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deep learning techniques for
synthetic medical image
generation and their applications
in radiotherapy
Moiz Khan Sherwani* and Shyam Gopalakrishnan

Section for EvolutionaryHologenomics,Globe Institute,UniversityofCopenhagen,Copenhagen,Denmark
The aim of this systematic review is to determine whether Deep Learning (DL)
algorithms can provide a clinically feasible alternative to classic algorithms for
synthetic Computer Tomography (sCT). The following categories are
presented in this study:

† MR-based treatment planning and synthetic CT generation techniques.
† Generation of synthetic CT images based on Cone Beam CT images.
† Low-dose CT to High-dose CT generation.
† Attenuation correction for PET images.

To perform appropriate database searches, we reviewed journal articles published
between January 2018 and June 2023. Current methodology, study strategies,
and results with relevant clinical applications were analyzed as we outlined the
state-of-the-art of deep learning based approaches to inter-modality and intra-
modality image synthesis. This was accomplished by contrasting the provided
methodologies with traditional research approaches. The key contributions of
each category were highlighted, specific challenges were identified, and
accomplishments were summarized. As a final step, the statistics of all the cited
works from various aspects were analyzed, which revealed that DL-based sCTs
have achieved considerable popularity, while also showing the potential of this
technology. In order to assess the clinical readiness of the presented methods,
we examined the current status of DL-based sCT generation.

KEYWORDS

deep learning, convolutional neural network, radiotherapy, synthetic CT, photon therapy,
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1 Introduction

Image synthesis is an active area of research with broad applications in radiation

oncology and radiotherapy (RT). This technology allows clinicians to bypass or replace

imaging procedures if time, labor, or expense constraints prevent acquisition; there are

certain circumstances when it is not advisable to use ionizing radiation; or there are

instances when image registration can introduce unacceptable uncertainty between

images of different imaging modalities. There have been many exciting clinical

applications that have been developed as a result of these benefits, including the

planning of RT with Magnetic Resonance Imaging (MRI) and the use of Positron

Emission Tomography (PET)/MRI in tandem with RT treatment.
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In recent decades, image synthesis has been investigated in

relation to its potential applications. Traditionally, image

conversion from one modality to another is carried out using

models with explicit human-defined rules, which require adaptive

parameter tuning on a case-by-case basis in order to achieve

optimal results. Additionally, these models have varied

characteristics based on the unique attributes of the imaging

modalities involved, resulting in a variety of complex

methodologies that are application-specific. In the case of

anatomical imaging and functional imaging, it is particularly

challenging to construct such models. It is for this reason that

most of these studies employ Computed Tomography (CT

synthesis from MRI) as the primary imaging tool.

It is now possible to combine image synthesis with other

imaging modalities such as PET and Cone-Beam CT (CBCT) as

a result of rapid advances in machine learning (ML) and

computer vision over the last two decades (1). ML and Artificial

Intelligence (AI) have been dominated for several years by deep

learning (DL) as a broad sub-field within ML. To extract useful

features from images, DL algorithms employ neural networks

containing many layers and a large number of neurons.

Many networks have been proposed to achieve better

performance in various applications. Data-driven approaches to

image intensity mapping are commonly used by DL-based image

synthesis methods. Generally, a network learns how to map the

input to its target through a training stage, followed by a

prediction stage where the target is synthesized from the input.

In contrast to conventional model-based methods, a DL-based

method can be generalized to multiple pairs of image modalities

without requiring significant adjustments. By utilizing this

approach, rapid translation to various imaging modalities is

possible, allowing clinically relevant synthesis to be produced.

Despite the effort required in collecting and curating data during

network training, the prediction process usually takes only a few

seconds. In medical imaging and RT, DL-based methods have

demonstrated great promise because of these advantages.

In the domain of RT, MRI is preferred over CT for patient

positioning and Organ at Risk (OAR) delineation (2–6) due to

its better capacity to differentiate soft tissues (7). In RT

conventionally, the primary imaging modality is CT. MRI is

fused by deformable enrollment with CT scans because they

deliver precise and high-resolution anatomy which is needed for

dose calculations (2) for RT. However, residual mis-registration

and variations in patient setup may introduce systematic errors

that might influence the accuracy of the entire treatment. The

point of MRI only RT is to eliminate the CT scans from the

workflow and in its place use MR image(s) alone.

MRI-based treatments are getting very common because of the

advancement of MR-guided treatment methods, e.g., MRI-linac (8).

Here, online versatile RT utilizing MRI can be performed, exploiting

the functional data and anatomy supplied by the modality (9) and

reducing the registration error (2, 10, 11). Additionally, MR only RT

can also help us protect the patient from the ionizing radiations and

may decrease treatment cost (12) and workload (13).

Furthermore, similar techniques have been proposed to

improve the quality of CBCT by converting a different imaging
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modality into sCT. Photon and proton therapy are effectively

utilized using CBCT in image-guided adaptive radiotherapy

(IGART). Despite this, the reconstruction of the image suffers

from several artifacts such as shading, streaking, and cupping

due to the severe scatter noise and truncated projections. As a

result of these reasons, online adaptation of treatment plans does

not commonly utilize daily CBCT. By converting CBCT to CT, it

should be possible to compute accurate doses and provide

patients with a better quality of treatment.

Furthermore, sCT estimation plays a significant role in PET

attenuation correction (AC). The photon AC map from CT is often

necessary for accurate PET quantification. A solution to the MRAC

issue has been proposed to address this issue with the new hybrid

PET/MRI scanners. The derivation of sCT from uncorrected PET

can provide additional benefits to stand-alone PET scanners.

We present an in-depth review of emerging DL-based methods

and applications for synthesising medical images and their

applications in RT in this review. This review categorized recent

literature according to their DL methods and highlighted their

contributions. A survey of clinical applications is presented along

with an assessment of relevant limitations and challenges. We

conclude with a summary of recent trends and future directions.
2 Materials & methods

We looked through the Scopus, PubMed and ScienceDirect

electronic databases from January 2018 to Jun 2023 utilizing the

associated keywords:((“radiotherapy” OR “radiation therapy” OR

“MR-only radipotherapy” OR “proton therapy” OR “oncology”

OR “imaging” OR “radiology” OR “healthcare” OR “CBCT” OR

“cone-beam CT” OR “Low dose CT” OR “PET” OR “MRI” OR

“attenuation correction” OR “attenuation map”) AND (“synthetic

CT” OR “sCT” OR “pseudo CT” OR “pseudoCT” OR “CT

substitute”) AND (“deep learning” OR “convolutional neural

network” OR “CNN” OR “GAN” OR “Generative Adversarial

Network” OR artificial intelligence)). We just selected original

research papers written in English excluding the review papers.

This review was conducted based on the PRISMA guidelines.

The screening criteria is given in the Figure 1.

For each paper, we screened: Magnetic Resonance (MR) devices,

MR images and sequences, number of patients, dataset split details

(training, validation, and testing set), pre and post-processing of

dataset, Deep learning (DL) technique utilized, loss functions,

metrics used for the image comparison and dose evaluation. Figure 2

provides the information regarding the articles selected for this study.
2.1 Deep learning in medical images

Deep Learning (DL) is a specialized subset of machine learning

(ML) that focuses on deep neural networks and automated feature

extraction. It has achieved remarkable success in tasks with large

datasets, but it comes with higher computational requirements

and challenges in interpretability compared to traditional ML

methods. The choice between DL and ML depends on the
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FIGURE 1

Article screening based on PRISMA guidelines.
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specific problem, dataset size, and computational resources

available. Recent reviews provide further insight into DL network

architectures for medical imaging and RT (14–20). The synthetic

Computed Tomography (sCT) generation using DL methods

generally utilizes Convolution Neural Network (CNN)/Deep

Convolution Neural Network (DCNN) or Generative Adversarial

Network (GAN) and variants. Figure 3 shows the architecture of

some CNN/DCNN and GAN networks.

