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Australian Imaging Biomarkers and Lifestyle flagship study
of ageing§

1SilverGate Team, IBM Argentina, Buenos Aires, Argentina, 2IBM T. J. Watson Research Center,
Yorktown Heights, New York, NY, United States
Data collection, curation, and cleaning constitute a crucial phase in Machine
Learning (ML) projects. In biomedical ML, it is often desirable to leverage
multiple datasets to increase sample size and diversity, but this poses unique
challenges, which arise from heterogeneity in study design, data descriptors,
file system organization, and metadata. In this study, we present an approach
to the integration of multiple brain MRI datasets with a focus on
homogenization of their organization and preprocessing for ML. We use our
own fusion example (approximately 84,000 images from 54,000 subjects,
12 studies, and 88 individual scanners) to illustrate and discuss the issues faced
by study fusion efforts, and we examine key decisions necessary during
dataset homogenization, presenting in detail a database structure flexible
enough to accommodate multiple observational MRI datasets. We believe our
approach can provide a basis for future similarly-minded biomedical ML projects.

KEYWORDS

data preparation, data scarcity, biomedical machine learning, brain MRI, dataset fusion

1 Introduction

In recent years, significant progress has been made in the field of neural networks,

particularly in the domain of biomedical image analysis (1). Their performance gains,

however, often require large numbers of samples for training (2, 3) in accordance with

increased model complexity (4).

The issue of data scarcity as an important problem in deep learning models is a well-

studied concern, particularly in the medical domain (5). This scarcity is primarily

attributed to data privacy requirements, which limit biomedical data sharing (5).

According to Willemink et al. (6), the chief obstacle to the development of clinical

implementations of AI algorithms is the availability of a large, curated, and

representative training set. While compliance with ethical code and privacy regulations

are a prerequisite, the existing framework for health data collection and distribution

hinders researchers from fully leveraging the potential of AI algorithms (7).

In comparison to non-biomedical public image datasets (8), most biomedical imaging

datasets are orders of magnitude smaller (9). Furthermore, many of these datasets are
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captured within specific medical facilities, resulting in data that are

limited to a particular population or group of patients and acquired

using a restricted range of medical equipment. Consequently, when

these models are applied in different settings, significant

performance issues arise due to dataset shift (10): a mismatch in

the distribution between data used for training a model and data

used when applying the model due to changes in acquisition

conditions (11). The need for robustness against dataset shifts in

light of the restricted conditions of most studies is a key reason

for combining data from multiple sources from heterogeneous

settings in biomedical machine learning (ML).

Sample numbers, diversity, and robustness are not the only

reasons for combining data from multiple studies. Certain models

become feasible with a fused dataset that are not possible using

individual studies. One example would be a model that can

capture brain aging through the complete human lifespan (12, 13).

Most individual studies focus on specific age ranges: some more

concerned with brain development, others focus on young adults,

while others target older adults. More generally, combining studies

with overlapping but non-identical brain ages increases the

coverage of phenotypes that be modeled simultaneously.

Integrating data from diverse studies comes with unique

complications. A nontrivial one is the lack of consensus on

diagnostic labels. In non-biomedical computer vision datasets, the

task of mapping classes from different datasets can often be

accomplished straightforwardly. When addressing object detection

challenges, mapping classes representing commonly recognized

objects in the human domain can be a relatively simple task and

even automatized (14). In contrast, the granularity of diagnostic

classes may not exhibit a one-to-one correspondence across

biomedical datasets, differences that might reflect a changing

understanding of pathologies (15). Secondly, datasets reflect

disparate study designs. For example, some datasets belong to

cross-sectional studies, while others are longitudinal. This is

reflected in the organizational structure of datasets, making it

challenging to define a structure that can accommodate both.

