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Lymphatic structure and function play a critical role in fluid transport, antigen delivery, and
immune homeostasis. A dysfunctional lymphatic system is associated with chronic low-
grade inflammation of peripheral tissues, poor immune responses, and recurrent
infections, which are also hallmarks of aging pathology. Previous studies have shown
that aging impairs lymphatic structure and function in a variety of organ systems, including
the intestines and central nervous system. However, previous studies are mostly limited to
qualitative analysis of lymphatic structural changes and quantification of intestinal
collecting vessel contractile function. It is not clear whether decreased lymphatic
function contributes to pathological conditions related to aging, nor how it affects the
skin immune microenvironment. Further, the effects of aging on skin initial and collecting
lymphatic vessels, dendritic cell (DC) migration, cutaneous lymphatic pumping, and
VEGFR-3 signaling in lymphatic endothelial cells (LECs) have not been quantitatively
analyzed. Here, using fluorescent immunohistochemistry and flow cytometry, we
confirm that aging decreases skin initial and collecting lymphatic vessel density.
Indocyanine green (ICG) lymphangiography and DC migration assays confirm that
aging decreases both fluid pumping and cell migration via lymphatic vessels. At the
cellular level, aging causes decreased VEGFR-3 signaling, leading to increased LEC
apoptosis and senescence. Finally, we determined that aging causes decreased
lymphatic production of chemokines and alters LEC expression of junctional and
adhesion molecules. This in turn leads to increased peri-lymphatic inflammation and
nitrosative stress that might contribute to aging pathology in a feed-forward manner. Taken
together, our study, in addition to quantitatively corroborating previous findings, suggests
diverse mechanisms that contribute to lymphatic dysfunction in aging that in turn
exacerbate the pathology of aging in a feed-forward manner.

Keywords: dermal lymphatics, age-related lymphatic dysfunction, peri-lymphatic inflammation, lymphatic
endothelial apoptosis, decreased LEC VEGFR-3 signaling

INTRODUCTION

The lymphatic system is an organized, hierarchical vascular network consisting of successively larger
vessels that are present in virtually all organ systems and transport tissue fluids, immune cells,
macromolecules, antigens, pathogens, and lipids (Oliver et al, 2020; Petrova and Koh, 2020).
Lymphatic capillary vessels, also known as initial lymphatics, take up fluid and macromolecules in
response to tissue distention. Initial lymphatics drain into pre-collectors and larger collecting vessels that
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maintain vascular integrity through tight “zipper-like” adherent
junctions (Baluk et al, 2007), and pump their contents toward
draining lymph nodes through the action of lymphatic muscle cells
(LMCs) (von der Weid and Zawieja, 2004; Scallan et al., 2016). In the
lymph nodes, antigens and pathogens in lymph are filtered and
taken up by antigen-presenting cells that initiate immune responses;
the filtered interstitial fluid is eventually returned to the venous
system through lymphatico-venous junctions (Randolph et al., 2005;
Liao and Padera, 2013).

Clinical and animal studies have shown that aging impairs
lymphatic function in the skin, intestines, and central nervous
system (CNS) (Akl et al,, 2011; Karaman et al., 2015; Ma et al,,
2017). Aged mice have decreased lymphatic vessel density,
increased lymphatic permeability, and decreased ability to
clear bacteria (Zolla et al, 2015). Functional studies have
shown that aged rats have decreased lymphatic muscle cell
coverage of mesenteric lymphatics, decreased muscle
contractile and ion channel protein expression, and decreased
collecting lymphatic ejection fraction (Gasheva et al., 2007; Nagai
et al., 2011). These findings are consistent with large clinical
studies reporting decreased interstitial transport and impaired
collecting vessel pumping in healthy geriatric volunteers
compared with young controls (Unno et al., 2011).

More recent studies have suggested that age-related lymphatic
dysfunction plays a key role in diseases that commonly affect the
elderly. For example, mice with age-related decreases in
lymphatic clearance of macromolecule and waste products
from the CNS have cognitive impairment and amyloid
deposition (Da Mesquita et al, 2018). However, how age-
associated lymphatic dysfunction affects skin immune and
stromal microenvironment is not well known. Because the
lymphatic system plays an important role in antigen delivery
and induction of immune responses, it is possible that age-related
lymphatic dysfunction may also contribute to other pathologic
conditions that affect the elderly, including impaired immune
responses to tumors or infections, autoimmunity, and arthritis.
Thus, understanding the mechanisms that regulate lymphatic
dysfunction in aging is an important goal.

Previous studies have suggested that histamine released by mast
cells is a negative regulator of lymphatic pumping and contributes
to age-related lymphatic dysfunction (Chatterjee and Gashev, 2012;
Nizamutdinova et al., 2016; Pal et al., 2017). However, the effects of
age-related changes on peri-lymphatic accumulation of other
leukocytes remain unknown. This is important because previous
studies have shown important roles for T cells and macrophages in
regulating lymphatic function and leakiness (Reynolds et al., 2016;
Kataru et al,, 2019). In addition, while it is clear that aging has
significant effects on lymphatic vessel density and function, the
cellular and molecular changes that regulate age-related changes in
lymphatic endothelial cells (LECs) remain unknown. For example,
it is not clear how aging modulates LEC intracellular signaling or if
aging increases LEC apoptosis or senescence. Understanding these
mechanisms may therefore identify putative treatment options that
may mitigate the negative effects of aging on the lymphatic system.

In this study, we performed a comparative analysis of young
(2-3-month-old) and aged (8-22-month-old) mouse skin initial
and collecting lymphatic vessels encompassing some of the

Aged Skin Lymphatic Vessels

missing aspects from the existing literature. We sought to
characterize the effects of aging on structure and function of
lymphatic vessels in the skin in terms of density (imaging and
flow cytometry), pumping (ICG lymphangiography), dendritic
cell migration, and VEGFR-3 signaling in LECs, as well as the
effects of LEC changes on the immune microenvironment.