2.1.1 Convolution neural network (CNN)
Convolution Neural Network (CNN) is a famous class of deep

neural networks utilizing a bunch of convolution filters for

distinguishing image features. A CNN comprises an input layer,

several hidden layers and an output layer.
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CNN take an input image/feature vector (one information

node for every passage) and change it through a progression of a

series of hidden layers, regularly utilizing nonlinear activation

functions. Each hidden layer is likewise comprised of a bunch of

neurons, where every neuron is completely associated with all

neurons in the previous layer. The last layer of a neural network

(i.e., the “output layer”) is likewise completely associated and

addresses the last result classification of the network. Several

types of layers are utilized to build a CNN but the most

common ones include:

• Convolutional (Conv) - These layers apply a convolution to the

information, passing the outcome to the following layer. A

convolution changes over every one of the pixels in its open

field into a single value, resulting in a vector.
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FIGURE 2

Number of articles selected for this study.
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• Activation (ACT or RELU, where we use the same or the actual

activation function) – The decision of activation function in the

hidden layer will control how well the network model learns the

training dataset. The decision of enactment work in the result

layer will characterize the kind of predictions the model can
FIGURE 3

The architecture overview of convolutional neural network (CNN).

Frontiers in Radiology 04
make. Nonlinear activation functions (Rectified Linear Units

(ReLU) (21), Leaky-RELU (22), Parametric-ReLU (PreLU) or

exponential linear unit (ELU) (23)) play a crucial role in

discriminative capabilities of the deep neural networks. The

ReLU layer protects the information and is a commonly
frontiersin.org
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FIGURE 4

Different types of convolutional neural networks (CNNs).
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utilized activation layer because of its computational

minimalism, authentic sparsity, and linearity.

• Pooling (POOL) - These layers are used to reduce the dimension

(subsampling) of the feature maps. It decreases the number of

parameters to learn and computation in the network. The

pooling layer sums up the features present in a region of the

feature map produced by a convolution layer. It stabilizes the

learning process and also reduces the training epochs required.

• Fully connected (FC) – These layers are used to connect all the

inputs from a layer with the activation function of the next layer.

• Batch normalization (BN) (24) - This layer permits each layer of

the network to learn more freely. It is utilized to standardize the

result of the previous layers.

• Dropout – This layer is used to prevent overfitting in the

model. During each step of training time, it set the input

units to 0 randomly.

• Softmax – This is the last layer in a neural network that

performs multi-class characterization.

During training stage, the model attempts to limit a true

capacity called loss function, which is a intensity based similarity

estimation between real image and the generated image. Figure 4

presents the architecture of CNN models commonly utilized for

synthetic image generation. In the literature, the variations of

CNN model incorporate convolution encoder-decoder (CED)

(25), DCNN (26), Fully convolutional network (FCN) (27),

U-Net (28–43), ResNet (44), SE-ResNet (45), and DenseNet (46).
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The CNN network comprises combined encoder and decoder

networks. CNN has been broadly utilized in DL literature due to its

groundbreaking results (47–49). In the encoding part, it uses the

method of downsampling to translate the low-level features map to

a high-level features map. In the decoding part, the transposed

convolution layer’s function is to translate the high-level feature

maps to low-level feature maps to generate the synthetic image.

The encoder part of the network utilizes a bunch of consolidated

2D convolution for distinguishing image features, followed by

normalization, activation function and max pooling.

The decoder part utilizes transposed convolutional layers to

join the feature and spatial information from the encoding part,

followed by concatenation, up-sampling, and convolutional layers

with a ReLU activation function.

The most notable and well-known CNN model is the U-shaped

CNN (U-Net) architecture proposed by Ronneberger et al. (50).

The U-Net architecture has direct skip connections between the

encoder and decoder that helps in extracting and reconstructing

the image features.
2.1.2 Generative adversarial network (GAN)
Generative adversarial network (GAN) was first introduced in

2014 by Goodfellow et al. (51). It improved the quality of image

generation as compared to the previous Convolution Neural

Network (CNN) models. The architecture of GAN as shown in

Figure 5 trains two separate neural networks, the generator (G)
frontiersin.org
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FIGURE 5

The architecture overview of generative adversarial network (GAN).
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and the discriminator (D). G attempts to create synthetic images

while D on the other side decides if that image looks like the

real image or not (52, 53). GAN presents an information-driven

regularizer, it tries to improve itself and guarantees that the

learned features bring the outcome close to the ground truth.

In basic GAN architectures, D and G are executed as Multi-

Layered Perceptrons (MLPs). U-Net is the most used architecture

as the G for GAN. Another frequently used G in GANs is the

ResNet, as highlighted in the work by Emami et al. (54). ResNet

stands out for its ease of optimization and its ability to reliably

produce the desired results.

For the D part of the GAN, PatchGAN is used and it comprises

six convolutional layers with different filters but the same kernel size

and stride, trailed by five fully connected layers. For activation

purposes, ReLU is utilized and for the convolution layer, batch

normalization is utilized. The dropout layer is added to the fully

connected layers, and in the last fully connected layer, a sigmoid

function is utilized. The traditional GAN model uses adversarial

loss (Ladv) as the cost function and it helps the network to

produce better-looking sCT images with less blurry features

(55, 56) compared to the images generated by other CNN models.

The discriminator attempts to boost it while the generator

attempts to limit it as mentioned in the equation.

Ladv ¼ Ex[logD(x)]þ Ez[log(1� D(G(z))] Where, D(x) is the

discriminator’s estimate if that real data instance x is real, Ex and

Ez is the expected value over all real data and random instances

respectively. G(z) is genertor’s output over noise (z) while D(G(z))

estimate if a fake instance is real. The formula derives from the

cross-entropy between the real and generated distributions. The

generator can’t directly affect the log(D(x)) term in the function,

so, for the generator, minimizing the loss is equivalent to

minimizing log(1 - D(G(z))) given a discriminator.
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The most common variants of GAN used for synthetic image

generation are Conditional GAN (cGAN) and cycle-GAN. The

first cGAN architecture to generate synthetic Computed

Tomography (sCT) to Magnetic Resonance Images (MRI) was

proposed by Emami et al. (54). Unlike standard GAN, both the

G and D of cGAN perceive the input image dataset. This

approach tends to be more accurate as compared to previous

approaches. Unlike standard GAN, several studies have been

proposed to include SE-ResNet (41, 43), U-Net (44, 45, 57),

DenseNet (46) and Embedded Net (26) as Generator for the

cGANs. Evaluation of all four G, Embedded Net, DenseNet, SE

ResNet and U-Net in cGAN is proposed by Fetty et al. (58) to

generate synthetic images from MR T2 weighted images.

Several studies used a cGAN architecture to generate sCT from

MRI (35, 41–43, 57, 59–69).

Cycle-GAN are commonly used to train Deep Convolutional

Neural Networks (DCNN) to translate image-to-image. Cycle-

GAN consists of two G and two D. In synthetic image

generation using cycle-GAN, one G is used to generate sCT from

MRI and the other to generate sMRI from sCT. A cyclic loss

function is used to learn concurrently the features between the

two modalities. The unpaired dataset is used to learn the

mapping between two modalities and in some cases, it

outperforms GANs using paired datasets (55).