Moreover, even after defining a common structure to be used

across datasets, making sense of the internal structure of each

study is a labor-intensive effort. It implies reviewing heterogenous

source dataset documentation and comparing it with included data

files. With this information, decisions must be made to map the

original dataset structure to the common one. Sources of potential

conflict are manifold and can range from cultural differences

across studies (e.g., how levels of education are conceived in

different countries) to inconsistencies between the common

structure and data (e.g., how to encode a diagnosis event that

occurred between visits in a visit-based study). Anticipating these

challenges during the design of the common structure and before

ingestion of individual studies can simplify this aspect considerably.

Here we present and discuss, as an illustrative example in brain

MRI, our own implementation of a massive brain imaging dataset

(MBID) from the combination of multiple smaller studies. This

includes designing and creating a relational database that can

accommodate all the data types required, with the goal of

combining diverse source datasets into a common structure/

database. We further discuss many of the challenges we faced and
Frontiers in Radiology 02
decisions made while building this structure and mapping

individual studies to it. We examine image preprocessing steps,

simple quality control measures, and provide statistics of the

images contained in the MBID. We comment on limitations of our

effort and steps required to expand on it to accommodate other

modalities or more general study designs. We hope the discussion

of the issues and solutions we implemented might help guide

similar efforts in the expanding field of biomedical machine learning.
2 Results

To increase sample size and diversity for ML models, we built an

MBID that integrates multiple studies, including large cohort studies

of the general population and smaller case-control studies focusing

on neurodegenerative disorders. The MBID is based on a

relational database with a common structure and format to

support diverse brain MRI studies. For each of the studies that we

wanted to ingest, we built a study-specific set of scripts that would

take as input the study data as provided by dataset sources (most

commonly but not always in a CSV file), extract and homogenize

information to a general format, insert those data into the

common database, upload all image files to centralized IBM cloud

object storage, and run a set of preprocessing steps on those

images prior to applying downstream ML tasks (Figure 1). Below,

we provide details about the MBID structure and discuss a

number of design decisions that can be of value for similar efforts.
2.1 Studies used

The MBID fusion effort was based on public or semipublic

observational MRI studies. Observational studies (i.e., those that

take measurements in individuals without performing an

intervention) are mainly divided into two categories: large cohort

studies that cover the general population and case-control

studies, which focus on specific conditions and tend to include

fewer participants. The initial focus of the MBID was on aging

and neurodegenerative disorders, so we included studies where

participants were mainly adults and generally older. We plan to

expand this in the future to development studies. These,

however, might present their own set of challenges (e.g., for

image quality controls or preprocessing). In its current version,

the MBID includes 12 different studies (Table 1). They cover

three different neurodegenerative disorders (Alzheimer’s Disease,

Parkinson’s Disease, Huntington’s Disease) in different stages

(pre-diagnostic or prodromal, and after diagnosis). The intention

of combining studies covering different diseases was to support

the development of large foundation models, to be validated in

downstream tasks such as the detection of neurodegenerative

disorders in smaller studies. The bulk of samples comes from

large cohort studies, particularly UK Biobank. In terms of the

total number of images, however, the combined MBID

significantly surpassed the number of images provided by UK

Biobank alone. However, downstream ML tasks should consider

this imbalance between contributing studies.
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FIGURE 1

General overview of the MBID architecture. Data ingestion involves a set of source datasets (A) and scripts to extract, map, and load data from the
source datasets into the common database and to preprocess brain images (B). These scripts populate a common database (C) and copy image
files to IBM cloud object storage buckets (D). For data consumption, users can query the PostgreSQL database (E). Queries retrieve requested
metadata, including image paths (F), which allow users to download the files from IBM cloud object storage.

TABLE 1 Studies included in the MBID. List of all brain MRI studies
ingested in the common structure, including number of subjects
and images.

