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Aging is a process that affects almost all multicellular organisms and since our
population ages with increasing prevalence of age-related diseases, it is important
to study basic processes involved in aging. Many studies have been published so
far using different and often single age markers to estimate the biological age of
organisms or different cell culture systems. However, comparability of studies is
often hampered by the lack of a uniform panel of age markers. Consequently, we
here suggest an easy-to-use biomarker-based panel of classical age markers to
estimate the biological age of cell culture systems that can be used in standard cell
culture laboratories. This panel is shown to be sensitive in a variety of aging
conditions. We used primary human skin fibroblasts of different donor ages and
additionally induced either replicative senescence or artificial aging by progerin
overexpression. Using this panel, highest biological age was found for artificial
aging by progerin overexpression. Our data display that aging varies depending on
cell line and aging model and even from individual to individual showing the need
for comprehensive analyses.
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1 Introduction

Aging, usually described as a time-dependent functional decline (López-otín et al., 2013),
is a physiological process that affects nearly all multicellular organisms. It is, however, the
most important risk factor for the development of age-associated diseases (Rodgers et al.,
2019). In general, aging includes processes that reduce health and survival of an individual
(Fuellen et al., 2019). However, an individual’s chronological (the amount of years since
birth) and biological age (reflecting actual physiological health state) can differ remarkably
(Jylhävä, Pedersen, and Hägg, 2017; Kudryashova et al., 2020). In in vitro cell culture
conditions, there are mainly two main contributors of the latter, which are the age of the
donor at biopsy as well as the replicative aging/senescence that the respective cells have
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undergone so far. If we wish to consider physiological health state,
the age of the donor at biopsy should be his or her estimated
biological age. In practice, however, this biological age is rarely
available and it must be substituted by the donor’s chronological age,
which we call “donor age” in the following. In principle, the two
main contributors cannot easily be distinguished with respect to
their effects on the physiological “health” state of the cells. Thus, for
the purpose of this paper, we define the age of cells in a cell culture
(that is, their biological age) as the donor age plus the effects of
continued culturing expressed as a time period in terms of donor
age. This biological age can be estimated by biomarkers (which we
call age markers) and it corresponds to a physiological “health” state
which is predictive of the future behaviour of the cells. This affords a
more precise description of the respective cell models used in
scientific studies concerning their biological age, before they are
used for experiments, which is recommended for a better
characterization of the cells.

Aging processes have been studied in a variety of model systems.
In addition to the various mouse models, in vitro cell cultures are the
most commonly used systems. There are a variety of cell models for
aging and all types of (age-related) diseases including simple cell
models with heterogeneous expression systems (HeLA, HEK, etc.),
patient-derived primary cells (e.g., fibroblasts) as well as induced-
pluripotent stem cell (iPSC) models. Since the discovery of the latter,
cell models of disease and/or aging have become of even greater
interest. While these technologies enable to investigate patient-
derived cell models of so far not available origins (e.g., neurons),
these seem to significantly alter general aspects of cell physiology
including their biological age. Especially in research on age-related
diseases, it is therefore important to also consider the effects of such
rejuvenation, e.g., by the process of iPSC generation, on various age
markers.

An age marker is a measurable characteristic for estimating
biological age or a related condition (Atkinson et al., 2001) in a
biological system/organism. In the past, numerous suggestions for
age markers have been made for the estimation of the biological age
and its deviation from chronological age.

There are different aging hallmarks, and for some of them there
are established markers to characterize biological age. For example,
López-Otín described nine hallmarks of aging in three different
main categories (López-otín et al., 2013). The primary hallmarks of
aging (genomic instability, telomere attrition, epigenetic alterations,
impaired proteostasis) are considered to be the main causes of
cellular damage associated with rising age. These primary
hallmarks lead to the antagonistic hallmarks of aging
(deregulated nutrient sensing, mitochondrial dysfunction and
cellular senescence), reactions that initially mitigate the damage
but—if chronically present—can become harmful themselves.
Finally, there are the integrative hallmarks of aging (stem cell
exhaustion, altered intercellular communication), which are
results of the previous two groups that are ultimately responsible
for the loss of function associated with aging. These aging hallmarks
can be investigated by various markers and methods (for summary
see Supplementary Table S1).

Many putative age markers have thus been described and the age
markers investigated in different studies often differ significantly
(Hartmann et al., 2021). For this reason, a comparison of these
studies among each other is often difficult and a specific comparison

e.g., between different cell lines and conditions (rejuvenated cells
and aged cells) is even more difficult. Since the latter can also affect
age markers differentially, it seems meaningful to rely on a broader
spectrum of age markers to better examine the variety of
components of the aging process especially in in vitro cell culture
systems.

The epigenome, especially DNA methylation, thereby is the most
often reported singular factor to quantify an individual’s age. DNA
methylation marks are the basis of so called “aging clocks” and often
correlate well with the chronological age of the donor from which the
tissue was derived. Furthermore, there is evidence that they can be
used to estimate biological age. In 2013, Hovarth developed one of the
first “aging clocks” that allows to estimate the chronological age by
DNA methylation markers, for many tissues and some cell types. In
this study, a collection of available DNA methylation data sets was
used to define and evaluate a specific age predictor, based on CpG
islands whose DNA methylation levels correlate with the
chronological age of individuals, referred to as DNAm age. The
difference between the predicted chronological age and the actual
chronological age is then considered to be an estimate of biological
age. Accordingly, DNAm age showed high accuracy in estimating
chronological age (Horvath, 2013). Of note are, however, the reported
exceptions: amongst others, high accuracy was not found for dermal
fibroblasts in general as well as B cells from patients suffering from
progeria syndromes. The issue was resolved in a follow up study, by
the so called “Skin and blood clock” (Horvath et al., 2018). Another
methylation clock that predicts human age by using the Illumina
Infinium HumanMethylation450 assay in human whole blood
samples additionally showed an influence of sex and genetic
variants on the DNAm age, but also that aging rates are different
in different tissues (Hannum et al., 2013).