2.1.3 Loss functions used in deep learning models
Loss functions play an important role in guiding model

training. Different loss functions are used based on the

requirement and network configuration. L1 norm (70) and L2

(62, 69) are used frequently used to avoid overfitting and control

complexity of model. L1 as compared to L2 is used more often

due to its robustness to outliers in training data and it tends to
frontiersin.org
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perform better for image generation tasks. An image fidelity loss is

commonly calculated by subtracting the average squared difference

between the predicted and actual image, which is commonly

referred to as Mean Square Error (MSE). It is imperative to

maintain fine details when structural similarity index (SSIM) loss

is applied while cross entropy loss is widely used for

classification problem. Adversarial Loss is utilized by Generative

Adversarial Networks to create realistic images. Some

combination of different loss functions are also utilized in GANs

and other models to improve the model accuracy (40, 41, 58, 64).
2.2 Dataset, dataset size & training dataset

The challenging part of the DL-based approaches applied on

image synthesis is the paucity of datasets available for training and

testing the different methods. Several studies are conducted with a

minimum of 10 patients. Studies have also suggested that a higher

number of images in the dataset can improve the performance of

Deep Learning (DL) models. To improve model performance,

diversity of training datasets is required. The images used for most

of the studies were taken from adult patients. For training the

model, most of the studies were conducted using paired datasets

(where the images from both the modalities are given as input to

learn the features) and very few studies used unpaired datasets.

Some studies also compared the results on paired datasets over

unpaired datasets (29, 60, 71, 72). Most commonly used networks

were 2D networks, where 3D images were sliced into 2D images

for training the network. Multiple configurations were also

investigated in some studies (40, 73) described in this review. The

most popular architecture for the image synthesis was Generative

Adversarial Network (GAN), followed by U-Net and other

Convolution Neural Networks (CNN). For the generator (G) of

the GAN, mostly U-Net was used. Data augmentation is also used

to train the network with different features and properties using

small samples within the training dataset. Some conventional data

augmentation techniques (19, 30, 63) such as rotation, translation,

noise addition and deformations can be used with the training
TABLE 1 Metrics reported in literature for synthetic image analysis using gro

Type of Metric Metrics
Intensity Based Metrics Mean Error ME ¼ 1

N sum
N
i¼1sCTi �

Mean Absolute Error MAE ¼ 1
N sum

N
i¼1jsCTi

Peak Signal to Noise Ratio PSNR ¼ 10log10(
Q2

MSE )

Structural Similarity Metric SSIM ¼ (2mxmyþC1)(2
(mjx2þmjy2þC1)(d

Mean Square Error MSE ¼ 1
N

PN
i¼1 (sCTi �

Root Mean Square Error RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 (sC

q

Normalized Cross Correlation NCC ¼ 1
N

P
x,y,z

(ICT (x, y

Geometric Fidelity Dice Similarity coefficient DSC ¼ 2(VCT>VpCT )
VCTþVpCT

Hausdorff Distance H(sCT , CTref ) ¼ max(

Mean Absolute Surface Distance MASD(A, R) ¼ dave(SA , S

Dose difference metrics Voxel-to-Voxel Dose Differences Difference between the

Dose Volume Histogram Difference Dose differences on D

Gamma Analysis Mean Gamma Value of the mean gam

Gamma pass-rate Percentage of pixels/vo
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dataset. In this review, several training strategies were utilized:

single-fold validation, k-fold cross-validation and leave-one-out

validation. For single-fold cross-validation, the dataset is divided

into two sets: one for training and the other for testing. For k-fold

cross-validation, the dataset is separated into k number of subsets.

For each training, one k subset is utilized for the testing phase and

the remaining k subsets for the training phase. Leave-one-out

validation is equivalent to k-fold validation with k being the

number of samples in the training dataset.
2.3 Evaluation metrics

In the literature, several metrics are reported based on the image

similarity or intensity, accuracy based on the geometry and

evaluation of the dose for the radio therapy (RT). The metrics

used in the literature are provided in Table 1. To evaluate the

quality of the synthetic image based on voxels, the most used

similarity metrics are Mean Absolute Error (MAE), Structural

Similarity (SSIM), and Peak Signal to Noise Ratio (PSNR).

Besides voxel-based metrics, geometric accuracy can also be

assessed by comparing delineated structures with corresponding

voxel-based metrics. In terms of evaluating the accuracy of

depicting specific tissue classes and structures, the Dice Similarity

Coefficient (DSC) is a commonly used metric. DSC is calculated

after applying morphological operations to binary masks and

applying a threshold to Computed Tomography (CT) and synthetic

CT (sCT). In addition to the Hausdorff distance, the mean absolute

surface distance can be used to assess the segmentation accuracy,

as it measures the distance between two contour sets (74).

A comparison of dose calculation between sCT and CT is

generally performed using specific regions of interest (ROI) for

both photon (f) and proton (p) RT. The most commonly used

voxel-based metric dose difference (DD) is calculated by taking

the average dose (DCTDsCT ) of the ROI and redistributing it

across the whole body, target, or other structures of interest. DD

is expressed as a percentage of the prescribed dose (%) or the

maximum dose (Gy), either relative to it or an absolute value.
und truth as reference.

Ideal Value
CTi 0 HU

� CTij 0 HU

Max of dB

dxyþC2 )
jx2þdjy2þC2)

1

CTi)
2 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti � CTi)

2 0 HU

, z)�mCT )(IsCT (x, y, z)�msCT )
dCTdsCT

1

h(sCT , CTref ), h(CTref , sCT)) 0 mm

R)þdave (SR , SA )
2

dose distribution computed on the reference CT and on the sCT 0 Gy or 0 %

VH specific points (Dmax, D70Gy, etc.), for a given structure 0 Gy or 0 %

ma 0

xels with a gamma value lower than 1 100%
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DD is directly correlated to the dose pass rate, which is the

percentage of voxels with DD below a specified threshold.

Gamma analysis can be conducted in both 2D and 3D, offering a

combined evaluation of dose and spatial factors. However, this

process involves the configuration of multiple parameters, such as

dose criteria, distance-to-agreement criteria, and dose thresholds.

It’s important to note that there is no standardized approach for

interpreting and comparing gamma index outcomes across various

studies. The results can significantly differ due to variations in

parameters, grid sizes, and voxel resolutions (75, 76). As a result,

the gamma pass rate (GPR) is typically expressed as the

percentage of voxels within a region of interest (ROI) that meet a

specific threshold based on the reference dose distribution.

The dose-volume histogram (DVH) is a tool used routinely in

clinical practice. As a general rule, clinically significant DVH

points are reported in an evaluation of sCT. Also, range shift (RS)

is considered in proton RT. In this case, the ideal range is

determined as the distance from the distal dose fall-off (R80) point

at which the dose is at 80% of the maximum (77). As well as

absolute RS error (RSe) expressed as the shift in the prescribed

range relative to the actual beam direction (RSe ¼ R80CT � R80sCT),

relative RS error (%RS) can also be specified.
3 Results

3.1 MR to synthetic CT (sCT) generation for
radiotherapy

A significant amount of research has been published in this

field on the problem of Magnetic Resonance Image (MRI) to

synthetic Computer Tomography (sCT) image synthesis as one

of the first applications utilizing Deep learning (DL) for medical

image analysis. The results for this section is provided in Table 2

CT acquisition is being replaced by MR-based CT synthesis

primarily for clinical reasons (78). Despite recent improvements

in sCT imaging, they are still inconclusive as diagnostic tools.

The tool is also valuable for non-diagnostic settings, such as

treatment planning and PET Attenuation Correction (AC).