Study Subjects Images Population
ADNI 2,594 22,271 Alzheimer’s Disease

AIBL 703 1,310 Alzheimer’s Disease

Cam-CAN 653 653 Large Cohort

HCP-Aging 725 725 Large Cohort

Human Connectome Project 1,113 1,113 Large Cohort

NKIRS 1,267 2,564 Large Cohort

OASIS 1,088 3,358 Alzheimer’s Disease

OpenPain 117 434 Chronic Pain

PREDICT-HD 589 2,177 Huntington’s Disease

PPMI 697 1,613 Parkinson’s Disease

SALD 494 494 Large Cohort

UK Biobank 44,178 47,381 Large Cohort

Total 54,218 84,093
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2.2 MBID database

Broadly speaking, the design of the MBID involved the

following steps: (1) Definition of a common database schema

and entity design that could accommodate the information

typically present in longitudinal and cross-sectional brain MRI

datasets. This resulted in defining the entities “subject”, “visit”,

“scanner”, “image”, “preprocess task”, “condition”, and “source

dataset” (see Section 3 and below). (2) Manual analysis of the

structure of individual studies and creation of scripts to map the

source structure to the common one and its entities. The details

of each of these scripts were specific to each study, as each was

shared in different formats (CSV, JSON, XML) and had a
Frontiers in Radiology 03
specific internal structure. The idea of having a source dataset-

specific script was to allow as much flexibility as possible in the

ingestion profile. This could easily accommodate all the

variations that we encountered, and we envision that other

variations that might arise while applying the MBID to another

type of use cases could be solved there. For example, if trying to

ingest raw clinical images, some extra specific logic can exist in

those scripts to accommodate handling duplicated reacquired

images. In addition, each image was uploaded to IBM cloud

storage. When consuming the common database and

downloading the images from the data storage bucket, we

extracted dataset subsets that combined information from

multiple studies. Thus the combination of studies into a common

structure produced not only a number of images significantly

larger than any of the external datasets alone, but also a flexible

interface for querying subsets that would be appropriate for

training or testing a variety of ML models.

Because our focus was on brain MRIs, our fundamental entity

was the image. As an example of how the database entities are

structured, each image has the following attributes: image path,

source dataset ID, visit ID, subject ID, scanner ID, and days

since baseline, among others. In each “visit” entity, there is

diagnosis information assigned to that visit. This allows us to use

joined queries to retrieve images from a specific study or from

subjects with a certain attribute (e.g., age or a specific diagnosis)

or to build training and testing sets that could combine or

deliberately exclude certain scanner models based on diversity

considerations. Other important tables for these queries include

the “subject” table, with information about subjects that would

not change throughout visits, and the “visit” table, which
frontiersin.org
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includes information that changes longitudinally, such as the

results of cognitive tests or reports of symptom intensity.

Together, these provide the core tools for data subset assembly in

downstream ML models.
2.3 Image preprocessing

.Our structure supports different image types, such as

functional, diffusion, and T1-based images, and it is

straightforward to extend it to more modalities. For each

desired modality, a fast preprocessing pipeline will be required

for large-scale cohorts. Here, we implemented one for T1

images only. We needed a fast, lightweight pipeline that would

be portable and easily installed in a remote virtual machine or

a server cluster. We therefore avoided common but bigger

packages such as FreeSurfer (16) and implemented simple

pipelines using Python-based tools (see Section 3).

Preprocessing consisted of two pipelines (Figure 2). One was a

fast affine registration pipeline meant to align images to the

standard MNI template while preserving their anatomy, as is
FIGURE 2

Anatomical image preprocessing. The main preprocessing goal is to have im
linear and non-linear. Both registration pipelines take a raw image and the M
affine registration (rigid plus global scale parameter). In the non-linear regist
as input the affine registration. Outputs include a brain mask, the registered
files are uploaded to IBM cloud object storage.
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recommended for CNN models in brain MRIs (17). This

process usually took around 15s per sample on a single CPU.

