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RoMIA: a framework for creating
Robust Medical Imaging AI
models for chest radiographs
Aditi Anand*, Sarada Krithivasan and Kaushik Roy

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
Artificial Intelligence (AI) methods, particularly Deep Neural Networks (DNNs),
have shown great promise in a range of medical imaging tasks. However, the
susceptibility of DNNs to producing erroneous outputs under the presence of
input noise and variations is of great concern and one of the largest
challenges to their adoption in medical settings. Towards addressing this
challenge, we explore the robustness of DNNs trained for chest radiograph
classification under a range of perturbations reflective of clinical settings. We
propose RoMIA, a framework for the creation of Robust Medical Imaging AI
models. RoMIA adds three key steps to the model training and deployment
flow: (i) Noise-added training, wherein a part of the training data is
synthetically transformed to represent common noise sources, (ii) Fine-tuning
with input mixing, in which the model is refined with inputs formed by mixing
data from the original training set with a small number of images from a
different source, and (iii) DCT-based denoising, which removes a fraction of
high-frequency components of each image before applying the model to
classify it. We applied RoMIA to create six different robust models for
classifying chest radiographs using the CheXpert dataset. We evaluated the
models on the CheXphoto dataset, which consists of naturally and
synthetically perturbed images intended to evaluate robustness. Models
produced by RoMIA show 3%–5% improvement in robust accuracy, which
corresponds to an average reduction of 22.6% in misclassifications. These
results suggest that RoMIA can be a useful step towards enabling the adoption
of AI models in medical imaging applications.
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1 Introduction

Artificial Intelligence is transforming the field of medicine in many ways, with

applications spanning from drug discovery to genomics and, most prominently,

radiology. Since AI has been particularly successful in computer vision, one of its most

promising applications is to medical imaging. Deep neural networks (DNNs), which are

composed of several layers of artificial neurons, have demonstrated great success in

computer vision tasks. These networks, particularly convolutional neural networks

(CNNs), have explored for various medical imaging tasks, including diagnosis of

diabetic retinopathy (1, 2), breast cancer and malignant lymph nodes from

histopathological images (3), and pulmonary and cardiological conditions from chest

radiographs (4). The recent wave of promising research has led to significant interest in
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deploying these technologies in clinical settings. However, there are

many hurdles that must be crossed before we can realize this

potential.

Medical imaging models are first trained on a training dataset,

and then tested in field trials before being deployed. One major

challenge in this process arises from the differences between the

data on which the models are trained and the data that they

encounter after deployment (5). AI models are known to be very

brittle to input noise and variations (6), even ones that are

imperceptible to humans (7). There are several scenarios where

medical imaging models encounter noise or variations that can

impact the accuracy of their predictions (8). One popular use of

medical imaging models is for telemedicine in areas that have a

lack of trained physicians, where smartphones are used to take

photos of scans, which are then sent through messaging apps,

introducing distortion and compression artifacts (9).

Additionally, using imaging equipment made by different

manufacturers or using different settings on the imaging

equipment can create variations in the resulting images (10, 11).

AI models have also demonstrated significant performance

variation across different patient populations (12). Any of these

factors can result in a model making inaccurate predictions (8).

Recent work has demonstrated that variations and noise in the

input can significantly reduce the accuracy of medical imaging AI

models (8, 10). Although there has been a large body of work in

the AI community on improving the robustness of these models

under noise and adversarial perturbations, very few efforts have

focused on the medical domain. There are various unique

challenges posed by the domain of medical imaging that make it

essential to address robustness specifically in this context (8). As

described above, the nature of input noise and variations is

primarily due to equipment differences, telemedicine, patient

population; sources of variation seen in other settings (background

objects, lighting, occlusion, etc.) are less relevant in medical

settings (9, 10, 12). Furthermore, due to regulations and higher

safeguards applied to medical data, adversarial attacks may be

much less of a concern in this setting relative to other settings.