MATERIALS AND METHODS

Mice and Reagents

All experimental protocols were reviewed and approved by the
Institutional Animal Care and Use Committee at Memorial Sloan
Kettering Cancer Center (MSK). MSK adheres to the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals and operates in accordance with the Animal Welfare
Act. All mice were maintained in a pathogen-free, temperature-
and light-controlled environment and provided with normal
chow diet and freshwater ad libitum.

Experiments were performed using a combination of male and
female mice between 8 and 80 weeks of age. Adult (2- to 3-
month-old) C57BL/6] mice (The Jackson Laboratory; Bar
Harbor, ME) were included in the young group, while mice
aged 18-22 months were considered old. When indicated,
anesthesia was induced using isoflurane (Henry Schein Animal
Health; Dublin, OH). Respiratory rate and tail pinching were used
to monitor the depth of anesthesia. At the conclusion of each
experiment, the appropriate animals were euthanized by carbon
dioxide asphyxiation as recommended by the American
Veterinary Medical Association.

Fluorescent Immunohistochemistry

Fluorescent immunohistochemical (IHC) staining was
performed using standard protocols. Tissues were fixed in 4%
paraformaldehyde (Affymetrix, Inc.; San Diego, CA) at 4°C,
embedded in Tissue-Tek optimal cutting temperature
compound (Sakura Finetek; Torrance, CA) or paraffin, and
sectioned at 5-10 um. All tissue sections were rehydrated prior
to staining. Rehydrated paraffin sections were subjected to 15 min
of heat-induced (90°C) epitope retrieval in sodium citrate (Sigma-
Aldrich) buffer in a water bath. For wholemount staining, ear
pinnae were collected, depilated, fixed in 4% PFA for 2 h at room
temperature. Fixed ear skins were peeled, cartilage was removed
from anterior side, and both anterior and posterior sides were
stained by pinning to a Syl Gard gel (Corning; Cat# 24236-10) ina
six well plate. Ear skins were washed for 30 min with phosphate-
buffered saline (PBS) with 1% Triton X-100 (Sigma-Aldrich). For
IHC of sections and wholemounts, non-specific binding was
blocked with a solution of 5% donkey or goat serum (Sigma-
Aldrich; St. Louis, MO) for 1 h at room temperature. All tissues/
sections were then incubated overnight at 4°C with the
appropriate primary antibodies (Table 1). Sections or whole-
mount tissue preparations were subsequently washed with
phosphate-buffered saline (PBS) with 1% Triton X-100
(Sigma-Aldrich) and  incubated  with  corresponding
fluorescent-labeled secondary antibody conjugates (AlexaFluor
488, 594, or 647; Life Technologies; Carlsbad, CA) for 5h
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TABLE 1 | Antibodies used for immunohistochemistry.

Aged Skin Lymphatic Vessels

Antigen Antibody type Dilution Catalog number Company

LYVE-1 Goat polyclonal 1:400 2125-LY R&D Systems (Minneapolis, MN)
VE-cadherin Goat polyclonal 1:500 AF1002 R&D Systems

LYVE-1 Rabbit polyclonal 1:200 Ab14917 Abcam (Cambridge, MA)
Podoplanin Hamster monoclonal 1:500 Ab11936 Abcam

a-SMA Mouse monoclonal Cy3-conjugated 1:1000 C6198 Sigma-Aldrich (Saint Louis, MO)
CD31 Rat monoclonal 1:200 553370 BD Biosciences (Franklin Lakes, NJ)
CD11b Rat monoclonal 1:300 557395 BD Biosciences

VEGFRS3/Flt-4 Goat polyclonal 1:100 AF743 R&D Systems

pAkt Rabbit monoclonal 1:400 4060s R&D Systems

CCL21 Goat polyclonal 1:40 AF457 R&D Systems

Cleaved Caspase-3 Rabbit monoclonal 1:100 MAB 835 R&D Systems

VE-Cadherin Goat polyclonal 1:500 AF1002 R&D Systems

ICAM-1 Rat monoclonal 1:100 YN1/1.7.4 Ab119871 Abcam

p-Selectin Rabbit monoclonal 1:500 EPR5047 Ab134047 Abcam

iINOS Rabbit polyclonal 1:100 Ab3523 Abcam

CD3 Rabbit polyclonal 1:200 A0452 Dako (Santa Clara, CA)
Nitrotyrosine (N-Tyr) Rabbit polyclonal 1:200 BS-8551R BIOSS (Woodburn, MA)
Collagen | Rabbit polyclonal 1:100 Ab34710 Abcam

MacroH2A1 Rabbit polyclonal 1:100 39593 Thermo Fisher

RYR1 Rabbit polyclonal 1:200 AB9078 Millipore

followed by 4,6-diamidino-2-phenylindole (DAPI; #D4571,
Molecular Probes/Invitrogen; Eugene, OR) for 10 min before
mounting with Mowiol (Sigma-Aldrich). Slides stained only
with  secondary antibodies without primary antibody
incubation were used as a negative control.

All sections were scanned using a Mirax slide scanner
(Zeiss; Munich, Germany) and whole mounts were imaged
using an SP-5 upright confocal microscope (Leica
Microsystems; Wetzlar, Germany). Image analysis was
performed with Pannoramic Viewer (3D Histech; Budapest,
Hungary). Lymphatic vessel density (% total area),
fluorescence intensity, mean fluorescence intensity and
vessel diameter were measured using ImageJ software (NIH;
available at https://imagej.nih.gov). Lymphatic vessel density
and fluorescence intensity were analyzed using a x20
magnification images (5 per mouse) and average values
represented as graphs. Branch points and diameter were
analyzed using x20 magnification images (5 per mouse) by
two blinded reviewers. To analyze peri-lymphatic
inflammation cells or fluorescence intensity of structures
within 100 um radius of lymphatic vessels were counted by
two blinded reviewers from five images per mouse and
averages were plotted as graphs.