We also implemented an additional non-linear registration

step. This more time-consuming step (around 75s per sample

on a single CPU) warps the anatomy to the template. It is

useful for more traditional univariate statistics, but also for

aggregating maps from multiple samples into summary maps

(e.g., feature importance maps). After running the

preprocessing steps, we store the resulting files in the database

using the preprocessing-related entities. Running the

preprocessing on the fly will be unsuitable for most ML

downstream tasks, given the number of images available. When

estimating processing times in large datasets hosted remotely, it

is important to take into account read/write rates, which could

constitute the effective bottleneck for minimalist preprocessing.
2.4 Quality controls

Images can come with a myriad of quality issues. To some

extent, they constitute part of the heterogeneity to which ML
ages registered in a common space. There are two registration pipelines:
NI template as inputs, do brain extraction, intensity bias correction, and

ration pipeline, there is an extra step to produce a non-linear warp, using
image, the affine registration matrix, and the non-linear warp. All output
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models are meant to be exposed by fused datasets from a large

number of sites. Most studies apply some method of quality

control in the images they include. Because of the extremely

large number of samples considered in our study, visual quality

assessments were impractical. Even automated QA tools (18)

were orders of magnitude slower than the preprocessing itself.

The speed of processing was especially sensitive, given the

number of images contained in the MBID. This was a reason

not to use more comprehensive quality control packages such

as MRIQC. In addition, the relevant quality metrics depend on

the downstream task: e.g., if the ultimate goal is age prediction,

this should be possible even in the presence of artifacts due to

eye movement. We decided to focus on assessing that images

contained a relatively whole image of the brain that would

reasonably overlap with the MNI template after preprocessing.

We used the voxel-wise Pearson correlation coefficient of voxel

intensities with those inside the MNI brain template as a

simple measure of brain image integrity and registration

success, which we and others have used in the past (19, 20). In

downstream tasks, we found a cutoff of 0.4 reliably excluded

poorly registered subjects while minimizing incorrect exclusion

of normal anatomical variation. It must be highlighted,

however, that other measures might be relevant, depending on

the ML application and the source data ingested. If MBID is

adapted to ingest raw clinical images, another type of quality

control pipeline might need to be implemented, depending on

the expected issues.
2.5 MBID: subject and image statistics
after fusion

After ingestion of the studies, we had 84,093 images from

54,218 subjects (Table 1). These came with a number of

demographic and phenotypic information, including disease

diagnoses. One of the major applications of ML in large MRI
FIGURE 3

Fusion of studies as a source of phenotypic diversity. (A) Density of age di
covering healthy adults and elderly populations. (B) Body mass index distrib
in one variable (age) can overlap remarkably in other ones, highlighting the
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cohorts is modeling of brain aging. The resulting MBID captured

a marked heterogeneity in this regard, with different studies

covering different but overlapping age ranges (Figure 3A). Age

was far from the only phenotypic information available. For

instance, in many studies, body mass index was available, and

studies overlapped remarkably in that regard, even when they

covered very different age ranges. This showcases the value of the

MBID for very different applications.
3 Methods

3.1 Tools

The MBID consisted of a relational database and cloud storage

for images and other files. As our database engine, we utilized

PostgreSQL 12.14. All database entities and relations were

defined using the Python package SQLAlchemy. Python 3.7 was

the primary programming language for all our code, including

the scripts for ingesting external datasets. IBM Cloud Object

Storage was utilized to store unstructured data such as images,

CSV, or JSON files.
3.2 Database design

We organized our database under the following entities

(Figure 4):

• Source dataset: This entity includes the name of the dataset and

serves the purpose of identifying the source study for each

subject.

• Source dataset condition. This entity lists all possible clinical

conditions of the participants in the studies. This attribute is

encoded as an integer and present for each study.