Radio therapy (RT) workflows commonly utilize MR and CT

imaging for treatment planning on many patients. CT images

provide electron density maps for dose calculation and reference

images to position the patient prior to treatment. MR images offer

excellent tissue contrast to diagnose gross tumours and organs at

risk (OARs). Using image registration, treatment planning is

performed by propagating MR contours to CT images. In addition

to time and expense costs for the patient, combining both

modalities contributes to systematic image fusion errors.

Furthermore, CT may also expose patients to non-negligible doses

of ionizing radiation (123), especially those requiring re-

simulation. MRI-based treatment planning workflows would

therefore be highly desirable instead of CT scans. Additionally,

there is a growing demand for MRI exclusively for RT as MR

linear accelerator (MR-linac) technology emerges.

Due to the lack of a one-to-one relationship between MR

voxel intensity and CT’s Hounsfield Unit (HU is a quantitative
Frontiers in Radiology 08
measure to represent the radio density of tissues, helping in the

differentiation of structures based on their properties), intensity-

based calibration methods fail to deliver accurate and consistent

results. CT imaging differs from MRI because in CT, air is dark

and bone is bright. While translating MR images to CT, MR

images are typically segmented into several classes of materials

(e.g., air, soft tissue, bone) and then assigned CT HU values

(11, 124–128) or registered to an atlas with known CT HU

values (129–131). Segmentation and registration are the main

components of both of these methods, which introduce

significant errors due to ambiguous boundaries between bone

and air, for instance, and significant inter-patient variations.

In literature, nearly all studies reported the image quality of their

sCT using mean absolute error (MAE), peak signal-to-noise ratio

(PSNR) and structural similarity (SSIM) metrics for CT synthesis

applications in RT. Many studies also calculated the dose from the

original treatment plan. Approximately 1% of the dose was

different, which is small compared to the uncertainty associated

with the total dose over the entire treatment course (5%).

In RT, DL-based methods generate relatively minor

improvements in dosimetric accuracy compared to image

accuracy and may not be clinically relevant. VMAT (Volumetric

Modulated Arc Therapy) plans offer greater flexibility in dose

calculations, particularly when dealing with image inaccuracies,

especially in uniform areas like the brain. In VMAT, random

image inaccuracies tend to balance out within an arc, but it’s

worth noting that there’s a non-linear relationship between

random image inaccuracies and dosimetric errors.

According to Liu et al. (85), most of the dose difference caused

by sCTs occurs at the distal end of the proton beam due to errors

along the beam path on the planning CT. As a result, the tumour

could be substantially underdosed or Organs at risk overdosed.

According to Liu et al. (85, 86), the largest absolute difference

observed among patients with liver cancer is 0.56 cm, while for

those with prostate cancer, the mean absolute difference is 0.75

cm. Besides assessing dosimetric accuracy for treatment planning,

geometric fidelity is another essential consideration. Despite this,

there are very few studies assessing sCT positioning accuracy. It

has also been investigated whether sCT can work in proton

therapy for prostate (86), liver (85), and brain cancers (83).
3.2 CBCT to synthetic CT (sCT) generation
for radiotherapy

Synthetic Computed Tomography (sCT) using Cone beam CT

(CBCT) is a physics problem that is governed by the same

principles of x-ray attenuation and back projection. However,

their application in clinical practice differs. So, we consider them

as two distinct imaging modalities in this review. By comparing

anatomic landmark displacements from the treatment planning

CT images and CBCT images, image-guided radio therapy

(IGRT) is used to check for patient setup errors and interfraction

motion (132). More demanding applications of CBCT have been

proposed with increased adoption of adaptive RT techniques,

such as daily dose estimation and auto-contouring based on
frontiersin.org
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deformable image registration obtained through simulation with

CT images (133, 134). The results for this section is provided

in Table 3.

CBCT scanners generate a cone-shaped x-ray beam that is

incident on a flat panel detector, unlike CT scanners with fan-

shaped x-ray beams and multi-slice detectors. The flat panel

detector offers a wide coverage along the z-axis and high spatial

resolution but also suffers from decreased signal due to scattered

x-rays coming from the whole body. This results in significant

quantitative CT errors as a result of severe streaking and cupping

artifacts. When utilizing images for dose calculations, these errors

introduce challenges in the calibration of Hounsfield Units (HU)

to electron densities. HU represents the radiodensity of tissues in

computed tomography (CT) scans.

CBCT can also suffer from degraded image contrast and bone

suppression (170). As CBCT images are significantly degraded,

they cannot be used for quantitative RT. CBCT Hounsfield Unit

(HU) can be corrected and restored relative to CT using Deep

learning (DL) based approaches, as shown in Table. The CBCT

image is created through a combination of hundreds of

projections in different directions. Before volume reconstruction,

few studies applied neural networks to 2D projections, namely,

the projection images. The CBCT volume was reconstructed

from the improved quality projection images. Another approach

relies on reconstructed CBCT images as inputs and produces

sCT images with enhanced image quality. Utilizing projection

domain methods for training with an extensive dataset of over

300 2D projection images offers the advantage of achieving a

desired level of proficiency with a reduced number of training

iterations compared to conventional image domain methods,

which typically require approximately 100 iterations to achieve

similar competence. CBCT images also suffer from artifacts such

as cupping and streaking caused by scattering, whereas projection

images are easier to learn for neural networks. Further, images

have higher artifactual variation between patients, so much so

that image domain methods rarely train models on non-

anthropomorphic phantoms since the data collected is useless.

However, in the projection domain, there is little variation in

image features.

Therefore, Nomura et al. (171) showed that non-

anthropomorphic phantom projections can also be used to learn

to scatter distribution features that characterize anthropomorphic

phantom projections. As a result, the neural network learned

how to relate scatter distribution to objective thickness in the

projection domain. Image scatter artifacts have a much more

complicated relationship to objective appearance and cannot be

easily learned. As the ground truth in the reviewed studies is

often the corresponding CT images/projections from the same

patient, CBCT images/projections are typically used while

training. CT and CBCT are often out of geometric agreement,

and registration reduces artifacts caused by the mismatch. As

part of a pancreas study, Liu et al. (149) compared CBCT/CT

training data rigidly and deformably registered. The researchers

found that sCT created from rigidly registered training data

produced lower noise and better organ boundaries compared

with deformably registered CT (56.89 * 13.84 HU, P . 0:05). As
frontiersin.org
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Kurz et al. (142) have demonstrated, generating sCT with

satisfactory quality can be achieved without using pixel-wise loss

functions in a cycle-GAN.

According to Hansen et al. (136) and Landry et al. (143), the

registration step can be bypassed by correcting CBCTs first by

conventional methods and then using the corrected CBCTs as

ground truth. The corrected CBCTs do not require registration

because the geometry of the corrected CBCTs remains the same

as the original CBCT. However, CBCT generating methods in

this setting limit the quality of sCT. Study findings suggest that

DL-based methods have better image quality than conventional

CBCT correction methods on the same datasets (96, 135, 137).

They found that Adrian’s U-Net based method was more

accurate and better suited to registering bone geometry than an

image-based method or a deformable method. A comparison of

Harms et al.’s (138) sCT to real CT study also demonstrated

reduced noise and an improved subjective similarity. Corrective

methods that are conventional are designed to improve only one

specific aspect of image quality. DL-based methods, on the other

hand, can modify every aspect of image quality to simulate CT,

including noise level, which typically is not considered in

conventional methods. Cycle-GAN outperformed both GAN and

U-Net in several studies comparing the same patient datasets.