In this paper, we propose RoMIA, a framework to create more

robust medical imaging models. RoMIA consists of three main

steps: Noise-added Training, Fine-tuning with Input Mixing, and

DCT-based denoising. In Noise-added Training, a fraction of the

images in the training dataset are transformed by adding noise in

order to make the trained model more robust (13). Specifically,

we find that transformations such as glare matte, moire, and tilt

result in models that perform best on photographs of

radiographs. In Fine-tuning with Input Mixing, we fine-tune the

trained model using a small amount of data from a different

source in order to improve the model’s robustness (14). Since

only limited data from additional sources are likely to be

available in practice, we use input mixing to avoid overfitting

during this stage. Finally, in DCT-based denoising, we remove

higher-frequency components in the input images before they are

passed to the model for classification (15). This is motivated by

our observation that perturbations encountered in medical

imaging settings largely impact the high-frequency components

of the images that are not essential for classification.
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We evaluate the RoMIA framework using six popular CNNs

trained on the CheXpert dataset, which contains 224,316 chest

radiographs of 65,240 patients from Stanford Hospital (4). The

created models diagnose Atelectasis, Cardiomegaly,

Consolidation, Edema, and Pleural Effusion. For Fine-tuning

with Input Mixing, we used 500 images from the ChestX-ray8

dataset from NIH (16). We evaluated the models using the

CheXphoto dataset, which consists of 10,507 smartphone

photos of chest radiographs from 3,000 patients (9). Our

experiments indicate that a baseline model trained on the

CheXpert dataset has an Area Under Receiving Operating

Characteristic (AUROC) drop of 10%–14% when evaluated on

the CheXphoto dataset. RoMIA creates models that improve

AUROC by up to 5%, and reduces misclassifications by an

average of 22.6%, underscoring its potential to create more

robust medical imaging models.
1.1 Related work

Several research efforts have explored the use of CNNs for

medical imaging. Building on these efforts, systems that support

diagnosis are in various stages of deployment. These include

systems for processing retinal scans (1, 2, 17), breast cancer

detection (18), and skin cancer detection (19), among others. We

focus our discussion on related efforts along two directions: those

that explore CNN-based classification of chest radiographs and

those that explore the robustness of medical imaging CNNs.
1.1.1 Prior work on chest radiograph classification
Chest radiographs are among the most commonly requested

radiological examinations since they are highly effective in

detecting cardiothoracic and pulmonary abnormalities.

Automation of abnormality detection in chest radiographs can

help address the high workload of radiologists in large urban

settings on the one hand, and the lack of experienced radiologists

in less developed rural settings on the other. This need was only

exacerbated during the COVID-19 pandemic when healthcare

systems were overwhelmed and chest radiographs were

commonly used as a first-line triage method. Motivated by this

challenge, several efforts have developed DNN models for

processing of chest radiographs (20–28). These works have

proposed key ideas including the use of pre-training with natural

images (20), multi-modal fusion of radiographs with clinical data

(22), the use of transformer networks for such multi-modal

fusion (24), manual design (27) or automated neural architecture

search (25) to find a suitable DNN architecture for chest

radiograph classification, bio-inspired training algorithms for

small training sets (26) and the use of a focal loss function to

address the significant class imbalance that is often present in

chest radiograph datasets (28). These efforts have demonstrated

high accuracies in various chest radiograph classification tasks,

promoting interest in their use in clinical practice. Supporting

the development of DNN models for chest radiographs has been

the curation of public datasets (4, 9, 16, 29).
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1.1.2 Prior work on robustness of medical imaging
AI models