• Condition: This entity maps the conditions (encoded by

integers) to their names. Together with “source dataset
stributions of each of the datasets in the MBID. We focused on studies
utions for different studies in the MBID. Studies with almost no overlap
richness of fused datasets for the modeling of phenotypic diversity.
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FIGURE 4

Database schema. The main objective of this structure was to accommodate the relevant information from each study, capturing it while keeping a
relational structure that would allow for easy filtering and querying of the data. For example, instead of storing scanner information as a string field in
the image table, we defined a scanner table, which allows querying images from different studies that were acquired with similar scanner devices
based on some of the fields in the scanner table. All the tables and relations are shown.
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condition”, this entity allows one to filter studies that contain or

do not contain a certain condition. This mapping (between the

source dataset condition and a unified list of conditions) was

manually carried out as we focused on some key conditions in

our experiments. Nonetheless, adding an extra field to the

condition table and supporting a condition ontology with a

coding system would be straightforward.

• Subject: This entity contains a participant’s identity code and

his/her demographic information, such as gender, handedness,

age at baseline (i.e., first visit on the study), education years,

diagnostic condition, as well that “source dataset id”, which

was the ID code of the participant in the study from which

his/her data were collected.

• Visit: Most longitudinal studies are structured around clinical

visits where measurements are taken and constitute longitudinal

time points. This entity contains information about each visit

from each participant across studies, including days since the

baseline visit, a condition ID to indicate the diagnosis (if any) at

that visit, body mass index, symptoms (can contain other

clinical scores), and source dataset ID.

• Scanner: This entity has information about the medical devices

used to acquire the images. It includes the brand, model,

magnetic field strength, and source dataset ID. This entity

serves, for our purposes, as a way to encode site differences.
Frontiers in Radiology 06
Some facilities have more than one scanner, complicating this

identification between scanner and site, but we kept just a

scanner entity for simplicity.

• Image: Each image is related to a “visit”. This entity includes

information about the type of image (this field stores the

modality of the image, such as T1-weighted or any other

format that is used in the study), preprocessing status

(none, affine, or non-linear), visit ID, file size, subject ID,

scanner ID, image file path (in an IBM cloud object storage

bucket), days since baseline (sometimes the image was

acquired on a different date than its associated visit),

metadata path (could be used to store a JSON file, with any

type of information, this field might be especially useful if

adapting the MBID to a different use case) and source

dataset ID.

• Preprocess task: This entity stores the types of preprocessing

supported in the pipeline. It contains a description and helps

store the type of preprocessing applied to a given image in a

relational way.

• Preprocess task file: This is the entity that stores the new images

and other outputs generated after applying preprocessing

methods to the original images. It includes the original image

ID, type of preprocessing, type of file, and the path of the new

file (in an IBM cloud object storage bucket). This entity can
frontiersin.org
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store auxiliary files used during the preprocessing task to make it

reproducible and keep track of the complete pipeline.

• File type: This entity helps distinguish the resulting files from

the preprocessing module, such as the registered brain image,

its mask, and affine and non-linear transforms. Each set of

newly created files have a file type id to allow filtering the

desired one while making a query. Having this information in

an entity, as opposed to just having a field in the preprocess

task file, provides more flexibility, allowing the addition of

new file types while creating new preprocessing tasks.

3.3 Pipeline for study ingestion and design
decisions

Each study presented unique challenges for data ingestion. The

process of adding a new study consisted of (1) understanding its

associated files and structure (2) creating a study-specific script

in which the study data were mapped to the homogenized

structure proposed in this work. For most cases, three scripts

were created for each study: “Load subjects”, “Load visits”, and

“Load images”, to be run in that order, as each entity requires

the previous one to be consistent (Figure 5). All studies were

already anonymized. The anonymization procedure was specific

to each source dataset and is described in each source dataset

publication cited in this work.

Image files were provided by the source studies by different

methods (including but not limited to FTP servers and S3

buckets). We uploaded all files to a private IBM Cloud Object

Storage, from which subsets could be downloaded as needed for

ML applications. This includes the results of image preprocessing

as encoded in the “preprocess task” entity of the common structure.

