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Applications of AI in multi-modal
imaging for cardiovascular
disease
Marko Milosevic1, Qingchu Jin1, Akarsh Singh2 and Saeed Amal1*
1Roux Institute, Northeastern University, Portland, ME, United States, 2College of Engineering,
Northeastern University, Boston, MA, United States
Data for healthcare is diverse and includes many different modalities. Traditional
approaches to Artificial Intelligence for cardiovascular disease were typically
limited to single modalities. With the proliferation of diverse datasets and new
methods in AI, we are now able to integrate different modalities, such as
magnetic resonance scans, computerized tomography scans, echocardiography,
x-rays, and electronic health records. In this paper, we review research from the
last 5 years in applications of AI to multi-modal imaging. There have been many
promising results in registration, segmentation, and fusion of different magnetic
resonance imaging modalities with each other and computer tomography
scans, but there are still many challenges that need to be addressed. Only a
few papers have addressed modalities such as x-ray, echocardiography, or
non-imaging modalities. As for prediction or classification tasks, there have only
been a couple of papers that use multiple modalities in the cardiovascular
domain. Furthermore, no models have been implemented or tested in real
world cardiovascular clinical settings.
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Introduction

Cardiovascular diseases (CVD) are the worldwide leading cause of death, representing

32% of global deaths (1). For patients suffering from cardiovascular diseases in the United

States from 2000 to 2008, the mean annual direct medical costs was $18,953, which

extrapolates to over $400 billion for the entire nation (2). In 2016, the American Heart

Association found that 41.5% of Americans had at least one CVD condition, and they

projected that costs would exceed $1.1 trillion dollars by 2035 (3). It is estimated that

5%–10% of US healthcare spending could be saved with wider adoption of artificial

intelligence technologies (4).

Many different imaging technologies are used in cardiac assessment: x-ray, computed

tomography (CT), multiple varieties of magnetic resonance imaging (MRI), and

echocardiography (Echo). Physicians consult multiple of these modalities, along with

lab results, vital signs, and other clinical observations. While most research in artificial

intelligence for healthcare has been on a single modality, as the field progresses, there

have been increasing attempts to leverage multiple modalities for a variety of tasks.

There have been several recent survey articles on multi-modality for cardiovascular

diseases with different focuses (5–9). In this survey, we focus on providing a near

comprehensive review of multi-modal imaging for cardiovascular diseases since 2018.

We retrieved all articles from PubMed, Google Scholar, and IEEE-Xplore that contained
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terms relevant to multi-modality, cardiac systems, and artificial

intelligence. See Figure 1 for a flowchart of our literature search

and selection process. We eliminated any papers whose authors

did not detail the architecture or used commercial technology in

their models, such as Siemen’s TrueFusion or Philip’s

EchoNavigator. With the publication of three open datasets for

competition by Zheng, there have been many recent papers

published using the same datasets for similar problems (10–12).

For these papers, we tried to choose the most representative

papers for each task.

Most recently published papers addressed registration,

segmentation, and fusion of multi-modal images. Registration is

the problem of transforming two or more pictures of the same

objects to ensure they are aligned with each other (13). In the

context of medical images, it is important that all anatomical

structures are aligned across the images. Image fusion is generally

the process of combining two or more images into the same

space or combined image, whereas image segmentation is the
FIGURE 1

Literature review and filtering flowchart.
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process of registering regions of interest in an image. We

examined nine papers about registration, segmentation, and

fusion in Section 2.1, but could only identify two papers

addressing predictive tasks or for diagnostic aids discussed in

Section 2.2. Moving beyond cardiovascular imaging, multi-modal

imaging extends its reach, prompting us to highlight two papers

of interest in Section 2.3. These papers, although outside the

cardiovascular domain, may serve as inspirations for future

directions. While promising results have emerged in the

registration, segmentation, and fusion of various magnetic

resonance imaging modes with both each other and computer

tomography scans, there remains a gap in the literature

concerning modalities such as x-ray, echocardiography, or non-

imaging modalities like electronic health care data. Additionally,

the exploration of multi-modal imaging for cardiovascular

prognosis or diagnostic assistance is relatively limited. Moreover,

there is a noticeable absence of investigations applying multi-

modal imaging to real-world cardiovascular clinical scenarios.
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Literature review