Flow Cytometry and LEC Sorting

Single-cell suspensions of tissues (1 whole ear or 1 cm” of back
skin) were prepared by mechanical dissociation followed by
incubation with digestion buffer containing collagenase D
(0.2 mg/ml), DNAse I (0.1 mg/ml), and Dispase II (0.8 mg/ml)
(Roche Diagnostics; Indianapolis, IN). Erythrocytes were lysed
with RBC lysis buffer (eBioscience; San Diego, CA). Samples were
stained with various combinations of the following fluorophore-
conjugated mouse monoclonal antibodies: PE-anti-podoplanin
(8.1.1; #127407), FITC-anti-CD45 (30-F11; #103107), PE-anti-
CD11c (N418; #117307), APC-anti-CD31 (MEC13.3; #102509),

APC-anti-CD11b (M1/70; #101211), BV-421-anti-Ly6C/6G
(RB6-8C5; #108422), APC-anti-CD8a (53-6.7, #100712), and
PE-CD45R/B220 (RA3-6B2, #103207) (all from Biolegend),
APC-anti-CD3 (17A2; #17-0032-80), FITC or PE-anti-CD4
(GK 1.5; #11-0041-82, 12-0041-81) from eBioscience, PE-anti-
LYVE-1 (cat # 12-0443-82) from Invitrogen. Non-specific
staining was reduced with Fc receptor blocking (rat
monoclonal anti-CD16/CD32; #14-0161-85; eBioscience).
DAPI viability dye was also used to exclude dead cells. Single-
stain compensation samples were created using UltraComp
eBeads (#01-2222-42; Affymetrix, Inc.). Flow cytometry was
performed using a BD Fortessa flow cytometry analyzer (BD
Biosciences; San Jose, CA), and data were analyzed with Flow]Jo
software (Tree Star; Ashland, OR). Percentage of LECs was
quantified as %CD45 negative cells and LEC numbers were
quantified as number of LECs per 100,000 cells. Similarly,
immune cells were quantified as percentage of CD45+ cells or
CD3+ cells and numbers were quantified as number of cells per
100,000 cells. LECs (CD45-, CD31+, podoplanin+ cells) were
sorted from skin (following enzymic disassociation and staining
of single-cell suspensions as described above) using a BD Aria 6
cell sorter. Cells were collected in Eppendorf tubes and processed
immediately.

Lymphatic Function Analysis

Lymphatic leakiness was assessed using FITC-conjugated lectin
(#FL-1171, Vector Laboratories). Using an ultra-fine Hamilton
syringe needle, 3 ug (1 pg/pl) of lectin was intradermally injected
in the ear skin. After 5min, ears were harvested and whole-
mounted for immunofluorescent staining to identify the capillary
and collecting lymphatic vessels draining the lectin.

Hindlimb collecting lymphatic vessel pumping was assessed
using indocyanine green (ICG) near-infrared lymphangiography.
After inducing anesthesia, 15pl of ICG (0.15 mg/ml; Sigma-
Aldrich) was intradermally injected into the first web space of
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the dorsal hindlimbs of each mouse. To promote ICG uptake into
the lymphatic vasculature, mice were awakened and allowed to
move freely for 30 min. Mice were then re-anesthetized for near-
infrared imaging of the hindlimb using a custom-made EVOS
EMCCD camera (Life Technologies; Carlsbad, CA) and LED light
source (CoolLED; Andover, United Kingdom) mounted on a
SteREO Lumar.v12 microscope (Zeiss; Jena, Germany). The same
machine and settings were used to obtain images every 8 s for
30 min for each mouse hindlimb. Fiji software (National
Institutes of Health; Bethesda, MD) was used to analyze
lymphatic pumping. For uniformity, a region of interest was
chosen over the dominant collecting vessel of each hindlimb.
Near-infrared fluorescence intensity, which correlates with
lymphatic contractions, was plotted over time as arbitrary
units to subtract any noise. To avoid inaccuracies from
inadvertent lymphatic stimulation due to positioning, the first
10 min of each image set were excluded.

Dendritic Cell Migration Assay

Skin dendritic cell (DC) migration via lymphatic vessels was
assessed using a modification of previously reported methods
(Wendland et al.,, 2011). Briefly, 8% type I isomer fluorescein
isothiocyanate (FITC; 5 mg/ml; Sigma Aldrich) was diluted ina 1:
1 mixture of acetone and dibutylphthalate (Sigma Aldrich). A
total of 10 pl of the solution was painted on each side of the mouse
ear. The mice were then sacrificed at 20 h later to allow for
collection of the draining cervical lymph nodes following ear
painting. Single-cell suspensions were obtained from these lymph
nodes by enzymatic digestion, from which FITC+CD11c+ DCs
were analyzed by flow cytometry as previously described (Kataru
et al., 2021).

Enzyme-Linked Immunosorbent Assay
and PCR

Protein isolated from lysates of sorted LECs from aged and young
mouse skin was analyzed by ELISA to measure the concentration
of pAkt (normalized to total Akt) using a commercially available
ELISA kit (abcam-ab126433) following the manufacturer’s
protocol. Each assay used 50pg of homogenate and was
performed in duplicate.