It is well known that input variations, noise and adversarial

perturbations can have a large negative impact on the accuracy of

DNNs. For example, it has been shown that chest radiographs with

added natural noise as well as the use of smartphone-captured

photographs of radiographs caused significant degradation in

accuracy (9). Another study found that DNN models trained on

data from one hospital demonstrate considerably lower performance

on data from a different hospital (10). Adversarial perturbations

have also been shown to have a drastic impact on the accuracy of

DNNs used in medical imaging (30, 31). These concerns, while

broadly true of DNNs, are especially important for life-critical

applications such as medical imaging. As a result, previous works

have proposed and evaluated techniques to improve the robustness

of medical imaging DNNs. The combination of large-scale

supervised transfer learning with self-supervised learning was shown

to improve the out-of-distribution generalization performance of

medical imaging DNNs (32). The addition of Global Attention

Noise during training (33), as well as adversarial training, where

adversarial inputs are included in the training process (31), have

been shown to improve the accuracy of medical imaging DNNs

against adversarial attacks. Multi-task learning was used to address

the specific challenges of prediction instability and explainability in

the classification of smartphone photos of chest radiographs (21).

Our work makes the following contributions that go above and

beyond the previous efforts. While noise-added training is a well-

known technique to improve the robustness of neural networks

(34) and has recently been applied to medical imaging

specifically for adversarial robustness (31, 33), our work applies it

to achieve robustness to natural sources of noise. Input mixing

and DCT-based denoising have not been previously applied to

the medical imaging domain to the best of our knowledge.

Further, RoMIA is the first framework to combine these three

techniques to improve robustness and to incorporate robustness

improvement into all three key steps of the medical imaging AI

pipeline (training, fine-tuning, and inference). Our results show

that the combined use of all three techniques leads to

substantially better accuracy than any of the techniques alone.
2 Materials and methods

In this section, we first describe the commonly used process for

training medical imaging DNNs, and the challenges faced by such

models due to input noise and variations. We then present the

RoMIA framework to increase model robustness and the

methodology used to evaluate it.
2.1 Pitfalls in conventional training methods

Typically, the creation of a medical imaging model starts with

the collection of a large training dataset with training labels

provided by physicians. In some cases, this may require years of
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data collection. For example, the CheXpert dataset of chest

radiographs represents data collected over a period of 15 years

(4). Next, a DNN is either trained from scratch or a model

trained on a different computer vision dataset such as ImageNet

(35) is transferred using the training data. The model may be

evaluated on held-out or entirely different datasets, and then

deployed. When deployed, the model may be applied to data that

contains noise or variations. Frequently, this leads to significant

degradation in model performance (8).
2.2 RoMIA framework

Figure 1 describes the RoMIA framework to train more robust

medical imaging models. We modify the standard model creation

flow by adding three main components: Noise-added Training,

Fine-tuning with Input Mixing, and DCT-based denoising.

2.2.1 Noise-added training
In Noise-added Training, we introduce synthetic perturbations

(noise) into the training data that mimic those observed in medical

settings. We evaluated the following transformations:

• Glare matte: A filter designed to emulate the effect of glare

observed when displaying the image on a matte screen.

• Moire: A filter designed to simulate the Moire effect, which

produces repetitive interference patterns such as lines or

stripes on the image due to limited resolution.

• Tilt: This transformation simulates a change in perspective that

could result when a photograph of a medical image is taken

using a device such as a smartphone (11).

• Brightness and Contrast: These transformations simulate

changes to the settings in imaging equipment.

• Blur: This transformation simulates the loss in sharpness of the

image due to motion of the patient during capture.

Among all evaluated transformations, we found that the first three

were the most effective in creating more robust models. It bears

mentioning that this result may be due to the fact that we

evaluate robustness on the CheXphoto dataset. Hence, the

transformations that introduce the most photographic noise may

provide the best robustness. Notwithstanding this, the framework

is extensible and additional transformations can be added to

diversify the suite we have implemented.

We consider two strategies for applying noise to the training

dataset: a specific percentage of the images in the dataset are

injected with noise and either added (thereby expanding the

dataset) or replace their original versions (thereby preserving the

size of the dataset). We refer to these strategies as augmentation and

replacement, respectively. All training hyperparameters (learning

rate, batch size, optimizer, epochs, etc.) were kept unchanged.