Using the so called “CultureAge” score, it was shown that in vitro
cellular aging resembled tissue aging in vivo. This study established
an algorithm using replicative aged mouse embryonic fibroblasts
and subsequently validated it in multiple murine tissues.
Interestingly, it was sensitive to detect rejuvenation during
cellular reprogramming, but is was reported that this progressive
kind of cellular aging is different from non-replicative senescence
(e.g., induced by etoposide treatment or gamma irradiation) and
reported a lack of correlation of SA-β-Galactosidase with the
CultureAge score (Minteer et al., 2022). Kabacik and colleagues
also reported that epigenetic aging—using the skin and blood
clock—is different from cellular senescence, telomere attrition
and genomic instability, but is influenced by nutrient sensing and
mitochondrial activity (Kabacik et al., 2022). Based on single cell
methylation data, Trapp and colleagues established the epigenetic
clock “scAge” using different murine tissues and cells, capable of
representing chronological age at single cell level, and their
algorithm is independent of which CpGs are covered in each cell.
Nevertheless, the study showed remarkable heterogeneity among
cells. Whether the use of this epigenetic clock is applicable to
cultured cells, needs to be clarified in further studies (Trapp,
Kerepesi, and Gladyshev, 2021). Fleischer et al. claimed to be
able to predict biological age by analyzing the transcriptome of
human fibroblasts. They generated a big dataset of genome-wide
RNA-seq profiles of human fibroblasts to estimate the biological age
of these cells. The predicted age correlated with the chronological
donor age (Fleischer et al., 2018).
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While these “-omic” approaches are very useful in generating
hypotheses, they lack information about how cells behave in cell
culture and thus lack the biological meaning of the respective
changes. Furthermore, these investigations are often expensive
and need specific equipment not necessarily available.
Additionally, these have reported quite a significant diversity of
aging and senescence processes, partly lacking correlation to
classical age markers such as SA-β-galactosidase.

Thus, our overall aim was to allow comparison of different
aspects of aging in in vitro cell culture models with different donor
background, different donor ages and accelerating age diseases,
including different modes of aging e.g., replicative and artificial
aging. Therefore, we first made an extensive literature search to
identify established markers that are most likely relevant in cellular
aging processes. We chose often-used markers from the primary and
antagonistic hallmarks of aging as they are quantifiable by in vitro
assays to investigate whether they can clearly depict the different
aspects of aging. Subsequently, we developed a novel biomarker-
based panel, consisting of well established classical age markers, to
estimate the biological age of different cell culture aging systems that
additionally can be used in standard cell culture laboratories
(Figure 1). We hypothesized that this panel of age markers
would better account for differences between individual cell lines
and aging models and individuals than single markers. After
confirming the aging-relevance of the single age markers we
selected, we propose a scoring system, referred to as AgeScore, to
calculate an individual absolute value as an estimate of the biological
age of different human fibroblasts. Further validation of this
proposed scoring system took place in human fibroblasts with
replicative senescence and artificial aging by overexpression of
progerin. Finally, we tested whether our aging panel is applicable
in typical aging diseases (premature aging syndromes Hutchinson-
Gilford-Progeria syndrome, HGPS, and Werner Syndrome, WS).

Conclusively, we propose an age score consisting of different well
established markers representing aging and the consequences of
aging as follows: 1) markers of the primary hallmarks of aging (DNA
damage, telomere attrition, Histone modification) displaying the
cellular damage, cell division and methylation status of the cells and
2) markers of the antagonistic hallmarks of aging (cellular
senescence [cell cycle arrest, SA-β-Gal expression, activation of
SASP], change of morphology, decrease in Lamin B1 expression)
displaying how much the primary damage has already influenced
cell homeostasis which display together a fundamental AgeScore
estimating the biological age of cells in cell culture systems.

2 Materials and methods

2.1 Cell culture

Human skin fibroblasts from apparently healthy young, mid-age
and old as well as diseased (Progeria) donors were purchased from
Coriell Institute or prepared in our lab as described before
(Naumann et al., 2018; Pal et al., 2018, 2021). Cells were cultured
in Dulbecco-modified Eagle’s medium (DMEM-Glutamax,
ThermoFisher Scientific, #10569010) supplemented with 15%
fetal bovine serum (FBS superior, ThermoFisher Scientific,
#10270106) and penicillin/streptomycin (100 μg/mL, Fisher
Scientific, #15140-122) on ventilated culture flasks (75 cm2, Fisher
Scientific, #658175) at 37°C and 5% CO2. Fibroblasts were
subcultured after trypsinisation (0.25% trypsine-EDTA,
ThermoFisher Scientific, #25200-056). Culture medium was
changed every 3–4 days.

2.2 Determination of population doubling
level (PDL)

For determination of PDL, human fibroblasts were seeded into
6-well-plates (Sarstedt, #833.920) at a density of 2x105 per well.
When fibroblasts reached confluency, cells were counted and again
seeded at a density of 2x105. This was continued over 75–150 days.
PDL was calculated as PDL = 3.2*(logharvested cells—logseeded cells) +
actual passage number.

2.3 Immunofluorescence staining

Fibroblasts were seeded at a density of 2.5x104 per well in an 8-
well µ-Slide (ibidi, #80806) and incubated for 48 h. Cells were fixed
with 4% PFA at 37°C for 20 min followed by permeabilization with
0.2% of TritonX and blocked with Blocking Buffer (Pierce Protein-
Free T20 (TBS) Blocking Buffer, ThermoFisher Scientific, #37571) at
RT for 1 h. Primary antibodies (Anti-phospho-Histone H2A.X
(Ser139), #05-636-25ug, 1:500, Millipore; Anti-Histone H3 (di
methyl K9), #ab1220, 1:500, abcam; Anti-Lamin B1, #ab16048, 1:
500, abcam; Anti-Vimentin, #PA1-16759, 1:300, Thermo Fisher
Scientific) were incubated overnight at 4°C. After washing,
secondary antibodies (Goat anti-Mouse IgG (H + L) Highly
Cross-Adsorbed Secondary Antibody, Invitrogen; Goat anti-
Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody,

FIGURE 1
Age markers of proposed AgeScore. The here proposed panel
contains the following age markers: primary aging markers (DNA
damage, Histone modification, telomere attrition) and antagonistic
aging markers (cell cycle arrest, senescence-associated
βGalactosidase (SA-βGAL), senescence-associated secretory
phenotype (SASP), Lamin B1 expression, Morphology) that include
typical markers of cellular senescence (green bar).
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Invitrogen) were incubated for 90 min. Finally, after repeated
washing, cells were mounted with 4.6-diamidino-2-phenylindole
(DAPI) Fluoromount-G (Southern Biotech, #0100-20) and images
were taken with a LSM900 confocal microscope (Zeiss). Analysis
was done with Fiji software. γH2A.X foci were counted per nucleus
(threshold: 20-200; size: 5). Corrected total cell fluorescence (CTCF)
was calculated as following: (CTCF) = Integrated Density—(Area of
selected Cell/Region * Mean Grey Value of background readings).
Nucleus size was determined with area (pixel units) of nucleus with
Fiji software.