Gene expression in cell lysates of sorted skin LECs was
measured by qPCR. RNA was isolated using RNeasy Micro
kits (Qiagen). cDNA was generated using Maxima H Minus
cDNA synthesis master mix and dsDNase (Thermo Fisher
Scientific) using 8 pl of isolated RNA. qPCR was performed
using Quanti Tect SYBR Green PCR master mix (Qiagen)
using pre-validated primers for Prox1 (QT01070615), VEGFR3
(QT00102536), podoplanin (QT01552257), LYVE-1
(QT00158907), CCL21  (QT00284753),  VE-cadherin
(QT00110467), ZO-1 (QT00493899), ICAM-1 (QT00155078)
and p-Selectin (QT00106379) (Qiagen, Hilden Germany) using
1 pug of cDNA/reaction on a ViiA 7 Real-time PCR system
(Thermo Fisher) following the manufacturer’s protocol. After
normalizing to GAPDH expression, mRNA expression was
measured as fold change using the AACt method. Each qPCR
assay was performed in triplicate.

Aged Skin Lymphatic Vessels

Statistical Analysis
Statistical analyses were performed using GraphPad Prism

(GraphPad Software; San Diego, CA). Normal distribution of
all data sets were checked using the Shapiro-Wilk normality test
and unpaired Student’s t-test or the Mann-Whitney test were as
appropriate. Data are presented as mean * standard deviation
unless otherwise noted, and p < 0.05 was considered significant.

RESULTS

Aging Results in Decreased Skin Lymphatic
Density

Consistent with a previous study, we found that aging is
associated with decreased density and branching, by
approximately 35 and 25%, respectively, of LYVE-1+ initial
lymphatic vessels (iLV) (Figures 1A-C) (Karaman et al,
2015). In contrast, we found no effect of aging on iLV
diameter (Figure 1D). To corroborate previous reports and
our histological findings, we performed flow cytometry on ear
skin tissue digests with gating to identify total LECs (CD45-
CD31+ podoplanin+). This analysis also demonstrated that skin
derived from aged mice contains fewer LECs relative to total
CD45™ cells, as well as a 27% lower absolute number of total LECs
compared to young mice (Figures 1E-G).

We, next analyzed morphologic changes in collecting
lymphatic vessels (cLVs) using ear whole mount sections
stained for podoplanin (PDPN) and a-SMA (Figures 2A-C).
This analysis showed that aged animals have fewer cLVs (38%
decrease in total area) and that those remaining are significantly
dilated (23% increase in diameter). We next used flow cytometry
of ear skin digests to quantify collecting LECs (CD45—-/CD31+/
podoplanin+/LYVE-1-). This analysis confirmed our histological
findings and showed that aging results in a decrease in collecting
LECs as a percentage of both CD45- and total cells, by
approximately 41 and 25%, respectively (Figures 2D,E).
Further, high magnification confocal imaging of skin cLVs
revealed abnormal LMC coverage in aged mice (Figure 2F). In
cLVs from young mice, a-SMA+ LMCs were oriented
perpendicular to LECs; in contrast, in cLVs from aged mice,
LMCs were more parallel to LECs. This altered orientation of
LMCs in aged cLVs likely affects their pumping capacity. Because
ryanodine receptors (RyR, calcium-gated channels) play an
important role in LMC contraction and expansion (Jo et al,
2019), we assessed their spatial distribution by high magnification
confocal imaging. We observed a marked decrease in expression
of RyR1 on the LMCs of aged mice compared to young mice
(approximately 65% decrease) (Figures 2G,H).

Aging Results in Decreased Dendritic Cell

Migration and Impaired Lymphatic Pumping
The effects of aging on lymphatic transport of antigen-presenting
cells from the skin to draining lymph nodes is unknown. This is
important because antigen presentation in the lymph node is
necessary for immune responses. We therefore analyzed dendritic
cell (DC) migration using an established assay in which
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diameter. (E) Representative flow cytometry dot plots showing frequencies of CD45-/podoplanin (PDPN)+/CD31+ lymphatic endothelial cells. (F) Quantification of skin
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quantifications are mean + SD, unpaired Student’s t test.
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(D) Representative flow cytometry dot plots showing frequencies of CD31+/CD45-/PDPN+/LYVE-1- collecting LECs. (E) Quantification of the absolute number of skin
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All quantifications are mean + SD, unpaired Student’s t test.
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fluorescein isothiocyanate (FITC) is painted onto the ear skin to
label DCs. This analysis showed that migration of DCs (CD45+/
CD11chigh/FITC+) to the draining cervical lymph nodes 20 h
after FITC application was significantly impaired. We noted a
decrease of 40% and 3-fold in FITC+/CD11c+ cells percentage
and total numbers, respectively in aged animals (Figures 3A-C).

Next, we analyzed pumping function of skin cLVs in the
hindlimb using ICG NIR lymphography. Time-lapse analysis of
ICG-containing cLVs showed that aging results in significant
reductions in both the frequency and amplitude of lymphatic
contractions (Figures 3D,E and Supplementary Video S1).
cLVs in young mice displayed a strong pulsatile function
with regular high intensity peaks at any given region of
interest. In contrast, aged cLVs showed irregular, low-
intensity  peaks. Quantification of intensity peaks,
corresponding to lymphatic pumping (Sharma et al.,, 2007;
Quan Zhou et al., 2010), revealed a marked reduction (57%)
in the number of lymphatic pulsations in aged mice (Figure 3F).
In addition, cLVs of aged mice also displayed areas of ICG
accumulation in the skin consistent with lymphatic leakiness
and dermal backflow (Figure 3G). To corroborate this finding,
we visualized lymphatic vessel leakiness using confocal imaging
of the ear skin injected with FITC-labeled lectin, a high
molecular weight molecule that is exclusively transported
through lymphatic vessels when injected intradermally
(Figures 3H,I). In aged mice, marked extravasation of FITC-
lectin from cLVs was observed, resulting in an approximately

50% increase in FITC-positive area. In contrast, FITC-lectin did
not leak from the cLVs of young mice.