An analysis of 135 pelvic patients with 2.5D conditional GAN

was conducted by Zhang et al. (148). Additional 15 pelvic and 10 H

& N patients were analyzed afterwards. In both testing groups, the

network predicted sCT at similar MAEs, showing that pre-trained

models can be transferred to varying anatomical regions. In

addition to different GAN architectures, the researchers

compared U-Net configurations and found that it was statistically

worse than any GAN configuration. The cycle-GAN has been

tested with unpaired training in three works (141, 142, 144). A

study performed the unsupervised training comparison of cycle-

GAN, DCGAN (172), and PGGAN (173), where the first

performed better in terms of image similarity and dose agreement.

The dosimetric accuracy of sCTs is significantly improved

over that of original CBCTs, and an approach is used to

calculate photon dose based on sCT. Select dose-volume

histogram (DVH) metrics and dose or gamma differences have

been investigated as a basis for evaluating sCT feasibility in

VMAT planning at various body sites. According to Liu et al.

(156) local dosimetric errors are large in areas with severe

artifacts. These artifacts and dosimetric errors were successfully

mitigated using sCT. With proton planning, it is more difficult

to achieve acceptable dosimetric accuracy due to the range shift,

which can be up to 5 mm (174).
3.3 PET attenuation correction

For PET Attenuation Correction (AC), the influence of

synthetic Computed Tomography (sCT) error on PET

quantification has been analyzed. It is extremely difficult to

specify an error tolerance beyond which clinical decision making

is affected; however, it has generally been accepted that

quantitative errors of 10% or less rarely affect diagnostic imaging
Frontiers in Radiology 15
decisions (175). Most of the methods proposed in the studies

met this criterion, based on their average relative biases. It

should be noted however, that because of variations among study

objects, there may be a bias exceeding 10% in some volumes of

interest (VOI) for some patients (176, 177), suggesting that when

interpreting results, it is important to take into account the

standard deviation of the bias as well as the mean, since the

proposed methods may not have good local performance for

some patients. The results for this section is provided in Table 4.

As an alternative to providing the mean and standard deviation

in demonstrating the performance of the proposed methods,

listing or plotting all the data points, or at least their range,

would ultimately prove more useful (178). Being made up of

high density and atomic number, bone has the most capacity for

attenuation, and its accuracy on sCT has a huge impact on the

final results of attenuation-corrected PET. It is more common for

PET AC to evaluate the geometric accuracy of bone on sCT than

radio therapy (RT). It has been shown that more accurate CT

images generated by learning based methods result in more

accurate PET AC (179–181).

Deep learning (DL) based methods, designed to produce

more precise sCT images, lead to enhanced accuracy in PET

AC. Several studies have demonstrated the substantial

improvements achieved by these methods. In contrast, PET AC

using classical CT synthesis approaches exhibited an average

bias of approximately 5% when compared to selected VOIs,

while DL-based methods exhibited a reduced bias of around 2%

in the same comparison (183, 184).

A 3D patch cycle-GAN was trained with unregistered MR/CT

pairs, compared to atlas-based MRAC and CNNs with registered

pairs by Gong et al. (190). A comparison of DL methods to atlas

MRAC revealed that both performed better in DSC and MAE.

CNN and cycle-GAN did not differ significantly in their

performance in DSC and MAE. According to their research,

cycle-GAN is able to avoid the challenge of training on

perfectly aligned datasets, but more data is needed to improve

its performance.

It was examined whether different network configurations

(VGG-16 (48), VGG-19 and ResNet (44)) can be used as a

benchmark with a 2D conditional GAN that receives either two

Dixon inputs (water and fat) or four Dixon inputs (water, fat, in-

phase, and opposed). When four inputs are used in the GAN,

results are more accurate than the VGG-19 and the ResNet.

Several authors have proposed that the sCT could be obtained

directly from diagnostic imaging, T1- or T2-weighted, by using

standalone MRI scanners(32, 184) or hybrid machines (185).

Bradshaw et al. (185) a three CNN trained on Gradient Echo

(GRE) and Turbo Spin Echo (TSE) MRI sequences, specifically,

the T1 and T2 sequences. The CNN was trained to predict tissue

segmentation across distinct classes, including air, water, fat, and

bone. Subsequently, the model’s performance was compared with

the default Magnetic Resonance Attenuation Correction (MRAC)

method commonly employed by scanners. PET reconstruction

had substantially lower RMSE when calculated with DL method

and T1/T2 input. Recent studies have investigated a CNN with

input either T1 or Dixon and multiple echo UTE (mUTE) on a
frontiersin.org
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brain patient cohort, and found that it outperformed the others.

A CNN was trained on 1.5 T T1 diagnostic GRE data of 30

patients in Liu et al. (184). A total of ten patients from the same

cohort were used and their results are reported in the following

table. Using a 3 T MRI/PET scanner, they then predicted the

pathology for five patients ( T1 GRE), and calculated the error

(PET[error]), resulting in a 1% error rate. The authors concluded

that DL-based approaches are flexible and suitable for handling

heterogeneous datasets acquired using many scanner types.
3.4 Low dose CT to full dose synthetic CT
(sCT)

The data-driven approach to automatically learning image

features and model parameters makes deep learning (DL) an

attractive option for low-dose Computed Tomography (LDCT)

restoration. The existing literature primarily discusses two

approaches for LDCT image enhancement. The results for this

section is provided in Table 5. Some methods focus on direct

image translation from LDCT to full-dose CT (FDCT), while

others involve a two-step process. In the latter approach, DL is

utilized to restore the sinogram, followed by image reconstruction

using Filtered Back Projection (FBP). The proposed method by

Dong et al. (204) reduces lower-resolution edges of objects with

better down-sampling artifacts than an image-based one.

There is a possibility that projection-based methods do not

directly detect prediction errors, while image-based methods do.

During the reconstruction process, the predicted error on the

sinogram will be compensated for, and the outcome will be the

average of all the sinograms. These models are more error-

resistant because of their projection-based nature. The network

may be encoded with a mapping from polar to Cartesian

coordinates for direct mapping from the projection domain to

the image domain.

In their progressive method, Shan et al. (173) generated a

sequence of denoised images at different levels of noise by

iteratively denoising the input LDCT. Rather than directly

mapping LDCT or FDCT images, Kang et al. (226) mapped their

wavelet coefficients. Better recovery of structures was achieved

with wavelet transformations compared to direct mapping. DL-

based methods are less time consuming than iterative

reconstruction methods and do not require prior knowledge of

energy spectrum. The LDCT model reported by Wang et al.

(214) was trained on an average personal computer in 1 minute

and generated an entire 3D volume from denoised images. Due

to the resource-intensive nature of traditional iterative

reconstruction methods, their implementation is limited on

personal computers, especially when slice thickness and field of

view (FOV) are small.

Numerous studies have conducted comparisons between

traditional iterative methods and state-of-the-art DL-based

techniques. Among these advanced methods, Total Variation

(TV) regularization has received attention. TV-based techniques,

while known to sometimes over smooth images and create

uneven textures, excel in preserving fine structures and
frontiersin.org
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TABLE 5 Overview of methods for low-dose CT to high-dose CT generation.