2.2.2 Fine-tuning with input mixing
In Fine-tuning with Input Mixing, we fine tune the model with a

very small amount of data from a different source to improve the

model’s robustness. Since acquiring large amounts of additional

training data may be challenging in practice, we limited ourselves
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FIGURE 1

Overview of the RoMIA framework to create robust medical imaging AI models. The chest radiographs shown are from the CheXpert dataset (4).
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to just 500 images, which correspond to around 0.22% of the original

training set. While input mixing has been proposed in the literature

as a data augmentation strategy, our contribution is the specific use

of input mixing during the fine-tuning step and its evaluation in the

context of medical imaging models. For our experiments, we draw

these images at random from the ChestX-ray8 dataset from NIH

(16). One challenge with using a very limited amount of data is

that it could easily lead to overfitting. In order to prevent this, we

use input mixing, a well-known technique where two images are

combined into a composite input that contains information from

both. Minimizing loss on mixed inputs has been shown to

approximately correspond to maximizing robust accuracy (36).

We mixed the additional data with images from the original

training set for the fine- tuning phase. We considered three

different mixing strategies that have been proposed in the

literature. With CutMix (14), a randomly selected patch of one

input image is placed into another. With MixUp, the pixels of

two images are averaged in a weighted manner to construct a

composite image. In both cases, the labels from the two images

being mixed are also combined to derive the target label for the

composite input (36, 37). In AugMix, images are mixed with

augmented versions of themselves, so the label does not change

(15). We mix the 500 images from ChestX-ray8 with 1,000

randomly selected images from the CheXpert training set and

fine-tune the model for 3 epochs with these mixed inputs. All

other hyperparameters such as the learning rate and optimizer

were the same as those used in the training stage.
FIGURE 2

Difference between clean (CheXpert) and noisy (CheXphoto) images
in high and low frequencies.
2.2.3 DCT-based denoising
DCT-based denoising is based on the insight that most sources

of noise disproportionately affect the high-frequency components

of an image (38). This is shown in Figure 2, which plots the
Frontiers in Radiology 04
percent difference in the top and bottom 1% of frequencies of

the original and noisy images from the CheXpert (4) and

CheXphoto (9) datasets, where the noisy images were produced

using synthetic digital perturbations, synthetic photographic

perturbations, and photos taken of the images with a smartphone

camera. During inference, we add a preprocessing stage to the

model which uses DCT (discrete cosine transform) to transform

the image into the frequency domain, then removes a set

percentage of high-frequency components, and finally computes

the inverse DCT (15, 39). The percentage of high-frequency

components to be removed from an image (denoted by η) is

determined through an experiment where a small fraction of

the training set (CheXpert, in our experiments) is subject to DCT-
frontiersin.org
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based denoising for different values of η. For each model, the largest

value of η (which corresponds to the most aggressive denoising) that

keeps the AUROC to within 0.005 of the original accuracy (where η

= 0) is chosen. Optimizing the hyperparameter η ensures that the

frequencies removed do not significantly interfere with the features

used by the model for classification.

To summarize, the proposed flow to create robust medical

imaging models consists of transferring a model trained on

ImageNet to the target medical imaging dataset using noise-

added learning, then fine-tuning the resulting model with input

mixing, then finally adding a DCT-based denoiser to the model

before deployment.
2.3 Experimental setup

We implemented the RoMIA framework using the PyTorch

(40), TensorFlow (41), libAUC (42), and OpenCV (43) libraries.

We applied the framework to create models for classification of

chest radiographs. The base models were selected from popular

image classification DNNs trained on the ImageNet (35) dataset

(see Figure 3A). Note that all the networks are Convolutional

Neural Networks (CNNs), since these are the most popular type

of DNN used for image classification tasks. We specifically created

a model to detect Atelectasis, Cardiomegaly, Consolidation,

Edema, and Pleural Effusion. Accordingly, the final fully

connected layer of each base model was removed and replaced

with a layer with five outputs. These models were then transferred

using the CheXpert (4) dataset, which contains 224,316 chest

radiographs of 65,240 patients from Stanford Hospital. For the

fine-tuning step, we randomly selected 500 images from NIH’s

ChestX-ray8 (16) dataset. The learning rate used for both the

transfer and fine-tuning steps was 0.0001, number of epochs was

3 with a batch size of 32, and weight decay was 10−5. The Adam

optimizer and cross-entropy loss were used. For the MixUp (36)

