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Stochastic volatility models are a popular choice to price and risk–manage financial

derivatives on equity and foreign exchange. For the calibration of stochastic local volatility

models a crucial step is the estimation of the expectated variance conditional on the

realized spot. The spot is given by the model dynamics. Here we suggest to use methods

from machine learning to improve the estimation process. We show examples from

foreign exchange.
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1. INTRODUCTION

For derivatives pricing a major breakthrough was achieved with the risk-neutral valuation principle
(Black and Scholes, 1973). Initially themodels assumed a deterministic, state-independent volatility
of the underlying price process. For many classes of underlying this assumption is too restrictive
as it does not allow for an implied volatility that depends on strike as it is observed in the
market, at least since the Black Friday in 1987, see for a review and attempted explanation
(Benzoni et al., 2011).

Hence the most natural extension of the existing models was to postulate either a
state-dependent volatility often duped as local volatility (Derman and Kani, 1994; Dupire, 1994)
or to postulate an additional process for the volatility (e.g., Hull and White, 1987; Heston, 1993)
which are labeled as stochastic volatility models.

Looking at the properties of these two model classes it was found (Hagan et al., 2002)
that local volatility is postulating a dynamics which is not found in real markets. In foreign
exchange options markets stochastic volatility models tend to exaggerate the effect of volatility
convexity and at the same time these models are unable to match the short–dated volatility
smile observed in market–prices. As a practical workaround, models that mix the local volatility
and stochastic volatility were developed (Said, 1999; Blacher, 2001). It was observed that the
calibration of SLV models is a hard problem which requires either a specific parametrization to
derive fast pricing of vanilla options or quite time-consuming numerical optimization procedures
(Guyon and Henry-Labordere, 2011). See as well Homescu (2014) for a great summary and best
practice of local stochastic volatility models.

A shortcut to derive manageable calibration times was developed by
Guyon and Henry-Labordere (2011) and Van der Stoep et al. (2014) using a Monte Carlo
procedure to derive the required estimation of the conditional variance. In this paper we suggest to
use methods from machine learning, in particular radial basis functions and variations thereof to
derive fast and efficient estimators.
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2. LOCAL STOCHASTIC VOLATILITY
CALIBRATION

The LSV model in general is of the form:

dSt = µ(t)Stdt + σ (St , t)f (Vt)StdWt

dVt = µV (Vt)dt + ξχ(Vt)dXt

< dWt , dXt > = ρdt

with spot St , variance Vt , drift µ, (state-dependent) drift for
the variance µV , vol of variance ξχ(Vt), and correlation ρ. The
LSV calibration is the process to determine the leverage function
σ given the local volatility function σ 2

Dupire and all the other

parameters of the model. There is a fundamental relationship of
the leverage function and the local volatility function (Dupire,
1996) where the expectation EP(St ,Vt ,σ ) of the conditional variance
Vt is taken with respect to the risk–neutral measure induced
by the model. The notation indicates that P(St ,Vt , σ ) is the
joint probability of spot process St , variance process Vt and the
solution for σ which depends on the probability distribution
of (St ,Vt).

σ 2
Dupire(St , t) = EP(St ,Vt ,σ )(Vt|S = St)σ

2(St , t) (1)

Plugging the solution into the model equation makes this a
McKean SDE where the expectation depends on the probability
of the process itself.

To solve this equation Monte Carlo simulation can be used.
The equations are discretized and the forward propagation of
the spot St and variance Vt is interleaved with the estimation
of conditional expectation using the realized paths of St and
Vt . Contrary to standard Monte Carlo where all paths develop
independently we need to bring all simulated paths to the
estimation procedure. Using Euler discretization

1 ln(St) = µ(t)1t −
1

2
σ 2(St , t)f

2(Vt)1t

+σ (St , t)f (Vt)
(

√

1− ρ21W + ρ1X
)

1Vt = µV (Vt)1t + ξχ(Vt)1X

with 1W,1X independent increments. The estimation of the
conditional expectation can be seen as finding the function
R(S) = E(Vt|St = S) based on the samples as observed pairs

(S1t ,V
1
t ), · · · , (S

n
t ,V

n
t )

where the spot Sit and variance V i
t are the time t realizations

of spot and variance on path i. Originally it was proposed
to estimate the function R using kernel regression
(Guyon and Henry-Labordere, 2011):

R((S1,V1), · · · , (SN ,VN))(S) =
∑N

i=1 ViKh(S− Si)
∑N

i=1 Kh(S− Si)
(2)

with Kernel functions Kh, where we dropped the t index as it is
clear from the context. Alternatively (Van der Stoep et al., 2014)
proposed to use binning techniques or sets of polynomials.