Segmentation, fusion and registration in
cardiovascular imaging

Wang, et al. propose a fusion segmentation model for

segmenting aortas (14). Skip connections in a neural network are

connections that connect two non-adjacent layers in an

architecture to allow for models to retain information from

higher layers (15). Encoder-Decoder networks are a broad

category of models that first encodes a structure into a

representation and then decodes the representation into another

structures (16). The authors employ an encoder-decoder

convolutional network based on U-Net to minimize cross-

entropy pixel-wise loss for both Computed Tomography (CT)

and Magnetic Resonance (MR) scans with skip connections

between layers. In between the encoding and decoding layers,

they include a fusion layer of the encoded representations of

both CT and MR scans which produces segmentations of both

the CT and MR scans that includes information from the other

(17). The model is trained and tested on a dataset with CT and

MR scans of 21 participants diagnosed with abdominal aortic

aneurysms. Unfortunately, the authors do not provide any

summary metrics for the performance of their model on their

test set, but they do note that their validation accuracy in their

training for CT separately is 99.1% compared to 98.8% for

fusion-CT. They also note that rotation of the scans induces an

increase in feature distance of the fusion models which was not

observed in the separately trained models.

Peoples, et al. propose a registration method for transesophageal

echocardiography (TEE) to a preoperative cardiac CT scan in order

to aid navigation of endoscopy (18). The authors construct a

complicated nonrigid registration technique where the four

cardiac chambers are manually segmented in the preoperative CT

and chambers are manually delineated in the perioperative CT.

The four cardiac chambers are treated as separate structures. For

each TEE ultrasound image, a point set is extracted using an edge

detector and an orientation is assigned. Registration of the TEE

images to the matching 3D slices of the CT scan are modeled

using a hybrid mixture model and expectation maximization to

match the TEE images to the 3D CT scans. The data set

consisted of 4 patients with a total of 27,000 slices. With such a

small sample size of patients, they found no statistically

significant difference for the root mean square error between the

ultrasound virtual points and model points and the expected root

mean square error. The authors claim this study is proof of

potential feasibility of the model.
TABLE 1 Performance evaluation of model by scan and structure.

Dice

Endocardium Epicardium Myocardium E
LGE 0.866 ± 0.063 0.896 ± 0.036 0.717 ± 0.076

T2 0.794 ± 0.124 0.908 ± 0.043 0.717 ± 0.129

bSSFP 0.903 ± 0.048 0.917 ± 0.027 0.764 ± 0.064

T2 (+GMM) 0.827 ± 0.094 0.878 ± 0.046 0.744 ± 0.094
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Zhuang introduces a method to simultaneously segment multi-

source images in a common space by using multivariate mixture

models (MvMM) and a maximum log-likelihood and tests it on

segmentation of scans of myocardial tissues (10). The

Multivariate Mixture Model is a generalization of Gaussian

Mixture Models that accounts for multiple modality image

vectors. Once the tissue type of a position is known, the intensity

distributions of different images become independent.

Consequently, the probability that a vector of images will be

produced from given parameters becomes a product of the

probabilities per image, and the intensity probability density

function per image is then the standard multi-component

Gaussian Mixture Model. The MvMM is initialized and

regularized by the prior probabilities from an atlas which can be

registered to the common space of the target images using the

conventional methods in the atlas-based segmentation framework

(18). To account for spatial and anatomical constraints, Zhuang

incorporates a Markov Random Field to model neighborhood

dependencies for each pixel. Since there exist potential image

misalignment and variance in pixel-dimensions, transformations

on both slices of an image and between images were modelled.