strategy, we use a beta distribution to select values between 0.4

and 0.6 to determine λ, the image mixing ratio. We evaluated the

models on the CheXphoto (9) dataset, which consists of 10,507

natural photos and synthetic transformations of chest radiographs

from 3,000 patients. Since our noise-added training step uses

transformations similar to those in CheXphoto, we only perform

our evaluations on the natural photographs. We repeated each of

our experiments five times with different random seeds.
3 Results

In this section, we present results from evaluation of models

created using the RoMIA framework. We first present the

difference in AUROC of the baseline models when evaluated on a

subset of CheXpert and CheXphoto images. Next, we present the

performance of models trained using RoMIA and compare them

to the baseline models. Subsequently, we perform an ablation

study to investigate the contribution of each of the three

components (Noise-added learning, Fine-tuning with input

mixing, DCT-based denoising) to the overall improvement in
Frontiers in Radiology 05
robustness. We then explore different dataset transformation

techniques for the Noise-added Training step and evaluate their

impact on the model performance. We also compare the

performance between different strategies for input mixing in the

fine-tuning step. Finally, we explore the determination of the

parameter η which controls the percent of high-frequency

components removed from the input during DCT-based Denoising.
3.1 Robustness of baseline models

A key motivation for this work is that baseline models trained

on a certain dataset perform significantly worse on similar datasets

with added noise. To demonstrate this in the context of CheXpert

and CheXphoto, we study the differences in AUROC of a baseline

model trained on CheXpert and then applied to both CheXpert and

CheXphoto data. Figure 3B presents the AUROC scores for the

baseline models on the CheXpert and CheXphoto data. The

figure shows a degradation of 10%–14% in AUROC across all six

models, underscoring the need to create more robust models in

the context of medical imaging.
3.2 Overall improvements from RoMIA and
ablation study

The RoMIA framework consists of three techniques to improve

robustness, so we conduct an ablation study to evaluate each

component. Figure 3C shows the baseline accuracy, the results of

the ablation study (applying each of the three techniques in

RoMIA individually), and the resulting AUROC score when all

three techniques are combined in RoMIA. To capture the benefits

of the proposed framework, we first look solely at the CheXphoto

AUROC values for the baseline and RoMIA models. We observe

around 3%–5% improvement in AUROC, which corresponds to

an average reduction in misclassifications by 22.6%, suggesting

that the proposed framework is capable of creating substantially

more robust models. We also observe a larger improvement in

robustness on deeper models, such as ResNet50 and DenseNet201.

We hypothesize that this is because deeper models can better

learn the more diverse training data which they are presented in

the RoMIA framework. In order to evaluate the statistical validity

of the results, we repeated the training runs for the baseline and

RoMIA models with 10 additional random seeds. We performed a

one-tailed paired t-test and concluded that the improvements were

statistically significant with p < 0.01. Figure 3D presents examples

of inputs that are misclassified by the baseline model but correctly

classified by RoMIA.

Figure 3C also presents the results of our ablation study to

evaluate each of the three components in the proposed

framework. We do this by evaluating the CheXphoto AUROC

when each technique is applied individually. We observe that

overall, each technique has a positive impact on robustness. The

combination of three techniques used in RoMIA boosts AUROC

by up to 5%. We evaluate each technique in more detail in

subsequent sub-sections.
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FIGURE 3

(A) Characteristics of the baseline models used in the experiments and accuracy values (B) AUROC of baseline models on CheXpert and CheXphoto,
(C) AUROC improvement from RoMIA and each of its constituent techniques, and (D) example inputs misclassified by the baseline model but correctly
classified by RoMIA model.
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3.3 Contributions from noise-added
training

Figure 4A explores the impact of various dataset

transformation techniques used in noise-added learning.