Even with a relatively general database structure, the diversity

of the combined studies created numerous challenges. A basic

one was that some of the studies are longitudinal (multiple visits)

and others cross-sectional (no visit-structure). As a simple

solution, we decided to associate each image with a

corresponding visit in all cases, even though this concept did not

exist in the source data. On the other hand, some of the studies

included visits without a corresponding image, but still had

useful information (such as cognitive scale results). This is what

caused us to consider the “visit” entity as separate from the

“image” entity, allowing visits without an associated image.
FIGURE 5

Image loading steps. A series of scripts must be run when loading a new dat
another for images. The scripts to load subjects, load visits, and load images,
tables, respecting the relationship among entities.
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In some longitudinal studies (ADNI), the dates of images and

clinical visits often differed, while the diagnostic information

pertained to the “visit” entity. Consequently, matching an image

with its corresponding clinical visit required a decision. Our

solution was that each image would be associated with its closest

visit in the past, if there was one, up to a theshold of 60 days.

The rationale for this was that this would prevent assigning

diagnostic conditions from an assessment that had occurred after

an image was acquired, since the focus was on using images and

concurrent information to make prognostic models, and it was

important to avoid contamination from future events. The

threshold was chosen as it matched the distribution of gaps

between image acquisition and clinical evaluation and was below

the general timescale of neurodegeneration.

Each study provided its own list of diagnostic conditions. To

unify those conditions, we manually mapped them to a master

list. This was simple and straightforward as all studies shared a

similar granularity level of the diagnostic conditions and we

focused on a reduced set. It would have been possible to map

those conditions to an ontology, but this would have been more

complex and unnecessary for our specific use case. There is a

trade-off between the level of detail and complexity of the

process, which must be weighted depending on the intended

use case.

To mention just one of the more minor challenges, cultural

differences across studies complicate their fusion. A case in point

was the standardization of education by converting its total to

number of years, an important demographic value, which was

not readily available in all studies. One of those was UK

Biobank, where instead a field specifies the type of degree

obtained within the UK education system (https://biobank.ndph.

ox.ac.uk/showcase/field.cgi?id=6138), which has changed over

time. Thus, it was necessary to estimate the typical duration and

order of each of these educational milestones. Such adaptation of

the idiosyncrasies of each study is a key element of the scripts of

the pipeline.

Establishing an internal folder structure for storing image files in

the IBM cloud object storage solution was also necessary. One

attractive format for organizing images is BIDS (21), which sets

guidelines for folder names per patient and image modality. In the

MBID, most metadata exist in the entities of the proposed

database schema, and images were retrieved via a database query.

Because of this, the MBID does not follow that folder prescription,
aset: one to populate the subjects structure, a second one for visits, and
should be executed in said order to keep the consistency of the database
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keeping with the structure of each original study upon uploading it.

It might, however, be useful as a basic for a potential data export

script, in which the output format could respect BIDS guidelines.
3.4 Studies

The current iteration of MBID combines the following

observational studies: ADNI (22), AIBL (23), Cam-CAN (24, 25),

HCP-Aging (26), Human Connectome Project (27), NKIRS (28),

OASIS (29), OpenPain (https://www.openpain.org), PREDICT-HD

(30), PPMI (31), SALD (32), and UK Biobank (9). Appropriate

user agreements were signed and its conditions were followed.
3.5 Preprocessing tools

Our lightweight preprocessing pipeline was based on the

ANTsPy (33) and the deepbrain (https://github.com/iitzco/

deepbrain) packages.
4 Discussion

In this work, we wanted to illustrate the challenges and benefits

of data fusion in the light of our own effort in this area. We

presented the challenges and decisions we faced while combining

brain MRI datasets from different sources. We also explained the

flexible structure we created to accommodate most brain MRI

observational studies.

We combined 12 studies into a homogenized database,

allowing access to more than 84,000 images from approximately

5,400 subjects, covering the adult lifespan. We combined data

from 88 scanners, based on different facilities and geographical

locations, likely boosting the robustness and adaptability of any

ML model based on it. In keeping our approach as flexible as

possible for brain MRI images, we have created a structure that

should easily accommodate further brain MRI datasets and

preprocessing pipelines.