Subsequently we will evaluate alternative regression
techniques to estimate the conditional expectation based
on the realized paths. This can be rephrased as a supervised
learning problem where each path is a (noisy) example.

3. REGRESSION AS A SUPERVISED
LEARNING PROBLEM

The task to find a relationship between some input variables
and an output from examples is one of the problems tackled
by machine learning and is well studied as supervised learning.
There are many classes of supervised learning algorithms and
setups and we would like to demonstrate guidelines to which
specific choices are suitable for the problem at hand. The basic
problem is, given a set of examples xi, yi to find a function f (x)
such that an error functional is minimized. The task is to find
a function such that there is low error on unseen examples, this
is called generalization. There is a balance to strike between the
error on the examples used for training and the error on the
validation set of examples which are examples not used during
training, for a fundamental analysis of the learning theotry and
the relation between capacity and the generalization (see e.g.,
Vapnik, 2013), in particular chapter 4.

3.1. Kernel Regression
The approach taken in Guyon and Henry-Labordere (2011) as
stated above is Nadarajan-Watson kernel regression which is one
of the so called non-parametric methods. The method is identical
to Equation (2). The estimator is given as:

R((x1, y1), · · · , (xN , yN))(X) =
∑N

i=1 yiKh(x− xi)
∑N

i=1 Kh(x− xi)

In this approach a Kernel function K(x) is used, which satisfies:

K(x) ≥ 0

K(x) = K(−x)
∫ ∞

−∞
K(x)dx = 1

Kh(x) =
1

h
K

(x

h

)

There is a variety of Kernel functions well studied in the literature
(Härdle, 1990):

• Gaussian 1√
2π

e−
x2

2

• Quartic 15
16 (1− x2)2

• Epanechnikov 3
4 (1− x2)

• Sigmoid 2
π

1
ex+e−x

Often the Kernel function used is Gaussian hence the support
of the function is infinite or it will be the Epanechnikov Kernel
which has bounded support.

The crucial choice is the bandwidth of the Kernel functions.
There is a rule-of-thumb derived from normal distribution
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assumptions, (Silverman, 1986):

h =
(

4σ 5

3n

)

1
5

for the standard deviation σ of the data and n data points.
Alternatively cross validation, particular “leave–one–out cross

validation” can be used to determine an optimal Kernel width.
Cross validation is quite costly computationally and hence can
only be used to cross check ad-hoc choices.

Local Linear Kernel Regression is a variation of Kernel
regression which employs local linear terms and which is given
by the solution of

R((x1, y1), · · · , (xN , yN))(x) = min
α,β

N
∑

i=1

(yi − α − (x− xi)β)
2

Kh(x− xi)

The minimum is found by solving a 2× 2 linear system .
In general the Kernel approaches suffers from some systematic

shortcomings, mainly the fact that all examples are used, no
compression happens, secondly a bias is introduced close to the
boundary and the difficult choice of suitable bandwidth, where
practically sound theoretical methods as cross validation cannot
be used for computation time reasons.

3.2. Radial Basis Functions
Radial Basis Functions (RBF) and Partition of Unity Radial Basis
Functions (PURBF) respectively take the form

RBF(x) =
C

∑

i=1

wiKhi (x− ci)

PURBF(x) =
∑C

i=1 wiKhi (x− ci)
∑C

i=1 Khi (x− ci)

PURBF are quite similar in functional form to Kernel regression.
Themain difference is that the number of basis functions is much
smaller than the number of examples. It was proven that RBF
and PURBF are universal function approximators (Hakala et al.,
1994) which makes them suitable to approximate our estimation
problem. If the L2 norm is used the weights are optimized by
solving the normal equation

LS =
1

2N

N
∑

i=1

(yi − RBF(xi))
2.

The solution s given by the weights wi, which satisfy

wi = (ATA)−1
ik

Akjyj

FIGURE 1 | EUR/USD implied volatility in log moneyness and time to maturity. (Source: Leonteq AG—March 2018).
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FIGURE 2 | EUR/USD local volatility in log moneyness and time to maturity. (Source: Leonteq AG—March 2018).

FIGURE 3 | EUR/USD 6M estimated variance conditional on realized spot and realized paths for various kernel functions as well as forward and digital levels. (Source:

Leonteq AG—March 2018).
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FIGURE 4 | EUR/USD 6M estimated variance conditional on realized spot and realized paths for various kernel functions and cross validated width as well as forward

and digital levels. (Source: Leonteq AG—March 2018).

FIGURE 5 | EUR/USD 6M estimated variance conditional on realized spot and realized paths for various local linear kernel functions and cross validated width as well

as forward and digital levels. (Source: Leonteq AG—March 2018).