Specifically, we transformed 10%, 25%, and 50% of the training

samples in the CheXpert dataset and either added them to the

dataset (augmentation) or replaced the original samples with

them (replacement). We observe that the 25% replacement

strategy worked best across all networks. We note that this
Frontiers in Radiology 06
strategy does not impact training time, as the only overhead

incurred is a one-time transformation (noise addition) to the

inputs, which is insignificant.
3.4 Effect of fine-tuning with input mixing

Several approaches to input mixing have been proposed in the

literature, primarily as methods for data augmentation that lead to

better generalization of machine learning models. To evaluate the
frontiersin.org
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FIGURE 4

(A) Comparing dataset replacement vs. augmentation during noise-added training (ResNet18), (B) comparing different input mixing strategies in RoMIA
for various networks, and (C) determination of frequency cutoff threshold (η) and (D) impact of η on CheXphoto AUROC.
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impact of the mixing strategy in the fine-tuning step of RoMIA, we

consider CutMix (14) and MixUp (36), the two most widely used

strategies, in addition to AugMix (15) and Cutout (44). To

determine which strategy yields higher improvement in

robustness, we compare in Figure 4B the AUROC boosts on the

CheXphoto dataset when each strategy is applied. We observe

that, while all mixing strategies yield improvements over the

baseline, MixUp provides the best results overall, followed by

Cutout and AugMix. This motivated our decision to use MixUp

in the final RoMIA framework.
3.5 Selection of η in DCT-based denoising

A key feature of our framework is the DCT-based Denoising step,

which removes high-frequency noise from the inputs. We use the

parameter η to denote the percentage of high-frequency components

removed from each image. In Figure 4C, D, we consider the impact

of the choice of the parameter η by showing how different η values

affect CheXpert and CheXphoto AUROC. Due to the nature of x-ray

radiographs, we find that removing a large fraction of the high

frequencies does not have a detrimental impact on performance for

either dataset and in fact improves accuracy on the noisy

(CheXphoto) data. We determine η as the largest value that results

in a less than 0.5% decrease in accuracy on the clean (CheXpert)

dataset (Figure 4C). We observe that this value of η improves
Frontiers in Radiology 07
performance on the CheXphoto dataset (Figure 4D). This result

underscores the efficacy of DCT-based denoising.
4 Discussion

The success of AI in recent years has led to significant interest

in applying it to the medical field. In particular, since DNNs have

been very successful in image processing applications, they are

frequently being applied to medical imaging tasks. One of the

challenges that must be addressed when applying AI to any

critical application, and certainly to medical imaging, is their

robustness under conditions encountered in the real world.

Previous research has shown that DNN models can be very

brittle in the presence of input noise and variations. Our work is

a first step towards improving the robustness of medical imaging

models, with a particular focus on the kinds of noise

encountered in medical settings. Although our experimental

setup focuses on models for classifying chest radiographs, the

techniques we propose are worth exploring in other medical

imaging applications.

While the RoMIA framework achieves considerable

improvements in robust accuracy, there still remains a gap in

accuracy on clean and noisy inputs, especially for high levels

of noise, that could be addressed by future work. One possible
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direction is to address robustness when training from scratch, in

contrast to RoMIA, which only addresses it in the transfer

learning step. Also, our work evaluates robustness as accuracy

in classifying photographs of chest radiographs (i.e., the

CheXphoto dataset). Future work could evaluate robustness

under a broader set of conditions. Another interesting

direction would be evaluating these techniques in a broader

range of medical imaging applications. Given the criticality of

medical imaging applications, robustness evaluation should be

made a standard part of the regulatory evaluation process for

these models. Finally, human checking of the output of AI

models is one way of improving the confidence in their

decisions. This could be enabled by creating explainable

models that produce a human-interpretable justification for

their decisions. Addressing these issues will go a long way

towards enabling the adoption of AI-based medical imaging

in clinical practice.
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