2.4 Telomere length measurement via
monochromal multiplex qPCR (MM-qPCR)

A standard extraction kit (DNeasy Blood and Tissue Kit,
Qiagen, Cat. # 69504) was used for DNA extraction. Mean
telomere length was determined using the modified MM-qPCR
as described previously (Cawthon, 2009). DNA samples (20 ng/μL)
and a reference DNA standard (0.137–100 ng/μL) were assayed in
triplicates on different plates and the average of three
measurements was used to report the mean telomere length for
each sample. A non-template control (water) and a positive control
(human leukemia cell line 1301 DNA) were prepared in duplicates
and run on every plate. The standard includes DNA samples of 352
healthy donors, with an average age of 40.14 years (18–70 years
old; 38.35% males and 61.65% females). The assay was performed
using a BioRad CFX384 real-time C1000 thermal cycler with the
following profile: 1 cycle of 15 min at 95°C; 2 cycles of 15 s at 94°C,
1 cycle of 15 s at 49°C; 40 cycles of 15 s at 94°C, 1 cycle 10 s at 62°C,
1 cycle 15 s at 72°C with T signal acquisition, 10 s at 85°C, and 15 s
at 89°C with signal acquisition. PCR reagents were used at the
following final concentrations: 1 U titanium Taq DNA polymerase
per reaction with provided titanium Taq PCR buffer (Cat. #
639208), SYBR Green I (Invitrogen, #S7563), 0.2 mM of each
dNTP, 1 mM DTT, 1 M betaine, 900 nM of each telomere
primer (Telg, Telc) and 300 nM of each single copy gene primer
(ALBu, ALBd). Following primer sequences were used: Telg 5′ACA
CTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT′3; Telc
5′TGTTAGGTATCCCT ATCCCTATCCCTATCCCTATCCCT
AACA′3; Albu 5′CGGCGGCGGGCGGCGCGGGCTGGGCGG
AAATGCTGCACAGA ATCCTTG′3; Albd 5′GCCCGGCCCGCC
GCGCCCGTCCCGCCGGAAAAGCATGGTCGCCTGTT′3. Ratio
of telomere to single-copy gene content (TLR) is taken as
relative measurement of telomere length and expressed in
arbitrary units. The intra-assay coefficients of variation were
<0.3 for all samples.

2.5 Quantification of p21 and p16 expression
levels

Total RNA was isolated using the “Quick RNA Miniprep” Kit
(Zymo Research, #R1054) according to the manufacturer’s
protocol and cDNA was generated from 200 ng isolated RNA
with High-Capacity cDNA Reverse Transcription Kit (Thermo
Fisher Scientific, #4368814). mRNA expression levels were
determined using Rotor Gene (QIAGEN) with Rotor-Gene

SYBR® Green PCR Kit (QIAGEN, #204074) using the
following primers: CDKN1A(p21)-Fwd 5′-GACACCACTGGA
GGGTGACT-3′, CDKN1A(p21)-Rev 5′-CAGGTCCACATGGTCT
TCCT-3′, CDKN2A(p16)-Fwd 5′-CTCGTGCTGATGCTACTG
AGGA-3′, CDKN2A(p16)-Rev 5′-GGTCGGCGCAGTT
GGGCTCC-3′. qPCRs were performed in duplicates for each
sample (n = 1 correspond to 2 replicates). Data sets were
normalized relative to GAPDH (GAPDH-Fwd 5′- GTCTCCTCT
GACTTCAACAGCG-3′, GAPDH-Rev 5′- ACCACCCTGTTGCTG
TAGCCAA-3′) using delta-delta-CT method.

2.6 Senescence-associated β-galactosidase
(SA-βGAL)-Assay

Activity of SA-β-Gal was determined using the “Senescence β-
Galaktosidase staining” Kit (Cell signaling, #9860) according to the
manufacturer’s protocol and referred to as X-Gal staining in the
figures. Cells with cytoplasmic staining were scored as positive.
Relative amount to total cell numbers was quantified.

2.7 IL-6 and IL-8 medium concentration

ELISA from cell culture supernatants was performed using
“Human IL-6/Interleukin-6 ELISA Kit PicoKine™” (BosterBio,
#EK0410) or “Human IL-8/Interleukin-8 ELISA Kit PicoKine™”
(BosterBio, #EK0413) according to the manufacturer’s
recommended procedures. ELISA were performed in duplicates
for each sample (n = 1 correspond to 2 replicates).

2.8 Statistics

Statistical analyses were performed using GraphPad Prism 8
(LaJolla). Experimental groups were compared using one-way-
ANOVA (followed by Dunnett’s multiple comparison test).
Statistical significance was set up at p-values <0.05 (p), <0.01
(pp), <0.001 (ppp). Data were plotted using GraphPad Prism 8
(LaJolla) showing mean and standard error of the mean.

3 Results

3.1 Single age markers yield heterogeneous
results in human fibroblasts of healthy
donors with different ages

We first wanted to analyze how selected age markers relate to
chronological donor age. Therefore, we performed a systematic
comparison of the selected age markers, considering these one by
one as single markers, in human fibroblasts from 14 donors from
apparently healthy young (2–9 years), mid-age (34–48 years), and old
individuals (78–96 years) (Figure 2A; Table 1). Both male and female
donors were included. Furthermore, we examined the youngest
available cell culture passages of each fibroblast line. To observe
growth rates of cells, we investigated the population doubling level
(PDL) under stable conditions (37°C, 5% CO2) (Figure 2B). Primary
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FIGURE 2
Establishment of the age marker-based panel in human fibroblasts of young, mid-age and old donors. (A) Cell Model. For initial experiments,
fibroblasts with different donor age was used. (B) Replicative potential of human fibroblasts. Cells were cultured under stable conditions (37°C, 5% CO2) in
DMEMmedium (with 15% FBS, 1% Pen-Strep). PDLwas observed formax. 150 days. Fibroblasts from young (Young 1–5) andmid-age (Midage 1–3) donors
display healthy growth. In contrast, fibroblasts from old donors (Old 3, Old 4, Old 5 and 6) showed slower growth except for Old 1 and Old 2. (C–K)
X�=Mean value of all young donor fibroblasts. (C) Amount of γH2A.X foci per cell examined by IF staining to investigate DSBs in human fibroblasts. Cells of
very old individuals (Old 4 and 5) displayed an increase in γH2A.X foci in comparison to the mean of all young donors. Mid-age and old (Old 1, Old 2, Old
3 andOld 6) donor fibroblast showed no DSBs. [n= 3–4 (each n tested >15 cells), mean ± SEM,*p < 0.05, **p < 0,001, ***p < 0.0001, one-way ANOVA] (D)
CTCF of H3K9Me3 in human fibroblasts. Donor fibroblasts from old individuals (Old 2, Old 4, Old 5 and Old 6) displayed a decrease in CTCF of
H3K9Me3 compared to the mean of young donors. There were no changes in CTCF of H3K9Me3 in mid-age cells (Midage 1–3). [n = 3–4 (each n
tested >15 cells), mean ± SEM, *p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (E) Telomere length wasmeasured byMM-qPCR in comparison to
a standard of healthy mixed aged individuals. In comparison to grouped young donor cells, Old 6 displayed a shortening of telomere length. [n = 3,
mean ± SEM, *p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (G) RNA expression levels measured by qRT-PCR of p21 and p16 was examined to
investigate activation of cell cycle arrest. Old 4 and Old 5 displayed an increase in RNA expression level of p21. All other cells did not show altered RNA
expression levels. [n = 3-4, mean ± SEM *p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (F) Quantification of SA-βGAL positive cells by X-Gal
staining. In comparison to grouped young donor cells, Midage 3 and all old human fibroblasts (Old 1–6) displayed a significant increase of SA- βGAL
positive cells. [n = 3–4 (each n tested >15 cells), mean ± SEM, *p < 0,05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (H)CTCF of Lamin B1 expression. A
significant decrease in Lamin B1 expression could be observed in mid-age (Midage 1 and Midage 3) and old (Old 1–5) cells compared to the mean of
young donor fibroblasts. [n = 4 (each n tested >15 cells), mean ± SEM, *p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (I, J) Determination of
cytokine secretion (IL-6, IL-8) in conditioned medium by ELISA. In comparison to grouped young donor cells, old donor fibroblasts (Old 1, Old2, Old 3,
Old 4, and Old 6) showed an increase in levels of IL-6. An increase in concentration with respect to IL-8 could be observed in Midage 1 and Old 4 in
comparison to grouped controls. [n = 3-4, mean ± SEM, *p < 0.05, **p < 0,001, ***p < 0.0001, one-way ANOVA] (K) Change in nucleus morphology
shown as nucleus area (pixel units) in human fibroblast. Nucleus area is significantly increased in very old donor fibroblasts (Old 4 and 5) compared with
grouped young controls. [n = 6–8 (each n tested >15 cells), mean ± SEM *p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA].