To evaluate the model, cardiac magnetic resonance (CMR)

sequences were collected from 45 patients. Each of these patients

were scanned using a late gadolinium enhancement (LGE) CMR,

T2-weighted CMR, and balanced-Steady State Free Precession

(bSSFP) cine sequence. These three scans capture different

structures of the heart. To evaluate the validity of the

segmentation results, the Dice metric, average contour distance,

and Hausdorff distance were calculated between the automatic

segmentation and the corresponding gold standard segmentation.

Since Zhuang evaluated the model across a wide variety of

metrics, scans, and configurations, it is not feasible to report all

of them, but r -efer to Table 1 for performance of the standard

model configuration. In LGE scans, the proposed model

outperformed a conventional GMM model (p < 0.01), and

although U-Net obtained a similar average Dice score as the

proposed model, it had twice the standard deviation.

Blendowski, et al. propose a modality independent

convolutional encoder-decoder network mapping to a common

shape space (19). Their model is then used to align computer

tomography (CT) and magnetic resonance imaging (MRI) scans.

Early attempts in combining different modalities, such as by

Zöllei et al., had misleading statistical correlations in image

patterns that did not correspond to real anatomical structures

(20). Blendowski et al. do not require aligned images or ground-

truth deformation fields to be trained. To accomplish these tasks,

first a convolutional auto-encoder with no skip-connections is
ACD (mm) Hausdorff distance (mm)

ndocardium Epicardium Endocardium Epicardium
2.54 ± 1.00 2.62 ± 0.91 10.6 ± 4.67 11.2 ± 4.06

3.75 ± 2.18 2.46 ± 1.27 11.9 ± 5.90 9.94 ± 5.94

2.06 ± 0.96 2.16 ± 0.81 9.23 ± 5.06 10.7 ± 4.56

2.88 ± 1.69 2.46 ± 1.13 10.6 ± 5.99 12.1 ± 5.47

frontiersin.org

https://doi.org/10.3389/fradi.2023.1294068
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Milosevic et al. 10.3389/fradi.2023.1294068
used to generate segmentation of the different modalities. For the

training, a joint-training of both the CT and MRI images as well

as the segmentations is used following previous work of

Bouteldja, et al. (21). Second, they seek to align the CT and MRI

scans through iteratively guided registration on their

reconstructed shapes by using gradient descent to minimize

cross-entropy loss of a linear interpolation between the two

encodings. To test their model for segmentation, the authors use

a dataset of 20 MRI and 20 CT whole-heart images with

substructures. With a four-fold cross-validation, they achieve

Dice–Sørensen coefficient of 0.84 for CT and 0.79 for MRI. This

fell slightly short of the U-Net segmentation, which achieved

scores of 0.87 for CT and 0.84 for MRI on the same dataset.

Nevertheless, the CAE-generated segmentations can play a crucial

role in guiding the iterative registration of multimodal

segmentation. Their method produced a Dice–Sørensen

coefficient of 0.653 compared to 0.608 from classical self-

similarity composition methods by Heinrich et al. (22).

Zheng, et al. develop a deep learning multi-modal framework

for Cardiac MR (CMR) image segmentation using three different

CMR scans: late gadolinium enhancement (LGE), T2-weighted

(T2), and the balanced-Steady State Free Precision (bSSFP) cine

sequence (23). The three types of CMR have different

advantages, with LGE enabling clear observation of myocardial

infarction, T2 showing local acute injury, and bSSFP can capture

cardiac motion and clear boundaries (24). The first step of the

model is to perform automatic registration of the T2 scan onto

the bSSFP scan using the Normalized Mutual Information

criterion (25). After co-registration of the scans, the second step

is to feed the two images into U-Net to generate a segmentation

of the bSSFP scan. The next step was to register the bSSFP and

T2 scans to the LGE scan, as well as to appropriately transform

the generated segmentation labels to LGE space. Afterwards, all

three co-registered scans were once again inputted into a U-Net

network to segment the LGE space using the generated bSSFP

segmentation labels as a ground truth. Finally, the model was

fine-tuned using 5 LGE scans with true segmentation. The

dataset consisted of 45 patients with LGE, T2, and bSSFP CMR

scans from the dataset released by Zhuang as part of a challenge

(10). The model was evaluated on its ability to segment three

different structures, achieving Dice coefficients of 0.8541 ± 0.0581

for the left ventricular, 0.7131 ± 0.1001 for the left ventricular

myocardium, and 0.7924 ± 0.0871 for right ventricular (RV).

