15.9 years, 3 males

and 4 females) and seven MS patients (mean age: 53.7 ± 8.7

years, 2 males and 5 females) were recruited and underwent MRI

scans. The inclusion criteria for the disease group included a

documented diagnosis of MS and age over 18; exclusion criteria

included concomitant malignancy and other severe diseases like

stroke. The inclusion criteria for healthy volunteers were that

participants were in good health and over 18 years old. All

individuals with any contraindications for MRI were excluded

from study participation.

All participants were scanned on a 3 T clinical MRI scanner

(MR750, GE Healthcare Technologies, Milwaukee, WI) and a 12-

channel head coil was employed for signal reception.

The sequence parameters of the STAIR-EPI and PD-EPI

sequences were as follows: i) STAIR-EPI: field of view (FOV) =

22 × 22 cm2, matrix = 128 × 128, TR/TI/TE = 250/117/5.5 ms, flip

angle (FA) = 90°, number of shots = 8, slice thickness = 5 mm,

number of slices = 15, number of excitations (NEX) = 30, and

scan time = 15 min; (ii) PD-EPI: FOV = 22 × 22 cm2, matrix =

128 × 128, TR/TE = 250/5.5 ms, FA = 5°, slice thickness = 5 mm,

number of slices = 15, NEX = 10, and scan time = 43s. A clinical

T2-FLAIR sequence included for diagnosis was scanned with the

following parameters: FOV = 25.6 × 25.6 × 16.3 cm3, matrix =

256 × 256 × 136, TR/TI/TE = 7,000/2,028/130 ms, acceleration

factor = 4, and scan time = 5.5 min.
2.3. Data analysis

MS lesion regions in MS patients (a total of 66 lesions) and

eight non-lesion white matter regions in healthy volunteers (i.e.,

NWM) and MS patients (i.e., NAWM) were manually drawn for

aMWF quantification. The non-lesion regions included the left
frontiersin.org
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FIGURE 2

Representative non-lesion ROIs (orange ovals) of the eight WM regions
including the left and right centrum semioval, subcortical white matter,
periventricular regions, splenium, and genu of the corpus callosum for
healthy volunteers and MS patients.
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and right centrum semioval, subcortical white matter,

periventricular regions, splenium, and genu of the corpus

callosum (see Figure 2). Region of interest (ROI) drawings and

aMWF calculations were both performed on MATLAB 2022a

software (MathWorks Inc., Natick, MA, USA).

A comparison of aMWF measurement was made between

NWM in healthy volunteers, NAWM in MS patients, and MS

lesions in MS patients. Upon confirming normal distribution

through the Kolmogorov-Smirnov test, a one-way ANOVA test

was carried out to assess the differences in aMWF among these

three groups (i.e., NWM, NAWM, and MS lesions). A post hoc

test (Games-Howell test) was conducted for paired comparisons

between each of the two groups (i.e., NWM vs. NAWM, NWM

vs. MS lesions, and NAWM vs. MS lesions). P values less than

0.05 indicates statistical significance.
3. Results

Figure 3 shows the representative STAIR-EPI and PD-EPI

images as well as corresponding aMWF maps from a 31-year-old

male healthy volunteer. Much higher MW signal intensities in

the STAIR-EPI images are found in white matter regions than

those in grey matter regions. The aMWF maps also demonstrate

a higher aMWF in the white matter region than in the grey

matter region.

Figure 4 shows representative T2-FLAIR, PD-EPI, and STAIR-

EPI images as well as aMWF maps from three MS patients. The
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hyperintense lesions in T2-FLAIR show low signal intensities in

the STAIR-EPI images and also have lower aMWF values than

NAWM regions, demonstrating a decrease in MW content for

these MS lesions.

Table 1 summarizes the mean and standard deviation (SD)

values of the aMWF measurements from all participants. The

aMWF value of NWM in healthy volunteers is 10 ± 1.3%, while

the aMWF values of NAWM and MS lesions in MS patients are

8.6 ± 1.2% and 3.6 ± 1.3%, respectively. Significant difference is

achieved between these three groups (p < 0.001).

Figure 5 shows the paired comparison of measured aMWF

values on each of the two groups (i.e., NWM vs. NAWM, NWM

vs.MS lesions, and NAWM vs. MS lesions). The results indicate a

notable distinction of aMWF measurements between MS lesions

against both NAWM and NWM (p < 0.001). A significant

difference in aMWF measurement is also observed between

NAWM and NWM (p < 0.001). These results demonstrate the

feasibility of the STAIR-EPI technique in the detection of

demyelination in MS.
4. Discussion

In this study, we developed a new translational STAIR-EPI

sequence for selective MWI and aMWF quantification in the

whole brain. In MS patients, the hyperintense MS lesions in T2-

FLAIR showed low signal intensities in the STAIR-EPI images,

indicating high sensitivity in the detection of demyelination for

the STAIR-EPI technique. Moreover, the measured aMWF values

of MS lesions (3.6 ± 1.3%) and NAWM (8.6 ± 1.2%) in MS

patients were significantly lower than those of NWM (10 ± 1.3%)

in healthy volunteers. This study reveals the effectiveness of the

STAIR-EPI technique in detecting myelin loss in both MS lesions

and NAWM in MS patients, a capability that could subsequently

be applied in clinical MRI scanners from all vendors. The

implementation of the proposed STAIR-EPI sequence is relatively

easy and requires neither specialized involvement from scanner

vendors nor from application specialists.