Author Year Tumor Dataset Network Low-dose scheme and fraction
of full dose CT

Findings Mode

Kang (205) 2018 Abdomen 8 TR, 1 TE AE (ResNet) Low mAs: 1/4 of full dose PSNR (dB): 38.70 Image

Yi (206) 2018 Abdomen 708 s TR, 142 s TE GAN Low mAs: 5% of full mAs PSNR (dB): about 34 Image

Shan (207) 2018 Abdomen 5 TR, 5 TE GAN Low mAs: 1/4 of full dose PSNR(dB): 30.137+ 1.938 Image

You (208) 2018 Abdomen 10, LOO GAN Low mAs: 1/4 of full dose PSNR (dB): 25.372 Image

Han (209) 2018 Abdomen 8 TR, 1 VAL, 1 TE U-net Sparse view: 1/12 of full views PSNR (dB): 40.4856 Image

Yang (210) 2018 Abdomen 4000 s TR, 2000
TE

GAN Low mAs: 1/4 of full dose Validated in double-blinded
reader study

Image

Liu (211) 2018 Whole body 300 s TR, 50 s TE U-net
(Encoderdecoder)

Low mAs: fraction not specified PSNR (dB): 42.3257 Image

Shan (173) 2019 Abdomen &
chest

10 TR, 60 TE U-net Low mAs: about 1/3 to 1/8 of full dose Validated in double-blinded
reader study

Image

Zhao (212) 2019 Chest 3 TR, 3 TE AE Low mAs: 3% of full mAs PSNR (dB): about 22 Image

Lee (213) 2019 Chest 7 TR, 8 TE U-net Sparse view: 1/4 of full views PSNR (dB): (42.73, 52.14) Projection

Dong (204) 2019 Head 200 s TR, 100 s TE U-net Sparse view: 1/12 of full views PSNR (dB): 37.21 for sparse view Projection

Wang (214) 2019 Head 30, 5x CV CycleGAN Low mAs: 0.5% of full mAs NMSE (%): 1.63+ 0.62 Image

Li (215) 2020 Abdomen 1382 TR, 1345
va/te

WGAN Low mAs: 1/4 of full dose PSNR: 22.27, SSIM: 0.78 Image

Chi (216) 2020 Abdomen 4036 TR, 296 TE LSGAN Low mAs: 1/4 of full dose PSNR: 44.40, SSIM: 0.98 Image

Ma (217) 2020 Abdomen 2378 TR, 211 TE LSGAN Low mAs: 1/4 of full dose PSNR: 32.70, SSIM: 0.91 Image

Yin (218) 2021 Lung 2400 s TR, 100 s
TE

GAN noise surpressed maintaining the structure
and edge details

PSNR: 29.6957, SSIM: 0.6916 Image

Gu (219) 2021 Chest 36535 s TR,
13530 TE

CycleGAN Low mAs: 1/4 of full dose PSNR: 30.87, SSIM: 0.66 Image

Jiang (220) 2022 Lung 203 TR/VAL/TE CNN Low mAs: 4.6% & 9.2% of full dose MAE: 51 HU+ 4 Image

Zhu (221) 2022 Abdomen 1024 s TR, 256 s
TE

CNN (SMU-Net) Low mAs: 1/4 of full dose PSNR: 50.47+ 6.78, SSIM:
0.99+ 0.0067

Image

Zhou (222) 2022 Abdomen 10 TR, 7 TE GAN(TTSR) Low mAs: 1/4 of full dose PSNR: 31.16+ 1.38, SSIM:
0.73+ 0.06

Image

Yang (223) 2023 Abdomen 2378 s from 10 CNN(MDAM) Low mAs: 1/4 of full dose PSNR: 29.26+ 1.60, SSIM:
0.87+ 0.055

Image

Yang (223) 2023 Abdomen 104 CNN(MDAM) Low mAs: 10% of full dose PSNR: 36.06+ 1.14, SSIM:
0.95+ 0.008

Image

Gao (224) 2023 Abdomen 5410 TR, 526 TE CNN(ADBNET) Sparse view: 1/4 of full dose PSNR: 38.82+ 0.19, SSIM:
0.92+ 0.002

Projection

Li (225) 2023 Abdomen 8 TR, 2 TE CNN(PCCNN) Low mAs: 1/4 of full dose PSNR: 30.67+ 0.12, SSIM:
0.91+ 0.001

Image

+ 10 TR Low mAs: 1/4 of full dose PSNR: 32.05+ 0.10, SSIM:
0.93+ 0.001

Projection
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maintaining image texture similarity to FDCT scans. Utilizing

analytical optimization objectives in deep learning enhances

image quality while preserving texture, resulting in predictions

that closely align with the ground truth, as represented by FDCT

images. This improvement is quantitatively measured through

metrics such as peak signal-to-noise ratio (PSNR), structural

similarity (SSIM), and mean absolute error (MAE). A double-

blinded reader study conducted by Shan et al. (173) proved their

DL-based method performed similarly to three commercially

available iterative algorithms for noise suppression and structural

fidelity. Almost all the studies reviewed used their restored FDCT

images for diagnostic purposes. This method is particularly

suitable for adaptive RT where re-scanning and planning

throughout a treatment course is common, as Wang et al. (214)

evaluated it in the context of RT treatment planning. Planning

CT requires accurate Hounsfield Unit (HU) and dose calculation

accuracy vs diagnostic CT, which emphasizes high resolution and

low contrast. When a dose of 21 Gy is prescribed, the average

difference in dose volume histogram (DVH) metrics between
Frontiers in Radiology 18
original FDCT and synthetic FDCT is less than 0.1 Gy

(P . 0:05). Although the training and testing strategies may

differ among these studies, the results are similar. Most of the

reviewed studies used the dataset from the AAPM 2016 LDCT

Grand Challenge (227). Because LDCT does not contain any

clinical data, it is also used as an example of Poisson noise or a

downsampled sinogram in many other studies. There are a few

exceptions, such as Yi et al. (206) who used piglets, and Shan

et al. (173) who used LDCTs from real patients. It is therefore

important to evaluate these methods against actual LDCT

datasets since simulated noise may not accurately reflect the

properties of true noise and potential artifacts.
4 Discussion

In many domains of biomedical research and clinical

treatment, imaging has become a necessary component.

Radiologists identify and quantify tumors from Magnetic
frontiersin.org
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Resonance Image (MRI) and Computed Tomography (CT) scans,

and neuro-scientists detect regional metabolic brain activity from

Positron Emission Tomography (PET) and functional MRI scans.

Biologists study cells and generate 3D confocal microscopy data

sets, virologists generate 3D reconstructions of viruses from

micrographs, radiologists identify and quantify tumors from MRI

and CT scans, and neuro-scientists detect regional metabolic

brain activity from PET and functional MRI scans. In contrast to

traditional digital image processing and computer vision

approaches that need many MRI modalities to properly show all

areas. There are few novel Deep Learning (DL) approaches

available (discussed in literature) for generating brain sCT images

that only requires one MRI pulse sequence to accurately display

all regions (43, 228, 229).

DL-based image synthesis is a young and rapidly developing field,

with all of the studies evaluated published within the past five years.

There is much literature on DL-based image synthesis. Future

studies need to address specific unanswered questions. Since GPU

memory constraints prevented training on three-dimensional (3D)

slices, some DL algorithms were trained on two-dimensional (2D)

slices. Unlike 3D loss functions, 2D loss functions do not consider

continuity in the third dimension, thus making slices appear

discontinuous. In addition to using 3D patches to train models that

exploit 3D spatial information more effectively, they can also extract

features from larger-scale images (34, 81). A 2D and 3D model was

examined using the exact U-Net implementation by Fu et al. (73).

The study’s findings suggest that a 3D sCT offered more accurate

results with smaller MAE. In the absence of additional data, the

model might use many adjacent slices to gather additional 3D

context or generate independent networks for each of the three

orthogonal 2D planes (230).

A DL-based approach can produce images that are more realistic

improve quantitative metrics. Depending on the technology, it can

take from an hour to days to train a model using DL-based

approaches. A synthetic image for a new patient can be generated

within seconds or minutes after training a model. Our study

reviews the feasibility of using various imaging methods to build

CTs using DL-based methods. It has become possible to train large

datasets and translate images in seconds due to higher computing

capabilities. DL’s clinical applications are made simpler by fast

image-to-image translation, proving the method’s usefulness.