Frontiers in Aging frontiersin.org05

Hartmann et al. 10.3389/fragi.2023.1129107

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2023.1129107


cells from young (Young 1–5) and mid-age (Midage 1–3) donors
showed healthy exponential growth. In contrast, fibroblasts from old
(Old 3) and very old donors (Old 4, 5 and 6) displayed slower growth
except for the fibroblasts Old 1 and 2, which resembled young donor
cells in terms of growth (Figure 2B).

Next, the primary hallmarks of aging (DNA damage, telomere
attrition and histone modification) were examined. DNA damage is a
driving force of aging because it has a number ofmolecular consequences
that are also hallmarks of aging, such as genomic instability, telomere
attrition, epigenetic changes, and/or impaired mitochondrial function
(Schumacher et al., 2021). To analyze the number of DNA double-strand
breaks (DSBs), we examined the number of γH2A.X foci by
immunofluorescence staining (Figure 2C). Human fibroblasts from
very old individuals (Old 4 and 5) showed significant higher amounts
of DSBs compared with the average number of DSBs in young
individuals. We next examined histone modification by
immunofluorescence staining and quantifying the corrected total cell
fluorescence (CTCF) of H3K9Me3 (Figure 2D). The heterochromatin
loss model of aging assumes that heterochromatin domains which
are formed early in embryogenesis decrease during aging and
contribute to a global loss of heterochromatin-induced gene
silencing, resulting in aberrant gene expression patterns
(Villeponteau, 1997). In our study, we observed no changes in
mid-age (Midage 1–3) but a decrease in H3K9Me3 expression in
old donor fibroblasts (Old 2, Old 4, Old 5, and Old 6). In addition,
we measured telomere length by monochromatic multiplex qPCR
(MM-qPCR) (Figure 2E). Telomeres are specialized chromatin
structures at the end of eukaryotic chromosomes that serve to

protect chromosome ends. Telomere shortening with aging is
observed in most human tissues in which it has been tested
(Lange, 2005) and is one of the best understood mechanisms
limiting the growth of normal cells in culture, a phenomenon
referred to as “replicative senescence” (Collado, Blasco, and
Serrano, 2007). Compared to the mean of young donor
fibroblasts (Young 1–5), Old 6 was the only cell line exhibiting
significant telomere shortening.

Following, single antagonistic age markers were systematically
investigated, including induction of cell cycle arrest, expression of
SA-βGal, activation of senescence-associated secretory phenotype
(SASP), Lamin B1 expression and morphological changes (i.e., size
of nucleus). Cell cycle arrest in senescence is largely mediated by
activation of one or both of the tumor suppressor pathways p53/
p21 and p16/pRB (Kumari and Jat, 2021). These two pathways are very
complex, involving many upstream regulators and downstream
effectors, as well as several side branches (Chen et al., 2002;
Rovillain et al., 2011). Our readout for cell cycle arrest were RNA
expression levels of p21 and p16 (Figure 2G). Old 4 andOld 5 showed a
raise in RNA expression level of p21. Otherwise, none of the human
fibroblasts showed altered RNA expression levels of p21 or p16.
Subsequently, we determined the number of cells positive for SA-
βGAL, one of the most used markers of cellular senescence. The
lysosomal hydrolase β-galactosidase cleaves terminal β-galactose
from compounds such as lactose, keratin sulfates, sphingolipids, etc.
It is present in almost all tissues. The activity of this enzyme increases
with development of cellular senescence (Dimri et al., 1995). We
determined the amount of SA-βGAL positive cells (Figure 2F). In

TABLE 1 Characteristics of human fibroblasts used in this study.

Primary cells Alias (Coriell/PRF ID) Age at biopsy Sex Youngest passage available Source

Apparently healthy Young 1 (AG07095) 2 Male 6 Coriell

Young 2 (GM00969) 2 Female 13 Coriell

Young 3 (GM05565) 3 Male 3 Coriell

Young 4 (GM00498) 3 Male 10 Coriell

Young 5 (GM00038) 9 Female 11 Coriell

Mid-age 1 34 Male 5 Own lab

Mid-age 2 (GM01653) 37 Male 14 Coriell

Mid-age 3 48 Female 15 Own lab

Old 1 (GM09918) 78 Male 15 Coriell

Old 2 (GM03525) 80 Female 9 Coriell

Old 3 (GM01706) 82 Female 5 Coriell

Old 4 (AG09602) 92 Female 9 Coriell

Old 5 (AG04059) 96 Male 7 Coriell

Old 6 (GM00731) 96 Male 13 Coriell

HGPS HGPS 1 (HGADFN003) 2 Male 13 Progeria research foundation

HGPS 2 (HGADFN188) 2 Female 16 Progeria research foundation

WS WS 1 (AG03141) 30 Female 14 Coriell

WS 2 (AG06300) 37 Male 5 Coriell
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comparison to the mean of young donor cells (Young 1–5), old human
fibroblasts (Old 1–6) displayed a significant increase of SA- βGAL
positive cells, while in mid-age donors, only Midage 3 showed a
significant increase in SA- βGAL positive cells. Following, we
investigated expression levels of nuclear protein Lamin B1 by
determining the CTCF (Figure 2H). Lamin B1 expression decreases
with age and is considered as an age marker (Wang et al., 2017;
Kristiani, Miri, and Youngjo, 2020). Recent studies have shown that the
nuclear lamina regulates both the organization of three-dimensional
chromatin structure at the nuclear periphery (Yue, Zheng, and Zheng,
2019) and gene expression, e.g., of inflammatory response genes (Shah
et al., 2013). A significant decrease in LaminB1 expressionwas observed
in mid-age and old donor fibroblasts (Midage 1, Midage 3, Old 1–5)
compared with the mean of young donor cells. For studying SASP
activation, reflecting senescent cells (Coppé et al., 2008), we examined
secreted concentrations of two principle SASP factors, the inflammatory
cytokines interleukin 6 (IL-6) and interleukin 8 (IL-8) in conditioned
medium of donor cells by ELISA (Figures 2I, J). An increase in
concentration of IL-6 was detected in old donor fibroblasts (Old 1-
Old 4 and Old 6) in comparison to grouped controls. Additionally,
Midage 1 and Old 4 displayed a significant increase in levels of IL-8.
Furthermore, it is known that nucleus size changes with age and in
pathological conditions (Capell et al., 2005; Glynn and Glover, 2005;
Haithcock et al., 2005;Webster,Wikin, and Cohen-Fix, 2009). To study
morphological changes occurring with aging or during pathogenesis of