Frontiers in Artificial Intelligence | www.frontiersin.org 5 May 2019 | Volume 2 | Article 4

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Hakala Machine Learning for SLV-Calibration

FIGURE 6 | EUR/USD 6M estimated variance conditional on realized spot and realized paths using PURBF as well as forward and digital levels. (Source: Leonteq

AG—March 2018).

FIGURE 7 | EUR/USD 5Y estimated variance conditional on realized spot and realized paths using kernel regression, local linear kernel regression, and PURBF as well

as forward and digital levels. (Source: Leonteq AG—March 2018).
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with the matrix Aij given as

Aij = Khj (xi − cj).

(3)

The remaining parameters are determined heuristically:

• centers ci - in 1D we chose min(xi), max(xi), and a random
subset of the remaining xi. Centers which are too close (in
their local width) are pruned—the criterion for unit j is

mini

(

|ci−cj|
hj

)

≤ 2 with a suitable global pruning constant 2.

There are resource allocating approaches as well (e.g., Fritzke,
1994) which seem less suitable here.

• width hi- are chosen individually as a multiple of the k nearest
neighbors or ad-hoc.

3.2.1. Regularization

Often the solution of the normal equation will be ill-conditioned.
To counteract the bad conditioning of the problem and to get a
better generalization we will use a regularizer on the L2 norm of
the weights (e.g., Goodfellow et al., 2016, Chapter 7.1).

LSR =
1

2N

N
∑

i=1

(yi − RBF(xi))
2 + λ

C
∑

j=1

w2
j

The corresponding solution is given as

wi = (ATA− λ id)−1
ij Ajkyk

with identity matrix id. The same solution applies for the PURBF
function instead of the RBF one.

3.3. Computational Efficency
For standard Kernel Regression computational effort is mainly
due to sorting O(n log(n)) of the spot observations to
enable an efficient lookup of relevant spot observations during
the retrieval phase. Optimal determination of width (cross-
validation) requires the evolution of all kernels at all points
several times which is very costly compared to the lookup.
Local linear Kernel Regression requires an additional inversion
of a 2× 2 matrix which is negligible. For RBF and PURBF the
solution to a small linear system is required. In particular the size
is much smaller than the number of samples. Sorted examples
can be used to optimize the training as the required matrix
is determined by sums over the samples. Width and pruning
computations require local computation of the order of the
number of kernel functions. Overall the computational effort for
RBF/PURBF is comparable and might be smaller in the retrieval
phase than for Kernel Regression itself.

FIGURE 8 | USD/JPY local volatility in log moneyness and time to maturity. (Source: Leonteq AG—March 2018).
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3.4. Alternative Architectures
In the last couple of years popularity of multilayer perceptron
(MLP) and deep versions thereof grew enormously. For our
application we rule out these architectures as the training is much
more involved in the MLP case with a many remaining questions
about a suitable number of hidden units, number of layers, type of
activation functions. We could envision to use a pretrained MLP
to get the solution without training. We postpone this approach
for potential future use.

4. APPLICATION TO LSV MODEL IN
FOREIGN EXCHANGE

The model we will study is of Heston type

dSt = µ(t)Stdt + σ (St , t)
√

VtStdWt

dVt = κ(V̄ − Vt)dt + ξ
√

VtdXt

< dWt , dVt > = ρdt

with mean reversion speed κ , mean reversion level V̄ .

The advantage is that we have a semi-closed form solution for
vanilla call- and put options in the Heston model without the
leverage function hence the first step is to calibrate the Heston
model and then apply a scaling to the vol of vol parameter to
reduce the SV impact and to let the local volatility compensate
to match the vanilla option market. In this study we will use a
volatility mixing of 66% which means that we scale the vol of
variance by this factor before calibrating of the leverage function.

To compare the performance of the various regression
algorithms on this model we will show for a specific slice
the realized spot/variance and the corresponding results of the
regression functions.

4.1. Example EUR/USD 6M
You can see the volatility surface in Figure 1 and the
corresponding local volatility surface in Figure 2. The snapshot
of data, including spot, volatility, and interest rates was taken in
March 2018. We show the results of different kernel estimators,
using Silverman’s rule of thumb for the width, including the
samples indicated as Current, as well as the forward and the
level of a 0.1% digital on the upside and downside Figure 3.

FIGURE 9 | USD/JPY 5Y estimated variance conditional on realized spot and realized paths using kernel regression, local linear kernel regression, and PURBF as well

as forward and digital levels. (Source: Leonteq AG—March 2018).
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In Figure 4 you see the results of Kernel Regression for
Silverman’s rule and additionally the cross-vaildated width for
the same kernel functions. Notice that the optimal width varies
between different kernels. We show results for local linear kernel
regression in Figure 5. It can be seen that the bias at the
boundaries is reduced in comparison to the kernel regression.
Again we show results for Silverman’s rule and additionally the
cross-vaildated width.