1. MR based RT: There are many types of sCT generation

approaches, but MR only RT with DL is the most prevalent.

The eighty two studies in this review demonstrate that DL

algorithms effectively produce sCT from MRI data. Many

methods of training and combinations have been proposed.

The pelvis and the head and neck can be treated using

photon radiotherapy (RT) and proton therapy, which achieve

high image similarity and dosimetry accuracy. As part of the

feasibility phase of testing, application of DL algorithms to

abdominal and thoracic positions with significant motion are

showing promise (37, 41, 59, 60, 86, 89, 104, 116–118, 185,

231). The MR-only simulation of pediatric patients could be

extremely beneficial when their simulations are repeated since

they are more radiation-sensitive than adults.
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It is necessary to confirm the geometrical accuracy of sCT

before it can be used for clinical planning, mainly if MRI or

sCT is used to replace CT for position verification. So far,

research on DL-based sCT has been limited to a few studies.

There have only been two studies that used CBCT and

digitally reconstructed radiography to assess their alignments:

Gupta et al. (33) for brain cancer and Olberg et al. (41) for

breast cancer. The accuracy of sCT produced with standard

3T techniques has been extensively investigated, notably for

geometric accuracy. Research is critical to enhancing the

clinical application of sCT (232–234).

DL-based sCT generationmay reduce the duration of treatment

in MR-guided RT, (235–239) because solitary MRI allows daily

image guidance and plan modification. It is essential to assess

the accuracy of dose calculation in a magnetic field before using

it clinically. The current state of research on this topic is limited

to studies on abdominal and pelvic tumors (59) and they have

only considered low-strength magnetic fields. Recently, Groot

Koerkamp et al. (240) reported the first dosimetric study

demonstrating DDs for breast cancer patients treated with DL-

based sCT. It is encouraging that the results were positive, but

we recommend further study of other anatomical sites and

magnetic field strengths.

2. CBCT to CT: CBCT imaging is an integral part of the daily

patient setup for photon and proton RT. Due to scattering

and reconstruction abnormalities, it is not routinely used to

adjust daily plans and recalculate doses. This problem can be

addressed in several ways (241), including image registration

(242), scatter correction (243), a look-up table to rescale HU

intensities (244), and histogram matching. In contrast to

image registration and analytical adjustments, converting

CBCT to sCT enhanced image quality. CBCT-to-CT

conversion presents a challenge for clinical use because of the

two imaging technologies’ different fields of view (FOV). This

is usually overcome by cropping, registering, and resampling

the volume to a smaller CBCT size than planned.

However, the small field of view presents some challenges. For

missing information (145), some have suggested assigning water

equivalent density to the CT body contours. The sCT patch can

also be sewed directly to the intended CT, guaranteeing that

the whole dose volume will be covered. This stage is essential

for online adaptive RT, especially in areas with a high degree of

motion, as Liu et al. hypothesized in their work on pancreatic

cancer (149). There is currently no consensus on whether

improving CBCT quality with synthesis and reconstruction is

the optimal approach. In preliminary experiments, training

convolutional networks for reconstruction resulted in greater

generalizability to diverse anatomy.

3. PET attenuation Correction (AC): sCTs generated in this

category are derived either from MRIs or PETs that have not

been corrected. Attenuation maps in MRI/PET hybrid

acquisitions are currently inaccurate due to limitations in

attenuation map construction. DL-based sCT has always been

more consistent than commercially available MRAC. This

review suggests that using deep learning for synthetic CT (sCT)

can overcome most of the challenges associated with current
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AC methods. Although there has been a consistent number of

studies in this field over the past few years, the specific factors

and trends in these studies vary. These studies focus primarily

on translating images into CT. Alternatively, Shiri et al. (245)

studied the most significant number of patients to date (1150

patients split into 900 pieces of training, 100 validations, and

150 testings). This field could benefit from DL’s direct-map

prediction capabilities in the future.

5 Trends in deep learning

5.1 Application

Deep Learning (DL) approaches, including supervised, semi-

supervised, unsupervised, and reinforcement learning may tackle

a wide range of issues. Computer vision and digital image

processing applications have been divided into three groups by

some researchers: structural scenarios, non-structural scenarios,

and miscellaneous application situations. The term “structural

scenario” refers to a circumstance in which data is processed in

relational structures that are clear, such as physical systems and

chemical structures. The term “non-structural scenario” refers to

a circumstance in which data is not structured, e.g., images and

texts with ambiguous patterns.

For clinicians who manage the search for representative

images, it does not matter that how many times the data is

reproduced. CT scanning, ultrasound, and MRI are all used in

x-ray imaging. Physicians may examine the body’s obscure or

concealed third dimension in this manner.

5.1.1 Image registration
Synthetic images can be used for diverse tasks downstream,

revealing many possibilities. Intricate processes like image

registration can be simplified with synthetic images generated

using cutting-edge techniques. Chen et al. (192) have

demonstrated in their work that synthetic images can

facilitate streamlined workflows when it comes to registration

by acting like reliable substitutes for real-world images in

streamlined workflows.

Image alignment is essential for cross-domain image

registration, where synthetic image generation is used to create

images. In feature-based supervised registration of 3D

multimodal images, deep learning has been used in several ways.

To predict registration parameters, researchers have primarily

used deep regression models (246–248). As well as being used in

pre-processing, deep learning has also been used in the process

of determining control points, which are then used to determine

the registration parameters based on the information that is

acquired from the deep learning technique.

An AIRNet (affine image registration network) model was

developed by Chee and Wu (249) to predict the parameters of

affine transformations between 2D and 3D images. An intra-

patient T1 and T2 MRI image of the head was transformed

using a deep learning regression model by Sloan et al. (250).

According to Liu et al. (251), multi-modal medical image
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registration can be performed using synthetic image generation

and deep learning. For rigid-body medical image registration,

Zou et al. (252) implemented feature extraction and interest/

control points-based deep learning models.

CT synthesis using MR-based technology also proves to be

promising for radiation treatment planning and PET attenuation

correction. In deformable registration when significant geometric

distortion is allowed, direct registration between CT and MR

images is even less reliable because of disparate image contrast.

By replacing MRI with synthetic CT images, McKenzie et al.

(253) reduced an inter-modality registration problem to intra-

modality registration in the head and neck by using a

CycleGAN-based method. CBCT technology is being increasingly

adopted to improve the quality of radiation therapy, including

higher diagnostic accuracy and better auto-contouring based on

improvements in image registration, deformable image

registration (DIR) and simulator analysis of CT images (133,

134). These capabilities are being offered in an increasing

number of applications.

5.1.2 Image augmentation
A synthetic image can also enhance training sets in supervised

learning applications. As Frid et al. (254) demonstrated,

synthesized data augmentation can be a productive tool for

improving model performance and robustness, which is one of

the critical challenges of training deep learning models on

limited datasets. In addition to extending synthetic images in

downstream tasks across a broad range of domains, these

investigations also shed light on the transformative role that

synthetic images can play in optimizing complex processes in

diverse domains.

A method for increasing the size of existing databases is known

as data augmentation. A synthetic set of data is typically generated

from the original database data. A synthetic image is created from

the original dataset by using a particular method and generating a

certain number of synthetic images from it. The former question

has given rise to numerous methods, many of which are aimed

at addressing it, including generative adversarial networks (255),

random cropping (256), geometric transformations (257, 258),

mixing images (259), and neural style transfers (260).

To improve the network’s generalizability and reduce

overfitting, data augmentation is heavily used in deep neural

network training nowadays. There are currently no data

augmentation operations that can cover all variations of the

data, as they are all manually designed operations, such as

rotation and color jittering. The search space of Cubuk et al.