Since the test set of the competition dataset was not released at

the time of publication, the authors were not able to compare

their results to other models.

Chartsias, et al. introduce DAFNet, a multi-component 2D

model for multimodal and semi-supervised segmentation,

specifically for myocardial LGE scans and cine-MR scans (26).

DAFNet seeks to map multimodal images of an object into

disentangled anatomy and modality factors, and then fuses the

disentangled anatomy factors to combine multimodal

information. Specifically, a U-Net based encoder and decoder

structure is used to disentangle and create the segmentation, and

a spatial transformer network is used to fuse the anatomical

structures before being decoded using either a FiLM-based
Frontiers in Radiology 04
decoder or SPADE-based decoder (17, 27, 28). They evaluate

their models on three different datasets, one of which is a set of

28 patients with cine-MR and LGE MR scans (29), and another

is a set of cine-MR and CP-BOLD images of 10 mechanically

ventilated canines (30). DAFNet was compared in multiple

configurations to various baseline and benchmark models at

varying levels of annotations. When all target annotations are

available and segmenting the target modality, the usage of

multiple inputs at inference time by DAFNet obtains similar or

better Dice score than all other benchmarks, but considerably

reduces the standard deviation. When target annotations are not

all available, DAFNet significantly outperforms all other models

at unsupervised learning. Similarly, DAFNet outperforms in

semi-supervised cases as well.

Ding, et al. propose a multi-modality registration network

MMRegNet to align medical images to a common space (31).

MMRegNet is constructed on a U-shape convolutional network

which takes a pair of images as input and predicts forward and

backward dense displacement fields built on previous work from

the authors (32). The authors evaluated their model on a set of

20 MR and 20 CT images for left ventricle registration from a

public dataset (33). MMRegNet was trained to perform

registration of MR to CT images and evaluated on Dice

Coefficient Score and Average Surface Distance between the

corresponding label of moved and fixed images. MMRegNet was

compared to three classical and state-of-the-art registration

methods Sy-NCC (34), Sy-MI (34), and VM-NCC (30).

MMRegNet outperformed all three with a DSC of 80.28 ± 7.22,

and only VM-NCC had a better ASD score.

Luo and Zhuang construct an information-theoretic metric

called the χ-metric and co-registration algorithm χ-CoReg that

identifies the statistical dependency between an arbitrary number

of images (35). They combine this with a deep learning network

to allow for end-to-end simultaneous registration and

segmentation of medical images across modalities. The authors

follow a similar probabilistic framework to that of Zhuang’s

previous work described above (10). Given a set of images, co-

registration aims to find the corresponding set of transformations

that aligns them into a common coordinate system. The issue

with classical information theoretic approaches to co-registration

is that it becomes increasingly difficult to compute the joint

entropy as the size of the set of images increases. By assuming

an a priori knowledge of common anatomy across the set of

images as a set of latent variables, the authors reduce the

uncertainty of the intensity-class mutual information metric, and

they then define the χ-metric as the sum of the intensity class

mutual information metric and the Kullback–Leibler divergence

between the joint distribution and the product of its marginals,

which eliminates the computation of the joint entropy term. χ-

CoReg is classical optimization of the χ-metric across spatial

transformations and common space parameters. The deep

learning network architecture is built with an encoder, a

bottleneck, a segmentation decoder and a registration decoder

that consists of residual convolutional blocks. The authors

evaluate their model across a variety of datasets and metrics, one

of which is the MoCo dataset which consists of mid-ventricular
frontiersin.org
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short-axis first-pass cardiac perfusion for 10 patients at both rest

and adenosine induced stress phases. The χ-CoReg outperformed

all other comparable co-registration methods across different

transformations, with Dice similarity coefficient (DSC) scores of

78.4 ± 8.7 for translations, 79.2 ± 7.2 for rigid transformations,

and 80.1 ± 6.0 for FFD transformations. The authors also tested

the algorithm for segmentation on expanded version of Zhuang’s

previous dataset with 45 patients with LGE CMR, T2-weighted

CMR, and bSSFP. The proposed model outperforms the MvMM

models with segmentation Dice coefficient of 92.6 ± 2.0 for LGE,

92.7 ± 3.4 for T2, and 92.4 ± 3.1 for bSSFP.

