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Despite the current growing interest in Bitcoins—and cryptocurrencies in

general—financial instruments, as well as studies related to them, are quite

underdeveloped. Therefore, this article aims to provide a suitable pricing model

for options written on this peculiar underlying. This is done through an artificial neural

network approach, where classical pricing models—namely the trinomial tree, Monte

Carlo simulation, and explicit finite difference method—are used as input layers. Results

show that options written on Bitcoin turn out to be systematically overpriced when

considering classical methods, whereas a noticeable improvement in price predictions

is achieved by means of the proposed neural network model.

Keywords: cryptocurrencies, bitcoin, option pricing, neural network, alternative option pricing methods

1. INTRODUCTION

Stock options are a category of financial derivatives which became widely employed by investors
and speculators during the last few decades. Nevertheless, investors may ineffectively manage
their portfolios if they are not able to value options in a proper way. For this reason, a reliable
methodology capable to yield an option’s current price or forecast is fundamental for investors
in order to produce a rigorous decision making. This is particularly true when considering
non-mature and volatile markets like the cryptocurrency one.

The theory of option pricing is broad and involves various types of pricing techniques, largely
parametric ones. The most widely known option pricing method is arguably the one defined by
Black and Scholes (1973). Although this technique has been widely employed by practitioners, its
strict set of assumptions, as well as subjectivity with respect to the parameter choices, often yields to
unreliable results to some extent. To illustrate, the leptokurtic behavior of return distributions and
the volatility smiles and skews are features that cannot be captured by such a simplistic technique.

Besides the Black-Scholes model and its modifications, other parametric models have been
developed and became widely used, among which the (binomial and trinomial) tree models, the
finite difference method and the Monte Carlo simulation. While tree models converge to the
Black-Scholes one in case the time occurring between steps is small enough, other methodologies
take into consideration pricing aspects that these two models do not. Indeed, the Monte Carlo
simulation allows for random shocks other than those provided by the volatility and the movement
probabilities of the tree models, whereas the finite differencemethod relies on a different simulation
scheme. This is the reason why in this paper examines and includes tree models, the Monte Carlo
simulation, and the finite difference method as pricing methodologies.

Alongside the category of classical derivative and option pricing models, non-parametric
models, such as neural networks gradually emerged, mainly thanks to their improved predictive
performance with respect to the former techniques. Yao et al. (2000) predicts prices related to
the Nikkei 225 index futures using back-propagation neural networks. Their results show that,
despite the Black-Scholes model is still good for pricing at-the-money options, the neural network
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outperforms it, in particular when considering volatile markets.
Another research conducted by Liang et al. (2009) motivates this
paper’s approach, as the authors use classical models (binomial
tree, finite difference method, and Monte Carlo simulation)
in a first stage to forecast the option price and refine those
forecasts through neural networks and support vector machines
in a second stage. This technique allows to notably reduce
forecast error, i.e., substantially improves price forecasts in their
Hong Kong option market framework. Nonetheless, there are
many other examples on neural network models for derivative
securities pricing which found that neural networks outperform
classical models—see, for instance, Hutchinson et al. (1994),
Malliaris and Salchenberger (1996), Amilon (2003), Binner et al.
(2005), and Lin and Yeh (2005).

Research related to the cryptocurrency market, as the
phenomenon itself, is relatively new. Despite that, there is a
massive interest of the academic community in investigating
this new market and its peculiar features from all points of
view, with a particular focus on Bitcoin. Indeed, since Nakamoto
(2008) introduced the concept of Bitcoin as a purely peer-to-
peer version of electronic cash, researches developed following
different and multidisciplinary fields. Some researchers provide a
general descriptional analysis of the cryptocurrency framework.
To illustrate, in Dwyer (2015) we may find a detailed overview
on technical issues of Bitcoin and the cryptocurrency market in
general. Also White (2015) goes through the key concepts of
cryptocurrencies, while focusing on the so called “Altcoins”1. A
further study by Kroll et al. (2013) examines the Bitcoin mining
process thoroughly. Another stream of the literature, with studies
conducted by Brandvold et al. (2015) and Pagnottoni and Dimpfl
(2019), finds the leader and follower Bitcoin exchanges of the
price discovery process through an econometric analysis of its
price across different exchange.