age-associated diseases, we examined the size of the nucleus using pixel
area of DAPI staining (Figure 2K). Nucleus size was significantly
enlarged only in very old human donor fibroblasts (Old 4 and Old
5) compared to grouped young controls (Heckenbach et al., 2022).

In summary, when systematically investigating above
mentioned well known single age markers, there was a remarkable
heterogeneity between single human donors of different ages and itmight
thus be hard to judge upon the biological age if only investigating one
single aging marker alone. While SA-βGAL was the best single age
marker to depict old donor age, it did not perfectly distinguish midage
from young donor age. Therefore, we went on to develop a strategy to use
above mentioned markers together in one panel to finally yield an
integrated AgeScore result.

3.2 Calculation of proposed AgeScore
correlates with donor age of examined
human fibroblasts

To take the individual cell line variabilities better into account we
used above mentioned single markers to generate one panel with a single
absolute value from the tested age markers and asked ourselves whether
this value then depicts the chronological age of fibroblasts of different
donor ages as good as or even better than single markers (Figure 3A). To
create this score (hereinafter referred to as AgeScore) each primary cell

FIGURE 3
Calculated full AgeScore correlates with fibroblasts donor age. The here proposed full AgeScore (primary AgeScore + antagonistic AgeScore)
correlates with donor age of examined human fibroblasts. (A) Calculation of proposed AgeScore for given examples (Young 1, Old 4). Each fibroblast
tested receives a 0 for a non-significant age marker and a 1 for a significant age marker tested. These values are summed up to the primary AgeScore and
the antagonistic AgeScore. The sum of both is the full AgeScore. (B)Calculated AgeScore for examined human fibroblasts displays an increase of the
AgeScore with upcoming donor age. (C) Pearson correlation of full AgeScore and donor age of tested fibroblasts. The donor age correlates with our
calculated AgeScore with a Pearson’s R of 0.86.
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culture system examined received an equal weight of “1” for a significant
(positive) age marker result and a weight of “0” for each non-significant
(negative) result. Subsequently, results of tested age markers were
summed up to calculate the (A) primary AgeScore and (B) the
antagonistic AgeScore. Finally, both scores together resulted in the (C)
full AgeScore that was able to distinguish between young and old donor
derived fibroblasts showing an increase with age (Figure 3B). For every

used age marker we calculated Pearson’s correlation and most age
markers correlate with the AgeScore (Supplementary Figure S1). We
observed a very high correlation for the markers H3K9Me3, p21, nucleus
size and SA-β-Gal and a high correlation for Lamin B1 and H2AX.
However, there is a moderate correlation for telomere length and a low
correlation for p16, IL6, and IL8. Whereby all young donor fibroblasts
showed a full AgeScore of 0, only the antagonistic AgeScore increased in

FIGURE 4
Examination of the AgeScore in human fibroblasts under replicative senescence. (A)Cell Model for validation of proposed AgeScore, fibroblasts from
young, mid-age and old donors were replicative aged. (B–I) X�= Mean value of all young donors. (B) Quantification of γH2A.X in fibroblasts in high
passages (p > 35) in comparison to the mean of all Younglow. Amount of γH2A.X foci per cell increased in all cells in high passages. [n = 4 (each n
tested >15 cells), mean ± SEM,*p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (C)Quantification of H3K9Me3 by IF staining. CTCF displayed
a significant decrease of H3K9Me3 expression in high passages of Young 4, Midage 1, Midage 3 and Old 3 compared to grouped Younglow. [n = 4 (each n
tested >15 cells), mean ± SEM,*p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (D) Telomere length wasmeasured byMM-qPCR in comparison to
a standard of healthy mixed aged individuals. In comparison to grouped Younglow, high passages of Young 1, Young 2, Midage 3 and Old 3 displayed a
shortening of telomere length. [n = 3, mean ± SEM, *p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (F) RNA expression levels by qRT-PCR of
p21 and p16. Cell cycle arrest was detected by upregulation of p21 and p16 in Young 1high, Midage 1high, Old 1high andOld 3high [n= 4,mean ± SEM *p < 0,05,
**p < 0.001, ***p < 0.0001, one-way ANOVA] (G) Investigation of cytokine secretion (IL-6, IL-8) in conditioned medium by ELISA. SASP activation was
elevated in all fibroblasts under replicative senescence in comparison to the mean of all Younglow [n = 3-4, mean ± SEM, *p < 0.05, **p < 0.001, ***p <
0.0001, one-way ANOVA] (E) Quantification of nucleus area by pixel units. Nucleus area was significantly increased in all high passages of human
fibroblasts in comparison to grouped low passages of Younglow. [n = 8 (each n tested >15 cells), mean ± SEM *p < 0.05, **p < 0.001, ***p < 0.0001, one-
way ANOVA] (H)Quantification of SA-βGAL positive cells by X-Gal staining. Amount of positive SA-βGal stained cells was significantly increased in all cells
in high passage in comparison to the mean of all Younglow. [n = 4 (each n tested >15 cells), mean ± SEM, *p < 0,05, **p < 0.001, ***p < 0.0001, one-way
ANOVA] (I)Quantification of Lamin B1 expression by IF staining. A significant decrease in Lamin B1 expression was observed in low passages of Midage 1,
Midage 2 and in all high passages [n = 4 (each n tested >15 cells), mean ± SEM, *p < 0,05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (J) Calculated
AgeScore. The AgeScore increases in cells with replicative senescence.

Frontiers in Aging frontiersin.org08

Hartmann et al. 10.3389/fragi.2023.1129107

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2023.1129107


mid-age fibroblasts (antagonistic AgeScore = 2). In old donor fibroblasts,
primary as well as antagonistic AgeScores increased and resulted in the
highest full AgeScore calculated. The Pearson`s correlation of R = 0.86
(Figure 3C) demonstrated that our AgeScore tended to increase with
donor age of examined human fibroblasts.