There are a variety of sophisticated methods and architectures

employed for image registration. Image segmentation seems to be

narrowly dominated by U-Net architectures (17), with the

exception of Zhuang who employs a multi-variate mixture model

and Blendowski who employs a general encoder-decoder

architecture without skip-connections (10, 19). Segmentation

performed well for cardiovascular tasks, with Dice coefficient

scores of greater than 80 for most tasks. There have not been

any papers that assessed image fusion in and of itself for

cardiovascular systems, rather fusion was generally employed to

aid in segmentation.
Prediction and diagnostic aid for
cardiovascular diseases

Chaves, et al. develop a framework that leverages deep learning

and machine learning models for opportune risk assessment of

ischemic heart disease (IHD) (36). Ischemic heart disease, or

coronary heart disease, are heart problems caused by narrowed

coronary arteries, and is the leading cause of death in both men

and women—causing one of every six deaths in the US (37).

Traditional diagnostic tools such as Framingham coronary heart

disease risk score (FRS) and pooled cohort equations (PCE)

typically use demographic factors, cholesterol values, and blood

pressure, but only have modest performance with c-statistic

values of between 0.66–0.76 for FRS and 0.68–0.76 for PCE (38).

The proposed model utilizes automatically measured imaging

features extracted from abdominopelvic CT examinations, along

with relevant information from the patient’s electronic medical

records (EMR). Their dataset consisted of 8,197 CT images from

patients with at least 1 year of follow-up and 1,762 CT images

from 1,686 patients with at least 5 years of follow-up. All

available EMR data dated before the scans was collected for

each patient.

Three baseline models were constructed. First, an imaging only

CNN model that was based on EfficientNet-B6 was trained to

predict the risk of ischemic heart disease using a single axial CT

slice (39). The initial model weights were derived from a

EfficientNet-B6 model that was pre-trained on ImageNet

classification (40). The second was a segmentation model built

using a 2.5-dimension U-Net CNN that was trained on a set of

320 axial CT slices manually segmented (17). For each

segmented CT slice, two body composition imaging biomarkers

were calculated: ratio of visceral to subcutaneous adipose tissue
Frontiers in Radiology 05
(VAT/SAT ratio) and average muscle radiodensity in Hounsfield

units. These two metrics were used as features for a L2 logistic

regression with ten-fold cross validation to predict IHD

outcomes at 1 and 5 years. The third baseline model was limited

to only clinical records. A variety of vital signs, demographic

data, relevant laboratory results, medications, and were compiled.

In total 434 features were extracted and used for XGBoost to

predict ischemic heart disease.

From these three baseline models, three fusion models were

created. The first fusion model combined pooled cohort

equations with the segmentation model (PCE + Segmentation) by

concatenating the PCE features with the VAT/SAT and average

muscle radiodensity generated by the segmentation model. The

second fusion model combined the risk output of the imaging

model with the risk output from the clinical model by using

an L2 logistic regression (Imaging + Clinical). The final fusion

model (Figure 2) combined the risk factors from imaging,

clinical and segmentation.

All six models were compared to each other and to the classic

risk factors given by FRS and PCE. All models were evaluated on

both the area under curve of the receiver operator curves

(AUCROC) and precision recall curves (AUCPR), and 95%

confidence intervals were obtained by the stratified bootstrap

method. Refer to Table 2 for a full report of statistics. In the 1-

year cohort, none of the models exhibited statistically significant

performance surpassing PCE. in the 5-year cohort, both the

clinical and imaging baselines, as well as the fusion approaches

involving imaging, clinical, and segmentation, significantly

outperformed PCE. The primary limitation of this approach is

that modalities are separately modelled before fusion, thus it may

miss the full range of interactions between modalities.