Aging Results in Decreased LEC VEGFR3
Signaling

Because aging was associated with decreased lymphatic vessel
density and branching, we next sought to determine whether
these effects might be mediated in part by changes in VEGFR3
expression and activation. This pathway plays a critical role in
regulating LEC proliferation, differentiation, and protection from
apoptosis (Coso et al., 2014). Immunostaining of whole-mounted
ear skin samples showed that aging was associated with an
approximately 40% decrease in VEGFR3 immunoreactivity on
lymphatic vessels (Figures 4A-C). This finding was corroborated
by quantitative RT-PCR performed on sorted skin LECs, which
demonstrated a similar decrease in VEGFR3 mRNA expression in
LECs isolated from aged animals (Figure 4D). We also found that
aging decreased the expression of the LEC-specific transcription
factor Prox-1 by 57%. However, we noted no changes in the
expression of LYVE-1 by immunostaining and RT-PCR or
podoplanin by RT-PCR (Supplementary Figures S1A,B).
VEGFR3 activation results in phosphorylation of Akt and is
essential for lymphatic growth and proliferation (Deng et al.,
2015). High magnification images of ear skin sections stained for
pAkt showed that aged LECs had decreased intracellular pAkt
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+

FIGURE 4 | Aging causes decreased LEC VEGFRS signaling and increased senescence and apoptosis. (A). Representative confocal images of whole-mounted

ear skin stained for podoplanin (PDPN) and VEGFR3. n = 6 mice per group. (B) Quantification of VEGFR3 immunostaining intensity. (C) Quantification of VEGFR3 mean
fluorescence intensity (MFI). (D) Quantification of VEGFR3 mRNA expression in sorted skin LECs measured by gRT-PCR. n = 5 mice per group. (E) Representative
confocal images of ear skin sections showing colocalization of lymphatics (LYVE-1) and pAkt. Arrows in young mouse skin indicate strong expression and
colocalization of pAkt with LECs. (F) Quantification of pAkt immunostaining as a percentage of lymphatic vessel area. n = 5 mice per group. (G) ELISA quantification of
pAkt (normalized to Akt) from lysates of sorted skin LECs. n = 4 mice per group. (H) Representative confocal images of ear skin sections stained for lymphatics (LYVE-1)
and apoptosis marker cleaved caspase-3. Arrows highlight cleaved caspase-3 expression in aged mice LECs. (I) Representative confocal images of ear skin sections
stained for lymphatics (LYVE-1) and senescence marker MacroH2A1. Arrows highlight MacroH2A1 expression in aged mice LECs. (J,K) Quantification of cleaved
caspase-3+ (J) and MacroH2A1+ (K) LECs on immunostaining. n = 5 mice per group. All quantifications are mean + SD, unpaired Student’s t test.
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compared with young mice (Figures 4E,F). This finding was
corroborated using an ELISA to quantify pAkt in sorted LECs
isolated from young and aged mouse skin (Figure 4G). This
analysis showed that aging resulted in a more than 2-fold decrease
in pAkt in LECs. VEGFR3 signaling and Akt phosphorylation in
LECs provide protection from apoptosis and cellular senescence
(Karaman et al,, 2018). Consistent with our finding that aging
decreases VEGFR3 expression and intracellular pAkt, we found
that aging also resulted in increased expression of cleaved
caspase-3, a marker of apoptosis, and histone macro H2Al
(mH2A1), a marker of senescence, by approximately 8- and 6-
fold, respectively (Figures 4H-K).

Lymphatics in Aging Animals Are
Surrounded by Leukocytes and Nitrosative
Stress Conditions

Low-grade inflammation is a pathologic characteristic of aging
and many other chronic conditions (Frasca et al., 2017). Previous
reports have shown that aging leads to increased mast cell
infiltration around lymphatic vessels (Pal et al, 2017).
Therefore, we sought to determine if aged mice have increased
skin infiltration of inflammatory cells. Flow cytometry analysis of
mouse skin showed that the percentage and number of CD45+

leukocytes was significantly decreased in aged skin by
approximately 30 and 35%, respectively. Despite fewer total
CD45+ cells in aged tissues, the percentage and number of
myeloid cells (neutrophils and macrophages) was significantly
increased in skin harvested from aged mice. The percentage of
neutrophils in aged tissue was increased by 5-fold and the total
number by 4.5-fold. The percentage of macrophages increased by
5-fold and total number by 3-fold. The percentage and number of
DCs was not altered by aging. We found no differences in the
percentage of CD3+ T cells, however, the absolute number of
T cells decreased in aging skin by approximately 40%. We also
found no differences in the percentage of T helper cells, but the
absolute number decreased by approximately 45%; in contrast,
the percentage, and the absolute number of cytotoxic T cells was
significantly increased (approximately 2.5-fold and 2-fold
respectively) in aging mice. We also found a more than 3-fold
decrease in percentage of B220+ B cells and 4-fold decrease in
total number of B cells in aged skin compared to young skin
(Supplementary Figures 2A-C).

To characterize the spatial distribution of these immune cells
relative to lymphatic vessels we performed immunostaining in the
tissue sections. Immunohistochemical staining of ear skin showed
increased numbers of T cells (CD3+) and myeloid cells (CD11b+)
around papillary and reticular dermis in aged but not young mice.
Interestingly, these CD3+ inflammatory cells tended to cluster in
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mean + SD, unpaired Student’s t test.