We next aimed to examine the external validity of our proposed age-
associatedmarker panel in two specific scenarios of aging, namely, during

replicative aging/senescence (Figure 4) and artificial aging (Figure 5) by
overexpression of Progerin (Miller et al., 2013).

For replicative aging (Figure 4A) we systematically compared
low (p = 5–15) and high passages (p= > 30 except Old 2–4) of young,
mid-age and old age donor-derived human fibroblasts. From every
age group we choose two different fibroblast lines that display
sufficient growth to enable passaging until high passage.

FIGURE 5
Examination of the AgeScore in premature aged human fibroblasts of young donors. Data for prematurely aged fibroblasts (induced with
Doxycyclin) are marked in red. (A) For validation of the proposed AgeScore, young donor fibroblasts were premature aged by dox-inducible Progerin
overexpression. (B) Representative IF images of γH2A.X and GFP-Progerin signal in absence and presence of doxycycline (1 μg/mL) after 4 days. Amount
of γH2A.X foci per cell increased in cell lines with GFP-Progerin expression (Young 4, Young 5) in comparison to non-induced fibroblasts. [n = 3
(each n tested >15 cells), mean ± SEM,*p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA, scale bar = 10 µM] (C) Representative IF images of
H3K9Me3 and GFP-Progerin signal in absence and presence of doxycycline (1 μg/mL) after 4 days (merge includes magenta = Vimentin). CTCF displayed
no change in prematurely aged young donor of H3K9Me3 [n = 3 (each n tested >15 cells), mean ± SEM,*p < 0.05, **p < 0,001, ***p < 0.0001, one-way
ANOVA, scale bar = 10 µM] (D–I) X�= Mean value of all young donors. (D) Telomere length was measured by MM-qPCR in comparison to a standard of
healthy mixed aged individuals. In comparison to non-induced cells, Young 4 and Young 5 with progerin expression displayed a shorting of telomere
length. [n = 3, mean ± SEM, *p < 0,05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (E) RNA expression levels by qRT-PCR of p21 and p16 was measured
to investigate activation of cell cycle arrest in human fibroblasts. Young 1, Young 4 and Young 5 with progerin expression displayed a raise of relative RNA
expression level of p16 in comparison to non-induced controls. [n = 3, mean ± SEM *p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (F)
Representative IF images and quantification of SA-βGAL positive cells by X-Gal staining. All three young donor cell lines with induced GFP-Progerin
expression showed an increase in amount of positive stained SA-βGAL cells. [n = 3 (each n tested >15 cells), mean ± SEM, *p < 0.05, **p < 0.001, ***p <
0.0001, one-way ANOVA] (G) Representative IF images and quantification of nucleus are (pixel units) in prematurely aged human fibroblast. Nucleus area
was significantly increased in all three young donor fibroblasts with induced GFP-Progerin. [n = 6 (each n tested >15 cells), mean ± SEM *p < 0.05, **p <
0,001, ***p < 0.0001, one-way ANOVA, scale bar: 10 µM] (H)Determination of cytokine secretion (IL-6, IL-8) in conditionedmediumof human fibroblasts
with GFP-Progerin expression in comparison to non-induced cells by ELISA. All prematurely aged fibroblasts showed a significant increase in IL-6 and IL-
8 concentrations in comparison to grouped controls. [n = 3-4, mean ± SEM, *p < 0,05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (I) Representative IF
images and quantification of Lamin B1 IF staining. A significant decrease in Lamin B1 expression was observed in all three prematurely aged human
fibroblasts [n = 3 (each n tested >15 cells), mean ± SEM, *p < 0.05, **p < 0.001, ***p < 0,0001, one-way ANOVA] (J) Calculated AgeScore for prematurely
aged fibroblasts of young donors in comparison to non-induced controls.
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First, we investigated primary age markers. All fibroblasts in high
passages (high) displayed significant increase in DSBs measured by
γH2A.X foci in comparison to the mean of all low passages (low) of
young donor cells (Figure 4B). We always compared to the mean of the
controls and did not use a paired t-test to the respective low passage cell
line to depict not-isogenic conditions. Expression of H3K9Me3 was
reduced in Young 4high, Midage 1high, Midage 2high and Old 3high in
comparison to grouped Younglow (Figure 4C). Shortening of telomeres
was seen in Young 1high, Young 2high, Midage 3high and Old 3high

compared to the mean of all Younglow (Figure 4D). Nucleus area
(Figure 4E) and amount of positive SA-βGal stained cells
(Figure 4H) was significantly increased in all cells in high passages.
Next, we checked antagonistic age markers. We detected an
upregulation of cell cycle arrest markers p21 and p16 in Young 1high,
Midage 1high, Old 1high and Old 3high (Figure 4F). Furthermore, SASP
activation tested by release of IL-6 and IL-8 in the cell culture medium
was found in all fibroblasts with high passages in comparison to the
mean of all Younglow (Figure 4G). Moreover, high passages of all
fibroblasts displayed a decreased expression of Lamin B1 (Figure 4I).
In summary, all high passaged cells homogenously display the various
age markers and showed a high full AgeScore (Figure 4J).

For artificial aging, we used a doxycycline-inducible GFP-Progerin
expression system (Kubben et al., 2016) in young donor cells as a model
system for artificial aging. This allowed us to prematurely age the cells in
a timely well-defined manner. Progerin expression indeed induced a
homogenous and very rapid expression of a multitude of age markers.
Four days after GFP-Progerin induction with doxycycline (1 μg/mL),
prematurely aged human fibroblasts showed formation of age-related
nuclear envelope phenotypes paralleled by the expression of various
primary age markers. We always compared to the mean of the controls
and not paired t-test to the respective low passage cell line to not cause a
bias due to isogenic genetic background. All fibroblasts from young
donors withGFP-Progerin expression displayed a significant increase of
γH2A.X foci in comparison to non-induced fibroblasts (Figure 5B)
whereas there were no changes in histone modification (Figure 5C). In
comparison to non-induced cells, Young 4 and Young 5 with GFP-
Progerin expression showed a shortening of telomere length
(Figure 5D). Subsequently, we investigated the antagonistic age
markers in prematurely aged fibroblasts from young donors. We
observed significant increase in RNA expression of p16 in all
fibroblasts with GFP-Progerin expression (Figure 5E). All
prematurely aged fibroblasts showed significant increases in SA-βGal
positive cell numbers (Figure 5F), nucleus area (Figure 5G) and cytokine
release (Figure 5H) in comparison to non-induced cells. Furthermore,
Lamin B1 expressionwas significantly decreased in all prematurely aged
fibroblasts (Figure 5I). Generally, the AgeScore showed an increase
under GFP-Progerin expression in young donor fibroblasts (Figure 5J).
Progerin overexpression rapidly induced a premature aging that was in
fact very similar to replicative senescence (Figure 4).