For the PURBF we show results in Figure 6 using a global
width, relative knn width, pruned and relative knn width, pruned
with global width, and pruned, knn width and regularizer (λ =
0.2). We use 40 units in all cases as this number seems sufficently
versatile for the number of particles we want to use (2,048).

The last version with regularizer, pruning, and local width is
the preferred version as it shows a smooth behavior without a bias
in the boundaries and matches the part with many data–points in
the middle without oscillations.

4.2. Example EUR/USD 5Y
We show the results for 5Y maturity and the same volatility
surface in Figure 7. Among the tested approaches the
PURBFwith 5 nearest neighbors performs best.

4.3. Example USD/JPY 5Y
We show the results for USD/JPY, see the local volatility
surface in Figure 8. The estimation across the spot range is

shown in Figure 9. Again the PURBFwith 5 nearest neighbors
performs best.

4.4. Example EUR/BRL 3Y
We show the results for EUR/BRL, which is a highly skewed
and highly drifting underlying. See the local volatility surface
in Figure 10. The estimation across the spot range is shown in
Figure 11. Note that in this case the range of spot realizations
is quite skewed as is expected from the skewed volatility surface.
Nevertheless the PURBFwith 5 nearest neighbors puts a relatively
smooth estimator through the samples and performs better than
other methods.

4.5. Pricing Examples
To see the impact on exotics pricing we look at one–touch
options. A one–touch option pays one unit of the counter
currency at the maturity date if the spot trades at or beyond
the touch–level at any time during the life of the option. We
show the impact as a function of the Black–Scholes price (TV),
similar to (Clark, 2011). The TV of a one–touch can be between
0% and the discount factor to maturity, which is in the range of
100%. For fixed market parameters like spot, volatility and the
risk–neutral drift TV is a function of the touch–level only, hence
makes a unique scale to show the model impact. The deviation
of the LSV model price from the TV is the desired effect of an
alternative model, which incorporates volatility risk management

FIGURE 10 | EUR/BRL local volatility in log moneyness and time to maturity. (Source: Leonteq AG—March 2018).
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FIGURE 11 | EUR/BRL 3Y 5Y estimated variance conditional on realized spot and realized paths using kernel regression, local linear kernel regression, and PURBF as

well as forward and digital levels. (Source: Leonteq AG—March 2018).

FIGURE 12 | One–touch prices EUR/USD 6M LV vs. TV, SV vs. TV, LSV vs. TV. Upside one–touches on the left, downside on the right.(Source: Leonteq

AG—March 2018).
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FIGURE 13 | One–touch prices EUR/BRL 6M LV vs. TV, SV vs. TV, LSV vs. TV. Upside one–touches on the left, downside on the right. (Source: Leonteq

AG—March 2018).

and hedging, compared to the Black–Scholes model. The form
of the deviation is not obvious and would require a rather
complicated hedging argument of volatility risk and cross spot–
volatility risk.

With the mixed local stochastic volatility model and mixing
rate of 66% we expected the LSVprice to be within the bounds
of stochastic and local volatility price. We use Monte Carlo
pricing with a fixed number of 32,000 paths (antithetic) and
Quasi Random Numbers, a time discretization of 5 days and
fixed 2048 particles. We denote the Black–Scholes prices as
BS or TV (theoretical value) in the graphs and use LV as
abbreviation for prices in local volatility and HES for the
Heston model without local volatility component. The prices
can be seen in Figure 12 for EUR/USD 6M and in Figure 13

for EUR/BRL 6M. We observe the expected behavior in all
cases, the mixed local stochastic volatility prices are within the
range of local and stochastic volatility prices and the mixing
parameter can be used to adjust the behavior to observed exotics
prices (e.g., one touches) in the market. Usually this mixing
parameter is quite stable across longer periods, often weeks or
even months.

5. CONCLUSION

We apply machine learning principles to improve the calibration
process of the local stochastic volatility models. The suggested
meta parameters and heuristics seem to apply to a wide variety of

underlyings in FX, liquid pairs like EUR/USD as well as emerging
markets as EUR/BRL. The computational efficiency is at about
the same level as for the formerly suggested Kernel Regression
based approach. The results given by the PURBF function with
pruning, regularization, and local width determined by 5 nearest
neighbor performed significantly better than the Kernel based
approaches, hence we would suggest to consider this approach
in the calibration process.

Further work will be dedicated to improve the computational
speed and to establish better measures of the quality. In
particular in situations where vol surfaces are almost arbitragable
we will need the method to continue to provide numerically
stable results.
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