FIGURE 5 | Aging causes increased immune cell infiltration and nitrosative stress surrounding lymphatics. (A) Representative confocal images of ear skin sections
stained for lymphatic vessels (LYVE-1) and T cells (CD3). (B) Quantification of T cells within 100 pm radius of lymphatic vessels. (C) Representative confocal images of ear
skin sections stained for lymphatic vessels (LYVE-1) and myeloid cells (CD11b+/INOS+). (D) Quantification of myeloid cells within 100 pm radius of lymphatic vessels. (E)
Representative confocal images of ear skin sections stained for lymphatic vessels (LYVE-1) and nitrotyrosine (N-Tyr), a marker of nitrosative stress. (F)
Quantification of N-Tyr positivity within 100 pm radius of lymphatic vessels. (G) Representative confocal images of ear skin sections stained for lymphatic vessels (LYVE-
1) and collagen-1. (H) Quantification of collagen-1 deposits within 100 pm radius of lymphatic vessels. n = 5 mice per group in all experiments. All quantifications are
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a peri-lymphatic fashion, usually located within 100 pm of the
lymphatic wall (Figures 5A,B).

Increased expression of inducible nitric oxide synthase
(INOS) by inflammatory cells could cause lymphatic
dysfunction. in similar lines, co-localization of CD11b with
iNOS antibodies demonstrated that, expression of iNOS by
CD11b+ cells in aged mice but not in young. These CD11b+/

iNOS+ cells are located predominantly adjacent to
lymphatics, like CD3 T «cells (Figures 5C,D and
Supplementary Figures 3A). High levels of iNOS

expression increase tissue nitric oxide (NO) concentrations
and generate reactive nitrogen and oxygen species. LECs are
highly sensitive to reactive nitrogen/oxygen species and
exposure to even small amounts decreases cellular VEGFR3
expression, decreases cellular proliferation, and can induce
apoptosis (Rehal et al., 2020). To analyze accumulation of
reactive nitrogen species around lymphatic vessels, we
evaluated the co-localization of lymphatic vessels with
nitrotyrosine because tyrosine nitration is a post-
translational modification caused by reactive nitrogen
species. This analysis demonstrated extensive tyrosine

nitration in the tissues immediately surrounding LYVE-
I+lymphatic vessels in the skin of aged but not young
mice, corresponding to an approximately 3-fold increase
(Figures 5E,F and Supplementary Figure S3B).
Diminution of dermal collagen is also a hallmark of aged
skin. However, interestingly, when we investigated collagen
arrangement near lymphatic vessels, we observed
accumulation of collagen bundles near lymphatic channels
in aged mouse skin (approximately 2.5-fold more than in
young mice), despite decreased epidermal and dermal type I
collagen (Figures 5G,H), confirming prior studies (Russell-
Goldman and Murphy, 2020). This increased peri-lymphatic
collagen deposition may result from chronic inflammation,
which regulates collagen deposition and impairs parenchymal
functioning in fibroproliferative disorders (Ueha et al., 2012).

Accumulation of antibody deposits in peripheral tissues is a
hallmark of age induced autoimmune diseases and it is reported
that lymphatic function regulates antibody deposits in the skin
(Thomas et al., 2012). Therefore, we looked for antibody deposits
in the skin of aged mice by immunostaining. Our results showed
approximately 6-fold greater peri-lymphatic accumulation of IgG
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FIGURE 6 | Aging causes decreased chemokine and altered junctional protein expression by LECs. (A) Representative confocal images of ear skin sections
stained for lymphatic vessels (LYVE-1) and CCL21. (B) Quantification of CCL21 immunostaining as a percentage of lymphatic vessel area. (C) gRT-PCR quantification of
CCL21 mRNA expression in sorted skin LECs. (D) Representative confocal images of ear skin wholemount stained for nuclei (DAPI), VE-cadherin (upper panel, Initial
lymphatics; lower, collecting lymphatics). (E) gRT-PCR quantification of VE-cadherin and (F) ZO-1 mRNA expression in sorted skin LECs. (G) Representative
confocal images of ear skin sections stained for lymphatic vessels (LYVE-1) and ICAM-1 (upper panel, immunofluorescence of both; lower, ICAM-1 only). (H) gRT-PCR
quantification of MRNA expression of endothelial adhesion molecules ICAM-1 and (I) p-Selectin from sorted skin LECs. n = 5 mice from each group. All quantifications
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antibodies around lymphatic vessels in the skin of aged but not
young mice (Supplementary Figures S3A,B).

Aging Alters Chemokine and Junctional
Protein Expression by LECs

Lympbhatic vessels are a major route of inflammatory cell exit
from the skin (Hunter et al., 2016; Hampton and Chtanova,
2019). Entry of inflammatory cells into lymphatic channels is
regulated by interactions between CCR7, a cell surface receptor
on inflammatory cells, and its ligand, CCL21. Lymphatic
endothelium is a major source of CCL21 and gradients of this
cytokine guide inflammatory cells to enter lymphatic channels.
Immunohistochemical localization of CCL21 in ear skin
demonstrated that aging results in an approximately 2-fold
decrease in CCL21 expression by LECs (Figures 6A,B). This
observation was corroborated by quantitative RT-PCR of sorted
LECs which showed downregulation of CCL21 expression by
approximately 25% in aged LECs (Figure 6C).

While CCL21 gradients serve as a chemoattractant for immune
cells towards lymphatic vessels, the button-like VE-cadherin
junctions between LECs facilitate immune cell entry into the
lymphatic capillary lumen (Stritt et al, 2021). Wholemount
immunofluorescence analysis of ear skin samples showed that
capillary lymphatic vessels in young mice had the typical button-
like pattern of VE-cadherin expression and collectors showed
continuous  zipper-like pattern (Figure 6D). In contrast,
lymphatic capillaries in aged mice skin showed a disorganized

and continuous VE-cadherin junction around the perimeter of
the vessel and collectors showed rugged and partially
discontinuous junctions (Figure 6D). Quantitative RT-PCR
analysis of sorted LECs showed a significant reduction in VE-
cadherin (approximately 25%) and ZO-1 (approximately 2-fold)
expression in LECs from aged skin compared to those isolated from
young mice (Figure 6E).