There are multiple reasons for engaging in fusion efforts. As

mentioned, higher sample numbers are necessary for complex

models in high-dimensional feature spaces, and heterogeneity is

key for robustness. Also, the gathering of studies covering

different phenotypes (e.g., disorders) enable models that are

would be impossible with single studies, such as modeling of

aging across the whole human lifespan is one example. In

addition, availability of samples with multiple diagnoses coming

from different studies allows one to investigate commonalities

across them, using for instance transfer learning approaches (?

). It is critical however to be mindful of the confounds that are

simultaneously introduced by fused datasets. For instance, when

validating a differential diagnosis approach in which samples

with two disorders come from different studies, one must take

steps to ensure that the model is reflecting real signatures of the

disorders and not just differences in data acquisition across

studies, that no harmonization technique can remove completely.
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In general, for the task of homogenizing a set of biomedical

data sources with different studies than the ones we presented,

we suggest first analyzing the proposed entities and seeing if the

data needed to be stored can be accommodated to our proposed

structure. All the structures created and the types of downstream

tasks covered were related to brain MRI images. If this structure

is used for other kinds of biomedical images, it would likely be

necessary to adapt the proposed entities for the new use case.

We expect that extra information might be needed in the Image

entity in a different use case (one might want to store

information about contrast agents or a medical report in a more

clinical setting) or in the preprocess-related entities, where the

required steps might be completely different in other settings,

such as in oncology. That said, we believe the general ideas of

this work should help guide the creation of other homogenized

biomedical databases.

It would be ideal to offer a large fused dataset publicly, as with

other biomedical modalities in projects like MED-MNIST (34). In

our case, and given the terms and conditions of the source datasets

used in our work, this was not possible. Most studies require

special agreements between the user and the organization that

compiled or produced the data. It has been argued (35) that a

solution for digital health issues around data privacy might be

solved with federated learning, in which users send their model’s

training pipeline to be run in a closed infrastructure, with access to

the data compilation but without allowing users to download the

data directly. This kind of solution could be implemented with the

centralized data we propose in our work but would require

dedicated infrastructure and further agreements with the data owners.

As a next step, it would be useful to expand the methods

available to retrieve the data by implementing an API to facilitate

the consumption of the MBID. This would allow more fine-

grained control of data access, allowing different users to

download only the datasets for which they have shared access

permissions from the source dataset organization. In that

scenario, it would be valuable to produce an export of the data

in a format such as BIDS (21), an intuitive standardization of

brain image storage that defines guidelines for folder names per

patient and image modality.

One main assumption of the MBID structure is that studies

have their data collected in discrete visits. There are increasingly

more clinical studies that are utilizing measures outside hospital

visits, such as ecological momentary assessments (EMAs) (36). A

case in point is the AMP SCZ partnership in psychosis

prediction (37), which combines measurements from clinical

visits with a number of digital assessments, both active (e.g.,

daily surveys) and passive (e.g., sleep behavior, text messaging

and calling behaviors). Thus, one important future direction

would be extending the structure to accommodate these types of

data. This might require the creation of a new set of entities to

store the digital data and relate to visits in terms of days from

baseline. On a different dimension, integrations with popular

Electronic Health Records (EHR) (38) software could allow to

populate the common database with a rich amount of

observational data and provide the flexibility to ingest data

generated in real time. The integration with EHRs can be
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accomplished using common standards such as FHIR (39).

Nonetheless, each healthcare system integration will require

special data privacy and anonymization considerations.

In conclusion, for the future of the biomedical ML field, it is

important to find solutions to increase sample sizes and

heterogeneity. Here we presented an example implementation of

a fusion strategy to augment the data available, potentially

applicable in a large number of settings, and illustrative of the

challenges and limitations of these approaches. We believe that it

can provide a flexible basis for others considering similar efforts.
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