Myocardial infarction (MI) due to prolonged ischemia in the

heart can lead to the development of myocardial scarring, which

is a common diagnostic marker for intervention. Guo, et al.

develop an automated model for quantifying the heterogeneity in

myocardial tissue from 2D short-axis cine and 3D LGE MRI

scans (41). The first step of the model was to take the cine slices

to interpolate a three-dimensional image and create a single

segmentation using U-Net that was validated with the STAPLE

algorithm (42). The second step of the model was to register the

interpolated cine images to the 3D LGE scans using an affine

registration that used block matching (43). The resulting

transformation was used to register the cine segmentation to the

LGE scans and constrain the heterogeneity analysis to the area

within the segmentation. The LGE image signal intensities were

clustered into 3 classes using classic k-means clustering. The

largest connected component of the class with lowest intensity

was used to identify an initial remote region. Regions of gray

zone and infarct core were identified by either using a standard-

deviation threshold (SD) method or full-width-at-half-maximum

clustering (FWHM) method (44). Finally, the resulting areas

were cleaned for noise by using a normalized cut method (45).

To evaluate the model, ten pigs (Yorkshire swine) were scanned

using both balanced-Steady State Free Precision (bSSFP) for

generating 2D short-axis cine MRI scans and late gadolinium

enhancement (LGE) 3D MRI scans. For the 87 cine slices that
frontiersin.org
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FIGURE 2

Proposed architecture of multi-modal data fusion combining imaging and clinical data. The blue line shows which sources are used by the Pooled
Cohort Equations (PCE). Figure reprinted from Chaves, et al. (36).

TABLE 2 Proposed model performances measured by AUCROC and AUCPR.

Model 1y AUROC
(95% CI)

P 1y AUCPR
(95% CI)

P 5y AUROC
(95% CI)

P 5y AUCPR
(95% CI)

P

FRS .71 (.67–.76) .04 .09 (.07–.12) .06 .71 (.66–.76) .24 .40 (.35–.48) .73

PCE .75 (.71–.81) – .12 (.10–.17) – .73 (.69–.78) – .41 (.36–.48) –

Segmentation .70 (.65–.74) .10 .08 (.07–.10) .08 .73 (.68–.78) .85 .43 (.38–.51) .64

PCE + Segmentation .76 (.71–.81) .68 .12 (.10–.15) .90 .74 (.70–.79) .45 .43 (.38–.51) .41

Clinical only .76 (.72–.81) .57 .12 (.10–.17) .98 .84 (.80–.87) <.001 .64 (.58–.72) <.001

Imaging only .74 (.70–.78) .70 .10 (.08–.15) .55 .81 (.76–.85) .02 .64 (.57–.71) <.001

Imaging + clinical fusion .77 (.73–.81) .38 .13 (.10–.19) .73 .86 (.82–.90) <.001 .70 (.63–.77) <.001

Imaging + clinical + segmentation fusion .74 (.70–.79) .74 .13 (.10–.18) .78 .86 (.82–.89) <.001 .70 (.63–.77) <.001

P-values correspond to comparisons with PCE. Largest AUC values and P-values less than 0.05 are bolded.

Milosevic et al. 10.3389/fradi.2023.1294068
contained scar tissue, the segmentation achieved a Dice similarity

coefficient of 0.87 ± 0.12. The registration of the cine

interpolations to LGE scans had a dice similarity coefficient of

0.90 ± 0.06. The validate the quantification, two observers

manually segmented the LGE scans for gray zone (GZ), infarct

core (IC), and healthy myocardium. For both the SD and

FWHM methods, automated IC, GZ, and IC + GZ volumes were

strongly correlated with manual measurements with the Pearson

correlation being greater than 0.70 across all cases. The

correlations could not be statistically distinguished from

interobserver correlations with p-value of 0.13.