EPI is one of the fastest MRI sequences and has already made

significant contributions to clinical diagnosis and scientific

investigation for various parts of the body including the brain,

abdomen, and pelvis (41). With single-shot EPI, a complete set

of spatial-encoding data can be gathered following a single RF

excitation. However, single-shot EPI suffers from strong imaging

distortion induced by eddy currents and B0 inhomogeneity due

to the low bandwidth in the phase-encoding direction. Multi-

shot EPI strategy mitigates the imaging distortion because of its

increased bandwidth in the phase-encoding direction. In this

study, the STAIR technique was combined with the multi-shot

EPI acquisition scheme to achieve relatively high-quality MWI.

The image quality improved with more shots, but more shots

also led to increased scan time (42). We found that eight shots

provided a reasonable level of image quality within an acceptable

15-minute scan time.

One of the major advantages of the STAIR-EPI technique is its

simplicity, given that it requires neither complex sequence
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FIGURE 3

Representative STAIR-EPI (columns 1 and 2) and PD-EPI (columns 3 and 4) images, as well as the corresponding aMWF maps (columns 5 and 6) from a 31-
year-old healthy male volunteer. White matter regions have a much higher myelin water content than gray matter regions.

FIGURE 4

Representative STAIR-EPI (first column), PD-EPI (second column), and aMWF (third column), as well as T2-FLAIR (fourth column) from three patients with
MS (patient #1 is a 57-year-old female, patient #2 is a 52-year-old male, and patient #3 is a 67-year-old female). Hyperintense lesions detected on T2-
FLAIR images (arrows) show a signal loss on the corresponding myelin water images and aMWF maps.
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FIGURE 5

Paired comparisons of aMWF measurements between NWM, NAWM,
and MS lesions. The individual data points for each group are also
shown in the bar plots. Significantly lower aMWF values are found in
both MS lesions and NAWM regions in MS patients in comparison with
NWM in healthy volunteers. (“***” indicates p < 0.001).

TABLE 1 Mean and standard deviation (SD) of aMWF measurements from
NWM, NAWM, and MS lesions as well as one-way ANOVA test results for
these three groups.

aMWF 95% CI P Value

(%, mean ± STD) (one-way ANOVA test)
NWM 9.9 ± 1.3% 9.6–10.3 <0.001

NAWM 8.5 ± 1.2% 8.2–8.8

MS Lesion 3.6 ± 1.3% 3.3–3.9

Significant difference is achieved between the three groups (p < 0.001).

Confidence intervals (CI) at a 95% confidence level provide US with a range of

values that is likely to include the true population mean for each group.
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implementation nor complicated post-processing in comparison to

conventional techniques (24, 28–30, 37). Additionally, the STAIR

preparation is relatively insensitive to B0 and B1 field

inhomogeneities because it uses the AFP pulse for magnetization

inversion (43). These benefits make the STAIR-EPI technique

well-suited for clinical practice. Both DIR and STAIR are

effective techniques for selective imaging of short T1 MW and

signal suppression of long T1 intracellular and extracellular water

in the brain (32, 37). However, the STAIR technique has an

improved scan efficiency over the DIR technique because of its

much shorter TR.

Previous research on the MWF quantification in NWM has

presented a range of values using different methodologies (15–18,

23, 26, 44–49). For example, multicomponent T2 decay analysis

estimated MWFs ranging from 9% to 15.6% (15, 44–48), whereas

multicomponent T2* decay analysis yielded an MWF range of

6.9% to 14.4% (9, 16, 23, 26, 49). Labadie et al. employed

multicomponent T1 modeling and determined an MWF of 8.3%

(18). Ma et al., employing the 3D STAIR-Cones technique, found

an MWF value of 9.2% (37). Moreover, a range of MWF values

has also been reported for MS lesions in previous MWI studies
Frontiers in Radiology 06
(15, 37, 48, 49). The multicomponent T2 analysis indicated

MWFs ranging from 1.7% to 6.4% (15, 48), while a

multicomponent T2* analysis determined an MWF of ∼0% (49).

For the most recent STAIR-Cones study, Ma et al. reported an

MWF value of 4.5% for MS lesions (37). In this study, the mean

MWF values of NWM (i.e., 10 ± 1.3%) and MS lesions (i.e., 3.6 ±

1.3%) are consistent with those reported in previous research.

As reported in previous studies, the multicomponent T2

relaxometry sequence took between 25 and 38 min to complete

(45, 46), whereas the multicomponent T2* relaxometry sequence

took between 20 and 30 min (16, 26). In comparison, the total

scan time for the proposed STAIR-EPI technique is around

16 min, which is relatively shorter than the typical

multicomponent T2 and T2* relaxometry techniques.

There were some limitations in this study. First, only seven MS

patients were scanned in this technical feasibility study. We plan to

recruit more patients to investigate demyelination or remyelination

in the future. Second, as proof of concept, a relatively large NEX

(i.e., 30) was used in the STAIR-EPI scan to achieve a high SNR

performance, significantly prolonging the scan time for whole

brain coverage. The scan time could be reduced by using a lower

NEX value (e.g., 10 or less). Moreover, the recent development of

the denoising technique via deep learning could significantly

increase the image SNR, thereby facilitating sufficient SNR

improvement with a much reduced NEX (e.g., 5) (50, 51).
5. Conclusion

The STAIR-EPI technique detects demyelination in MS,

facilitating easy clinical translation for the whole brain MWI.
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