(261) was still restricted to basic handcrafted image processing

operations when they proposed to learn an augmentation

policy with reinforcement learning. As a result, GANs are

much more flexible for augmenting the training data, as they

can sample the whole distribution of data (262). In styleGAN,

realistic face images can be generated with unprecedented

detail. Using this technique, images of pathology classes with

sufficient numbers of cases could be generated from chest

x-ray datasets. Medical data distribution is well known to be

highly skewed with common diseases accounting for the
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majority of data. Rheumatoid arthritis, sickle cell disease, and

other rare diseases cannot be adequately trained. The long tail

of these diseases can be detected by radiologists. It is also

anticipated that GANs will be used for the purpose of

synthesizing cases and circumstances with uncommon

pathologies. This will be done by conditionally generating

information with medical experts supplying the conditioned

information either on the basis of text descriptions or drawings.
5.1.3 Datasets, open-source libraries and tools
Computer vision techniques are evaluated using a variety of

datasets and standards in different branches, including medical

imaging (healthcare), agriculture, surveillance, sports and automotive

etc. The implementation of DL in computer vision (medical

imaging) is limited by a relatively small training dataset and a huge

imaging volume. Example datasets include CT medical images (CT

images from cancer imaging archive with contrast and patient age),

Deep Lesion (contains 32,120 axial CT slices from 10,594 CT scans

of 4,427 unique patients), OASIS Brain (Open Access Series of

Imaging Studies dataset for normal aging and Alzheimer’s Disease),

MRNet (dataset consists of 1,370 knee MRI) and IVDM3Seg (3D

multi-modal MRI datasets of in-vitro diagnostics of the lower spine).

Some open-source libraries have been established by certain research

organizations and researchers, which comprise both common and

classic computer vision techniques e.g., OpenCV, SimpleCV and

TensorFlow etc (176, 263, 264).

MIPAV (Medical Image Processing, Analysis, and

Visualization) is a java-based tool that allows for quantitative

analysis and visualization of medical images from a variety of

modalities, including PET, MRI, and CT. FSL (FMRIB Software

Library) encompasses an extensive array of analysis tools

designed for processing FMRI, MRI, and DTI brain imaging data

(265). AFNI (Analysis of Functional Neuro Images) is a Python-

based application that analyzes and displays data from different

MRI modalities, including anatomical, functional MRI (FMRI),

and diffusion weighted (DW) data (176, 263, 264).
5.1.4 Predictive analytics and therapy using
computer vision

The use of computer vision in surgery and the treatment of certain

illnesses has demonstrated to be quite beneficial especially in the field

of surgery. Three-dimensional (3D) modeling and rapid prototyping

technologies have lately helped medical imaging modalities such as

CT and MRI. Human activity recognition (HAR) is also one of the

most well-studied computer vision challenges. S. Zhang et al. (266)

provide an overview of several HAR techniques as well as their

evolution with traditional Chinese literature.

In vision-based activity recognition, the authors emphasize

developments in image representation methodologies and

classification algorithms. Common representation approaches

include global representations, local representations, and depth-

based representations. They divide and describe human activities

into three levels, in that order: action primitives, actions/

activities, and interactions. They also offer a description of the

HAR application’s classification techniques (266, 267).
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5.2 Diffusion models

Developing realistic and high-fidelity images is a challenge

that has seen a paradigm shift with the emergence of diffusion

models. Intuitive patterns and dependencies within image data

can be captured using these probability distribution models

based on probability distributions. According to recent studies,

diffusion models can produce diverse and realistic samples

more effectively than traditional generative models, as

demonstrated in work by Dhariwal et al. (268). Diffusion

models are robust and versatile tools for image synthesis since

they can consider the underlying uncertainty in pixel values.

This article intends to shed light on the potential of diffusion

models to redefine the landscape of image synthesis in various

domains, drawing inspiration from recent developments and

applications in multiple fields.

Integrating diffusion models can profoundly advance

diagnostic and therapeutic applications of diffusion models in

medical imaging. According to Hung et al. (269), diffusion

models can capture nuanced variations in medical images,

enhancing the realism of synthesized medical data. This article

aims to demonstrate how diffusion models can be used to

address challenges like data scarcity and to create realistic

synthetic datasets based on image synthesis. Utilizing diffusion

models is a critical trend in medical imaging as synthesis data

is increasingly used for training machine learning models,

resulting in improved diagnostic accuracy and treatment

planning. This article examines diffusion models in the

context of current advancements and future possibilities in

medical imaging.
5.3 Open issues

There are studies in medical imaging research that demonstrate

accuracy of above 95%. Though, we are concerned with more than

simply the accuracy of a classifier. Because false negatives and false

positives in medical imaging may have catastrophic effects. This is

one of the reasons why, despite their high performance, stand-

alone decision systems are not widely used. In this section, we

will describe many potential research topics and open concerns

for computer vision in medical imaging.

Imaging Modality: Medical imaging modalities are classified

according to how images are generated. In radiology, a modality is

a phrase that refers to a certain kind of imaging, such as CT

scanning, ultrasound, radiation (x-rays), and MRI. X-ray machines,

which are made up of a single x-ray source and produce two-

dimensional images, are examples of radiation-generated images.

In literature, medical imaging modalities algorithms have received

a great attention, but it is critical that the medical imaging

modalities algorithms, be designed to retain high performance.

Generative Medical Image Synthesis: Inspired by the GAN,

because of its capacity to generate data without explicitly

modeling the probability density function, GANs have gotten a

lot of interest in the computer vision field. If diagnostic

images are to be utilized in a publication or put into the public
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domain, patient’s agreement could be necessary, depending on

institutional rules. GANs are commonly used in the medical

imaging for image synthesis. This helps to address the privacy

concerns around diagnostic medical images as well as the lack of

positive instances for each disease. Another barrier to the

implementation of supervised training techniques is the lack of

professionals who can annotate medical images (52).

Interpretability/Explainability in Medical Image Analysis: An

explanation of the machine learning (ML) algorithm can be

described as interpretability. Various computer vision algorithms

achieve outstanding results at the cost of greater complexity. As a

result, they become less interpretable, perhaps leading to distrust.

DL-based approaches, have shown to be quite successful for

several medical diagnostic tasks, outperforming human specialists

in certain cases. However, the algorithms’ black-box nature has

limited their clinical use. Recent explainability studies have

attempted to demonstrate the characteristics that have the most

impact on a model’s choice. Furthermore, interpretability

findings are often based on a comparison of explanations with

domain knowledge. As a result, objective, quantitative, and

systematic assessment procedures are required (270). Finally,

AI safety in healthcare is intimately linked to interpretability

and explainability.
6 Conclusion

This study includes a broad overview of computer vision

techniques as well as a complete assessment of medical imaging

with respect to CT, CBCT, PET and MRI techniques. We looked

at current digital image processing techniques with respect to

medical imaging. We did our best to emphasize both the

potential and the obstacles that this medical imaging application

industry faces in the healthcare field. Our goal is to uncover the

important need for computer vision algorithms in the clinical

and theoretical context of medical imaging. This special research

article discusses a few recent advancements in computer vision

related to medical images and clinical applications.

In conclusion, this study presents a glimpse of computer

vision in healthcare applications using medical images.

Hopefully, future computer vision, analysis techniques, and

ML of medical images will benefit from this paper. However,

even though these works outperform conventional and state-

of-the-art approaches, there are still limitations and

challenges for computer vision and different algorithms and

processing techniques of medical images. In addition, we

discuss some potential future research areas in the sCT
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generation. We really hope that this survey proves to be

useful. We believe that this survey will aid scholars and

practitioners in their computer vision, medical imaging and

related research and development.
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