In the past 5 years, we identified only two papers that employed

multi-modal imaging for tasks beyond registration, segmentation,

and fusion with open data. Chaves, et al. had the only paper to

combine electronic health care record data with imaging (36).
Frontiers in Radiology 06
Guo, et al. essentially adapt a segmentation task to calculate an

important diagnostic metric (41).
Beyond cardiovascular

Liu, et al. propose a convolutional based CT and MRI image

fusion model MMAN (46). The model consists of three parts:

two separate encoder blocks for each modality (CT and MRI), a

fusion block and a decoder block (Figure 3). The encoder blocks

both consist of two sub-networks, the first a multi-scale

convolutional (MC) block and the second a mixed attention

(MA) block. The MC block is inspired by Res2net (47), a four

branch network to extract features at various depths. The MA

block consists of a dual channel attention module and a dual
frontiersin.org
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FIGURE 3

Overall framework of proposed muti-scale mixed attention network. Figure reprinted from Liu, et al. (46).

Milosevic et al. 10.3389/fradi.2023.1294068
channel spatial attention module. The decoder block is a

straightforward stack of convolutional layers to recover the fused

image from the fused features. The dataset was evaluated on 561

pairs of CT and MRI images from the Whole Brain Atlas. The

authors compare their fusion model to 7 standard and state-of-

the-art fusion models across 6 different metrics: correlation

coefficient (CC), mutual information (MI), nonlinear correlation

information entropy (NCIE) (48), spatial frequency (SF), phase

congruency (PC) (49), and the sum of the correlations of

differences (SFD) (50). The proposed fusion model scored 0.8179

CC, 4.2488 MI, 7.8951 SF, 0.3882 PC, 0.8124 NCIE, and 1.6040

SCD, outperforming all other models across all metrics except

phase congruency. MRI images provide high resolution

anatomical information for soft tissues, while CT images can

detect dense structures, thus the fusion of such images can

hopefully provide the benefits of both scans and aid physicians

in more efficient diagnosis. The paper proposes an interesting

architecture that should easily be transferable across domains.

Soenksen, et al. propose a unified Holistic AI in Medicine

(HAIM) framework to test large multimodal health databases

across a variety of predictive tasks (51). They test their

framework on a large dataset with 6,485 patients and 34,537

entries across four different modalities: tabular, time-series, text,

and x-ray images. Their HAIM framework (Figure 4) consists of

creating embeddings for the four different modalities and then

fusing the embeddings with XGBoost (52). Tabular data was

transformed and normalized as appropriate, time-series were

embedded by generating representative statistical metrics, natural

language inputs were processed by a pre-trained transformer to

generate an embedding of fixed size, and x-ray images were

processed using a pre-trained CNN network. HAIM was

evaluated across 12 predictive tasks: length of stay, 48 h

mortality, fracture, lung lesion, enlarged cardio mediastinum,
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consolidation, pneumonia, atelectasis, opacity, pneumothorax,

edema, and cardiomegaly. HAIM outperformed canonical single-

modality approaches for all 12 tasks by an average percent

improvement of 9%–28% of the area under the receive operator

curve. HAIM is a framework that can be straightforwardly

expanded with other modalities and other tasks.

We included Liu, et al. work since they introduce a novel

architecture that should be easily adaptable to cardiovascular

imaging, and evaluate their model purely on image fusion itself

(46). Soenksen, et al. provide a framework on how large

health record datasets combined with imaging information can

be used for a variety of predictive tasks with a simple joining

of architectures (51).
Discussion: limitations and future
directions

The recent publication of the three open multi-modal datasets

has led to a lot of novel research, which shows that research in AI

for healthcare is often driven by the dataset available. Refer to

Table 3 for the papers included in the review. Regrettably, these

open multimodal datasets are constrained both in size and

modality scope. In particular, the scarcity of open multi-modal

datasets with labeled pathologies contributes to the comparatively

few published papers on the diagnosis or prediction of

cardiovascular diseases and conditions. Specifically, we aim to

adapt Ghanzouri et al. methodology for diagnosing peripheral

artery disease by integrating electronic health record information

and merging it with imaging data (51). While most of the papers

have explored modal fusion involving various magnetic resonance

imaging and computer tomography scans, the integration of

modalities like x-ray, echocardiography, and non-imaging
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FIGURE 4