ICAM-1 is a transmembrane protein that plays an important
role in leukocyte-endothelial transmigration (Rahman and Fazal,
2009). Consistent with our observation that aging results in peri-
lymphatic accumulation of inflammatory cells, we noted that
expression of ICAM-1 was significantly increased in ear skin
capillary lymphatic LECs (Figure 6G). Our qRT-PCR data from
sorted LECs also showed upregulation of ICAM-1 and p-Selectin,
another endothelial surface molecule that plays an important role
in binding and recruitment of inflammatory cells to tissues, by
approximately 25 and 60%, respectively (Figures 6H,I). Taken
together, our studies show that aging results in chronic, low-grade
inflammation and that inflammatory cells tend to localize around
lymphatic vessels due to decreased lymphatic function and changes
in lymphatic cytokine and cell surface receptor expression.

DISCUSSION

Aging Decreases Lymphatic Vessel Density
In this study, we have shown that aging markedly decreases the
density of both capillary and collecting lymphatic vessels and
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causes morphologic changes in LMCs. We showed that these
changes correlate with impaired lymphatic vessel pumping,
leakiness of capillary and collecting lymphatics, increased
expression of apoptotic and senescence markers, and impaired
trafficking of DCs from the periphery to draining lymph nodes.
Our findings are consistent with, and add to, previous studies
demonstrating a decreased capillary lymphatic vessel density in
aged mice (Karaman et al, 2015). Importantly, we corroborated
our findings using flow cytometry to show that aging has negative
consequences on both initial and collecting lymphatics.

Aging Results in Impaired cLV Pumping
Previous studies on mesenteric lymphatics in vivo and in vitro have
shown that aging significantly impairs lymphatic pumping and is
associated with decreased expression of contractile proteins and
decreased pumping efficiency (Gashev and Zawieja, 2010; Gashev
and Chatterjee, 2013). Consistent with this, using ICG
lymphangiography we found that aging also decreases skin
collecting lymphatic pumping and is associated with leakiness
in these vessels. Because ICG lymphangiography is commonly
used clinically to quantify lymphatic pumping and functional
capacity, these results are likely clinically relevant (Boni et al,
2015; Jorgensen et al., 2021). Anatomically, we found that the LMC
morphology is altered by aging, resulting in a more longitudinal
orientation instead of the circular orientation observed in young
rodents. This anatomic change may decrease pumping efficiency or
cause vessel dilation, thus promoting lymphatic dysfunction
(Bridenbaugh et al, 2013; Razavi et al., 2020). Moreover, we
observed that aging markedly decreased LMC RyR1 expression.
Because RyR1 is responsible for release of Ca2+ from the LMCs,
coordinating rhythmic contractions (Lanner et al., 2010; Jo et al.,
2019), this finding may provide a mechanistic rationale for the
impaired pumping observed in aging lymphatics that could be
investigated in future studies.

Aging Decreases LEC VEGFR3 Expression
and Intracellular Akt Phosphorylation

Although numerous studies have shown that aging results in
functional deficits in the lymphatic system, the cellular
mechanisms that regulate these changes remain unknown and
have not been explored (Shang et al., 2019). In the current study,
we show that aging causes a significant downregulation of LEC
VEGFR3 expression and is associated with decreased
concentrations of LEC intracellular pAkt. This finding suggests
that aged LECs may have a decreased sensitivity to VEGFC
stimulation because activation of VEGFR3 by this growth
factor promotes LEC proliferation, differentiation, and
migration, and protects LECs from apoptosis and senescence
via Akt phosphorylation (Mékinen et al., 2001; Fei Zhou et al.,
2010). Indeed, transgenic mice that lack VEGFC or VEGFRS3 fail
to develop a lymphatic system and die in utero (Dumont et al,
1998; Karkkainen et al., 2004). Even haplo-deficiency of either
VEGFC or VEGFR3 causes lymphatic insufficiency in mice
(Dellinger et al., 2007). Consistent with these previous studies,
we found that aging resulted in increased expression of apoptosis

Aged Skin Lymphatic Vessels

and senescence markers. We have noted similar effects on LEC
VEGFR3/intracellular pAkt expression in other pathological
conditions such as obesity, in which lymphatic function is
impaired, suggesting that this mechanism may be a common
means by which lymphatic vessels become dysfunctional (Garcia
Nores et al., 2016). Furthermore, this hypothesis is also supported
by previous studies demonstrating that age-related impairment in
PI3K/Akt signaling is also associated with blood endothelial
dysfunction (Smith and Hagen, 2003; Trott et al, 2013).
Indeed, abnormalities in PI3K signaling have been implicated
in age-related defects in cellular regeneration in other tissues,
suggesting that this may be a generalized conserved cellular
response to aging (Chen et al, 2013). This is an interesting
area of research and requires significant additional study.