3.3 Fibroblasts from patients with progeria
syndromes express age markers to a higher
degree

Finally, we wanted to address the question how the different aging
markers behave in cell culture models of premature aging diseases. For
this we studied low passage fibroblasts from patients suffering from the

Progeria syndromes HGPS and WS in comparison to age matched
controls, respectively (Figure 6A). Controls for HGPS were thus
significantly younger than controls for WS.

The growth rates of progeria fibroblasts were investigated by PDL
under stable conditions (37°C, 5% CO2) (Supplementary Figure S2).
Fibroblasts from donors of HGPS patients showed no changes in PDL,
whereasWS patient’s fibroblasts displayed slower growth comparedwith
the mean of age-matched controls. Next, we investigated primary age
markers. In progeria syndrome’s fibroblasts, we determined an increase
in γH2A.X foci in all tested cells (HGPS1, HGPS 2, WS 1, andWS 2) in
comparison to the mean of all age-matched controls (Figure 6B).
Furthermore, we observed a decrease in H3K9Me3 expression in
donor fibroblasts of HGPS patients (HGPS 1 and HGPS 2). There
were no changes in fibroblasts from WS patients (Figure 6C). In
comparison to grouped age-matched controls, fibroblasts of progeria
patients displayed no changes in telomere length (Figure 6D).

Secondly, we checked antagonistic age markers. Activation of
cell cycle arrest was detected in WS by upregulated RNA expression
levels of p16 (Figure 6E). Furthermore, in all fibroblasts from
progeria patients we observed a rise of SA-βGAL positive cells
(Figure 6F) and a significant decrease in Lamin B1 expression in
HGPS 1, HGPS 2 and WS 1 (Figure 6G). In fibroblasts of HGPS
patients we observed a significant increase in concentration of IL-8
in conditioned media. There were no changes in the levels of SASP
marker IL-6 or IL-8 in WS fibroblasts (Figures 6H, I). All progeria
fibroblasts displayed an increase in nucleus area (Figure 6J). The
AgeScores of human fibroblasts of progeria patients (HGPS 1 and 2,
WS 1 and 2) were thus higher in comparison to age-matched
controls and similar to those of old donor fibroblasts (Figure 6K).

Interestingly, the pattern of individual markers within the
AgeScore was different between HGPS cells and the cells of
artificial aging, which were aged by overexpression of Progerin
(Figure 7). Furthermore, the pattern of individual markers within
the AgeScore were very similar between the different donors of the
respective progeria syndrome, however did also differ between
HGPS and WS (Figure 7). A summary of age marker expression
by individual cell lines and aging conditions is presented in Table 2.

4 Discussion

Despite the existence of a variety of putative age markers,
comparison of different studies on aging cells is hampered by the
fact that often only single markers are used (López-otín et al., 2013;
Hartmann et al., 2021). Here, we systematically investigated a set of
established age markers in diverse cellular aging conditions. Doing
so, we propose a panel of various commonly used age markers that
together seem to measure the effect of aging processes on cells at
least as good as single markers but additionally giving insights in the
complexity of the aging process (Figure 7; Table 2). Additionally, the
panel might be helpful to compensate for bias due to genetic
background differences.

Cell models of disease and/or aging are of even greater
importance since the discovery of iPSC and other “induced” cell
technologies. While these technologies enable to investigate patient-
derived cell models of previously unavailable origin (e.g., neurons),
they significantly alter also general aspects of the cell including their
biological age. Different age scores/clocks have thus been proposed
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in the last years which are estimating biological age with various
degrees of accuracy (Lu et al., 2019; Tarkhov, Denisov, and Fedichev,
2022). It is well known, that aging leads to epigenetic changes in
DNA methylation, through several distinct and overlapping age-
associated mechanisms (Hannum et al., 2013; López-otín et al.,
2013). Also, many DNA methylation clocks, which allow the
indirect inference of biological age from age-specific DNA

methylation patterns, have been recently established and enable
the estimation of biological age of organisms in large tissue samples
followed by multivariate machine learning models (Hannum et al.,
2013; Horvath, 2013; Robinson et al., 2020; Van Den Akker et al.,
2020; Hwangbo et al., 2021). Nevertheless, for the use in standard
cell culture these investigations are often expensive and need specific
equipment not necessarily available.

FIGURE 6
Application of the AgeScore on Progeria syndromes. (A) Cell Model for validation of proposed AgeScore in fibroblasts of donors with Progeria
Syndrome in comparison to young/mid-age donors. (B) Amount of γH2A.X foci per cell examined by IF stainings to investigate DSBs. There were an
increase in γH2A.X foci in all cells of the premature aging syndromes. [n= 3–4 (each n tested >15 cells), mean ± SEM,*p < 0,05, **p < 0.001, ***p < 0,0001,
one-way ANOVA] (C)CTCF of H3K9Me3 in human fibroblasts of Progeria patients. There was a decrease in H3K9Me3 expression in donor fibroblasts
of HGPS patients (HGPS 1 and HGPS 2). [n = 3–4 (each n tested >15 cells), mean ± SEM, *p < 0,05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (D)
Telomere length were measured by MM-qPCR in comparison to a standard of healthy mixed aged individuals. There were no change in telomere length
of human fibroblasts of progeria syndrome patients in comparison to age-matched controls. [n = 3, mean ± SEM, *p < 0.05, **p < 0.001, ***p < 0.0001,
one-way ANOVA] (E) RNA expression levelsmeasured by qRT-PCR of p21 and p16. Activation of cell cycle arrest were detected inWS by upregulated RNA
expression levels of p16. [n = 3-4, mean ± SEM *p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (F) Quantification of SA-βGAL positive cells by
X-Gal staining. Donor fibroblasts from premature aging syndromes showed a significant rise of SA- βGAL positive cells. [n = 3–4 (each n tested >15 cells),
mean ± SEM, *p < 0.05, **p < 0.001, ***p < 0.0001, one-way ANOVA] (G)CTCF of Lamin B1 expression. A significant decrease in Lamin B1 expression was
observed in HGPS1, HGPS 2 and WS1. [n = 4 (each n tested >15 cells), mean ± SEM, *p < 0,05, **p < 0,001, ***p < 0.0001, one-way ANOVA] (H,I)
Determination of cytokine secretion (IL-6, IL-8) in conditioned medium of human fibroblasts by ELISA. From studied progeria donor fibroblasts,
HGPS1 and HGPS 2 displayed an increase in IL-8 concentration in comparison to the mean of age-matched controls. [n = 3-4, mean ± SEM, *p < 0.05,
**p < 0.001, ***p < 0.0001, one-way ANOVA] (J) Change in nucleus morphology shown as nucleus area (pixel units). Nucleus area was significantly
increased in all cells of progeria syndrome patients in comparison to age-matched controls. [n = 6–8 (each n tested >15 cells), mean ± SEM *p < 0.05,
**p < 0.001, ***p < 0.0001, one-way ANOVA] (K) Calculated AgeScore of tested human fibroblasts. The AgeScores of progeria syndrome patients (HGPS
1 and 2, WS 1 and 2) are higher in comparison to the age-matched controls.
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All cells characterized in this study showed quite diverse age
marker expression, visible in the here proposed age-associated
marker panel (Figure 7; Table 2). This demonstrates two
concepts: On the one hand it potentially depicts the individuality
of the aging process per se, which is based, amongst others, on the
genetic heterogeneity of donors (Schneider and Mitsui, 1976). On

the other hand, it also displays the heterogeneity of individual
marker expression and the flaws when only looking at individual
markers. The age-associated marker panel from donors with
different ages showed an increase with chronological age,
whereby old donor cells displayed a higher heterogeneity. For
example, fibroblasts from Old 4 had the highest score of 9, but