Proposed holistic artificial intelligence in medicine (HAIM) framework. Figure reprinted from Soenksen, et al. (51).
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modalities remains relatively scarce. Even beyond our constraint to

open datasets, our search identified only one paper in the last 5

years that combines echocardiography and magnetic resonance (52).

For registration and fusion, a diverse range of methods and

models are utilized across the surveyed literature. In contrast,
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variations or modifications of U-Net seem to be the near

universal favorite for segmentation tasks. There have been many

recent papers on using generative adversarial networks (GANs)

to segment medical images (54). In future, we anticipate

increased experimentation with GANs for the segmentation of
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TABLE 3 Summary of reviewed papers categorized by section and arranged chronologically, detailing modalities, objectives, and architectures.

Authors Year Modalities Objectives Architectures
Wang et al. (14) 2018 CT, MRI Aorta segmentation U-Net

Peoples et al. (18) 2019 Transesophageal echocardiogram,
CT

Registration Hybrid mixture model

Zhuang (10) 2019 LGE, T2, and bSSFP MRI Registration, segmentation Mixture models, Markov random field

Blendowski et al. (19) 2020 CT, MRI Segmentation Encoder-decoder

Zheng et al. (23) 2020 LGE, T2, and bSSFP MRI Registration, segmentation U-Net

Chartsias et al. (26) 2021 LGE and bSSFP MRI Fusion, segmentation U-Net, SPADE, FiLM

Ding, et al. (31) 2022 CT, MRI Registration U-shape CNN

Wang, et al. (53) 2022 LGE, T2, and bSSFP MRI Myocardial scar and edema segmentation U-Net, deep auto-weighted supervision, pixelwise
attention modules

Luo and Zheng (35) 2023 LGE, T2, and bSSFP MRI Registration, segmentation χ-CoReg, encoder-decoder

Chaves et al. (36) 2021 CT, EHR Ischemic heart disease diagnosis EfficientNet-B6, XGBoost, logistic regression

Guo, et al. (41) 2021 bSSFP and LGE MRI Segmentation, myocardial tissue heterogeneity
quantification

U-Net, STAPLE, K-means, Full-Width-At-Half-
Maximum Clustering

Liu, et al. (46) 2022 CT, MRI Fusion Encoder-Decoder, Res2Net, Dual Attention

Soenksen et al. (51) 2022 x-Ray, tabular data, time-series,
and EHR

Various predictive tasks CNN, Transformer, XGBoost
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multi-modal images, and possibly even automatic annotation of

such images.

One of the primary directions of current AI is utilizing

pretrained foundation models such as BERT (54). Although

foundation models have demonstrated success in other domains,

task-specific models have generally proven more effective for

real-world medical imaging analysis (53). Our review reveals that

only the architecture proposed by Chaves, et al. effectively

incorporates foundation models, underscoring the potential for

further research in this direction (30).

In a real-world clinical setting, the robustness of models holds

significant importance. Many models were trained exclusively on

data from a single source with curated scans, making it

challenging to ascertain their generalizability. As more diverse

datasets become accessible, it becomes imperative to assess the

performance of these models across varied datasets. Additionally,

addressing the challenge of missing modalities remains a gap in

the scope of clinical applications, with few models addressing

how to account for missing modalities. Notably, none of the

models in the reviewed papers underwent evaluation by experts

for interpretability and usability in hypothetical real clinical

workflows, as demonstrated in Singh et al. (56).

Over the last 5 years there has been a considerable amount of

work in artificial intelligence that leverages multi-modal imaging.

The successful application of AI in this context has the potential

to significantly impact clinical decision-making, ultimately

resulting in improved patient outcomes and a reduction in

healthcare costs.
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