Aging Results in Peri-Lymphatic
Accumulation of Inflammatory Cells

Immune cell migration is an important function of the lymphatic
system and is dependent on the lymphatic channels’ structural
integrity and LEC expression of chemokines and adhesion
molecules (Hampton and Chtanova, 2019; Arasa et al., 2021).
We found that aging markedly decreased trafficking of DCs from
the periphery to the draining LN. This finding is consistent with
other pathological conditions, such as obesity and lymphedema,
in which lymphatic function is impaired (Weitman et al., 2013;
Garcia Nores et al,, 2018). In addition, decreased DC trafficking
may contribute to age-related deficiencies in immune responses
(Ponnappan and Ponnappan, 2011). Consistent with previous
reports, we found that aging resulted in a low-grade chronic
inflammatory response in the skin (Zhuang and Lyga, 2014).
More intriguingly, we found that most inflammatory cells in skin
were clustered around lymphatic vessels. LECs in aging mouse
skin had decreased expression of CCL21 that can cause decreased
immune cell chemotaxis into lymphatic vessels. Interestingly,
LECs in aging skin upregulated expression of ICAM-1 and
P-selectin. It is well known that acute inflammation
upregulates ICAM-1 expression on lymphatic vessels and
increases leukocyte transmigration (Johnson et al, 2006). On
the contrary, increased expression of adhesion molecules can
cause immune cell arrest and accumulation on endothelium,
especially in the absence of flow causing formation of tertiary
lymphoid structures (Figenschau et al., 2018). Considering the
decreased lymphatic function and pumping downstream, it will
be interesting to know whether increased ICAM-1 on aged
lymphatics helps leukocyte migration or arrest. Aging LECs
also had altered spatial expression patterns of junctional
proteins that may act as a barrier to leukocyte entry. Taken
together, these findings suggest that changes in LEC gene
expression may promote accumulation of inflammatory cells
in the skin and that loss of gradients of chemokines such as
CCL21 in combination with changes in the distribution of cell
surface molecules that regulate leukocyte-endothelial cell
interactions underlie this phenotype. Alternatively, it is
possible that decreased DC trafficking and skin inflammation
may be related to the decreased lymphatic vessel density noted in
aged animals. However, this hypothesis is challenged by previous
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reports demonstrating normal DC migration even in animals
with severe lymphatic hypoplasia (Platt et al., 2013).

Tissue deposition of antibodies is a hallmark of autoimmunity,
especially in aging (Vadasz et al., 2013). Previous studies using
K14-VEGFR3-Ig mice showed that lymphatic deficiency causes
accumulation of autoantibodies in the skin (Thomas et al., 2012).
Accordingly, we noted increased antibody deposits in the skin of
aged mice, especially in a peri-lymphatic fashion, and we
speculate that decreased lymphatic function might contribute
to this antibody deposition.

Inflammatory cell accumulation around LECs may contribute
to age-related lymphatic dysfunction. We found that most peri-
lymphatic myeloid cells in aged mice expressed iNOS. This was
associated with extensive peri-lymphatic tyrosine nitration,
suggesting that the concentration of reactive nitrogen species
(RNS) (and most likely reactive oxygen) is increased in and
around the lymphatics of aged mice. Using a diet-induced
model of obesity, we have previously shown that LECs are
highly sensitive to injury by reactive nitrogen species (Rehal
et al., 2020). Exposure of LECs to even low doses of RNS
markedly decreases LEC proliferation; higher doses induce
apoptosis. More importantly, RNS in obesity regulate
expression of VEGFR3 and Prox-1, suggesting that similar
mechanisms may be responsible for our observation that aging
decreases the expression of these molecules in LECs.
Interestingly, in our previous study we showed that RNS
decrease sensitivity.  Because the insulin
receptor—like VEGFR3—is a tyrosine kinase, it is possible
that exposure of LECs to RNS not only decreases expression of
VEGEFR3 but also decreases responsiveness to ligand binding.
This hypothesis is intriguing but obviously requires additional
research.

Our study has some limitations that we acknowledge. The
primary limitation of our work is its observational nature. Our
study also lacks specific manipulation of lymphatic vessels thus
preventing us from attributing the skin inflammation we noted in
aging animals exclusively to lymphatic dysfunction. Indeed, other
mechanisms may be involved. For example, aging is associated
with extravasation of inflammatory cells into the tissues owing to
vascular hyperpermeability (Oakley and Tharakan, 2014).
However, it is well known that lymphatic injury or genetic/
pharmacological inhibition of VEGF-C/VEGFR3 signaling
results in the accumulation of inflammatory cells in the tissues
(Kataru et al, 2019; Schwager and Detmar, 2019). Thus,
lymphatic vessels can regulate tissue inflammation during
aging directly or indirectly due to poor clearance. Further,
detailed lymphatic intervention studies are needed to
understand this scenario of inflammation and lymphatic
dysfunction during aging. However, we feel that our results
are intriguing and are hopeful that these findings will provide
hypotheses to be tested in further research. Nevertheless, with this
limitation in mind, we conclude that aging results in significant
alterations in lymphatic function in mouse skin. Chronic
inflammatory responses and changes in LEC gene expression
may underlie these functional deficits and require
additional study.
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Supplementary Figure S1 | (A) Quantification of LYVE-1 fluorescence intensity. (B)
gRT-PCR quantification of mMRNA expression of lymphatic markers LYVE-1 and
PDPN and Prox-1 from sorted skin LECs. n = 5 mice from each group. All
quantifications are mean + SD, unpaired Student’s t test.

Supplementary Figure S2 | Flow cytometry quantification of skin immune cells
including neutrophils, macrophages DCs, T lymphocytes (T helper and cytotoxic)
and B cells in mouse skin. (A) Schematic experimental design on how immune cells
were quantified by flow cytometry. (B) Quantification of the percentage of immune
cells. (C) Quantification of the total number of immune cells per 100K cells counted.
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n =5 mice per group in all experiments. All quantifications are mean + SD, unpaired
Student’s t test.

Supplementary Figure S3 | Peri-lymphatic of myeloid cells and nitrosative stress.
(A) Representative low magnification images of young and aged skin stained for
lymphatics (LYVE-1) and myeloid cells (CD11b). (B) low magnification images of
peri-lymphatic nitrosative stress visualized by N-TYR immunostaining. n = 5 mice per
group in all experiments.

Supplementary Figure S4 | Aging causes increased peri-lymphatic antibody
deposition. (A) Representative confocal images of ear skin sections stained for
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