FIGURE 7
Pattern of the AgeScore. The pattern of the AgeScore between young and old donors (in vivo aging) increasingly shifts to the positive side depending
on the age of the donor. The pattern of in vivo aging is similar to that of replicative and artificial aging. Here, a very strong shift to the positive test side
occurs. The pattern of the in vivo aging process differs from the pattern of the progeria diseases, but a strong change and an increase of the AgeScore can
be observed.

TABLE 2 Frequency of age marker expression per cell line investigated. Depicted is the frequency of the investigated primary and antagonistic age marker
expression in the respective condition. Depicted are amount of positively tested cell lines and in brackets the total number of investigated cell lines per marker
conditions, respectively.

Donor age Replicative aging Artifical aging Progeria syndromes Frequency (total)

Young Midage Old

Primary AgeScore

DNA damage 0 (5) 0 (3) 2 (6) 6 (6) 2 (3) 4 (4) 14 (27)

Telomere attrition 0 (5) 0 (3) 2 (6) 4 (6) 2 (3) 0 (4) 8 (27)

Histon modification 0 (5) 0 (3) 4 (6) 5 (6) 0 (3) 2 (4) 11 (27)

Antagonistic AgeScore

SA-β-Gal 0 (5) 1 (3) 6 (6) 6 (6) 3 (3) 4 (4) 20 (27)

SASP 0 (5) 1 (3) 5 (6) 6 (6) 3 (3) 2 (4) 17 (27)

Cell cycle arrest 0 (5) 0 (3) 2 (6) 4 (6) 3 (3) 2 (4) 11 (27)

Morphology 0 (5) 0 (3) 2 (6) 6 (6) 3 (3) 4 (4) 15 (27)

LMNB1 0 (5) 2 (3) 5 (6) 6 (6) 3 (3) 3 (4) 19 (27)

Frontiers in Aging frontiersin.org12

Hartmann et al. 10.3389/fragi.2023.1129107

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2023.1129107


the donor of Old 4 was younger than Old 6 with a score of 4.
Nevertheless, in comparison with young donors (all scoring 0) and
mid-age donors (scoring 0–2), it becomes clear that scores increased
markedly with age. Furthermore, replicative aging induced highest
scores, higher than donor age itself. Thus, the score might be most
sensitive for the detection of replicative senescence, or the
markers chosen might be overrepresented in replicative
senescence. Of note, the score still increased with replicative
aging even in case of being already increased due to donor age.
In addition, initial studies on premature aging diseases
(Figure 6) pointed towards increased scores in both. One
might discuss to introduce an additional weighting system
for the AgeScore, e.g., by taking into account the frequency
of the respective marker expression in the different age/aging
conditions (Table 2). Such a weighting might, however, not
generalize to other cell lines or “induced” cell models, thus
requiring further refinement and validation.

Interestingly, “antagonistic age markers” appeared earlier
than “primary age markers”. Antagonistic age markers were
always expressed in replicative/artificial aging and were already
present in mid-age donors. While these were also positive
without primary age markers being increased, this was never
the case vice versa. We cannot, however, rule out that this might
be due to detection limits of the respective markers.

Heterogeneity of the different marker expression was highest when
investigating donor age dependency. This heterogeneity might be due to
differences in the genetic background of the different donors but also due
to differences in the biological age (meaning their health state at biopsy) of
the respective donors themselves. Ideally this would mean that the
biological age of the respective donor has also been estimated using
an age score. In practice, however, this biological age of the donors is often
not available. This heterogeneity was less pronounced in case of
replicative senescence and induced accelerated aging. In order to
minimize this heterogeneity in the latter, we compared the replicative
senescence and the progerin overexpression induced aging not to the
respective donor cell (=isogenic background) but to the mean of all
control conditions. Nevertheless, replicative and progerin induced
senescence experimental settings might be more defined than aging in
an individual prior to cell isolation with or without premature aging
disease.

In addition, we examined the pattern of the individual markers
within the age-associated marker panel of the cells and in the conditions
studied (Figure 7). This additionally underpins the observation that aging
processes are diverse, and might also account for deviations between the
plurality of AgeClocks described so far. When looking at the panel, we
saw a clear change in the pattern of these different markers according to
donor age, but also marked differences between different donors of
similar age. Even though all markers chosen were reported to be age
associated or increase with aging, we only rarely found all of them
increased together. Specific markers such as SA-β-Galactosidase were
associated clearly with aging and positive cells increase in nearly all aging
conditions (Figure 7; Table 2), but they still had minor problems e.g., to
label clearly all mid-age donors (Figure 2). Interestingly, another age
scoring system—so called CultureAge—did even report a lack of
correlation of SA-β-Galactosidase with CultureAge (Minteer et al.,
2022). Other age markers like p21 displayed an increase only in few
of the tested cells. Replicative senescence and artificial aging induced a
stronger and especially more homogenous change of the overall marker

pattern. While total score of the age marker panel was even higher in
Werner syndrome fibroblasts, the patterns of HGPS and WS were
remarkable different.

A limitation of our study is the exclusive use of human dermal
fibroblasts. It is well accepted that cellular aging differs across tissues
in vivo and in vitro. In addition, the expression of specific markers,
e.g., p16 and p21, is tissue dependent. Consequently, the AgeScore
might be affected as well by the cell origin. Furthermore, some
markers investigated only seldomly became positive in aged
conditions despite having been described as established age
markers (Table 2). Thus future studies are warranted to both
investigate the value of the AgeScore and its marker panel in
cells from diverse tissue/germ layer origin including (re-)
programming conditions, and to eventually reduce the AgeScore
to a panel of markers, which all become positive in aged conditions,
irrespective of tissue origin.

In summary, we here propose the use of an age-associated
marker panel, which considers key age markers for application in
in vitro cell culture and demonstrated its validity in estimating donor
age, replicative and artificial aging as well as premature aging. This
AgeScore can be easily investigated in standard cell culture
laboratories yielding both an individual value but also marker
patterns that allow good comparability of the diversity of the
aging processes. Further studies are needed to further validate the
use of the AgeScore proposed here, also for other in vitro and in vivo
applications.
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