Despite the quite wide set of studies in the cryptocurrency
area, to the best of our knowledge there is not yet any
research trying to address option pricing related to Bitcoin (or
cryptocurrency) derivatives. The aim of this study is to propose
a pricing methodology that is feasible to price cryptocurrency
options. Without loss of generality, the paper focuses on
european style Bitcoin put and call options which became
recently available on the market. To this end, the study makes
use of a two stage approach. The first stage consists of option
pricing through parametric approaches, such as tree models,
finite difference method, and Monte Carlo simulation. In the
second stage, artificial neural networks are employed in order to
combine the parametric option pricing approaches and capture
the residual errors by learning schemes in the current status of
the option market. Their performance is then compared to the
conventional option pricing techniques obtained in the first stage.
Results point to the predominance of the neural network models
with respect to the conventional methods in pricing Bitcoin
options and, therefore, in capturing their real price dynamics.
As a robustness check, an out-of-sample analysis confirm the
previous result, as well as a cross validation analysis through

1“Altcoin” stands for “alternative coin.” The term is used to indicate all

cryptocurrencies except for Bitcoin.

random sub-sampling reveals that—despite there is still some
room for improvement—results are arguably stable and the
neural network is a suitable model in order to price options
written on Bitcoin.

The remainder of the paper proceeds as follows. Section 2
outlines the methodology employed. Section 3 describes and
analyzes the data. Section 4 presents the results. Section 5
illustrates the robustness analysis conducted. Section 6 concludes.

2. METHODOLOGY

This section briefly introduces the classical parametric option
pricing techniques used in this paper: specifically, tree models,
finite difference method, and Monte Carlo simulation. After
that, I discuss the neural network model and the comprehensive
approach for option pricing.

The following notation will be used. S represents the
underlying asset price, C is the option price, K is the options’
exercise price, σ denotes the asset price volatility, r represents the
risk-free interest rate, 1t is the time interval (i.e., the time period
length), and T is the time to maturity.

2.1. Tree Models
Tree models are widely used not only to price European
style options, but also closed-form American options, as
they can account for the early exercise feature. Milestone
references for binomial trees are the ones of Cox et al. (1979)
and Rendleman and Bartter (1979). Further extensions are
proposed by Boyle (1977), Nelson and Ramaswamy (1990),
and Hull and White (1990a).

In the binomial tree setup, the underlying asset price St,i with
t = 0, 1, 2, ..., n − 1 may either experience an up movement to
St+1,i or a down movement to St+1,i+1, with t = 1, 2, ..., n. This
happens according to an upward rate u and a downward rate d,
which Cox et al. (1979) define as:

u = eσ
√
△t , d = e−σ

√
△t (1)

where △t = T
n denotes the time step from t to t + 1 and n the

total number of time steps in the binomial tree.
A graphical representation of a n-step binomial tree is

illustrated in Figure 1. Arrows constitute possible paths for the
price dynamics, whereas nodes represent the underlying price St,i
from which the option price Ct,i is computed. Option prices are
then recursively computed from the last ones to the first one,
going backwards, according to the following:

Ct−△t,i = e−r△t(pCt,i+1 + (1− p)Ct,i) (2)

where r is the risk-free rate, and the probabilities of up (p) and
down (pd) movements are defined as

p =
er△t − d

u− d
, pd = 1− p (3)
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FIGURE 1 | Binomial tree.

The trinomial tree (Figure 2) works in a similar way. However,
in this setup, the underlying asset price St,i with t = 0, 1, 2, ..., n−
1 may either experience an up movement to St+1,i, a middle
movement to St+1,i+1 or a down movement to St+1,i+2, with t =
1, 2, ..., n. This happens according to an upward rate u, downward
rate d and middle ratem defined as:

u = eσ
√
2△t , d = e−σ

√
2△t , m = 1 (4)

In this case, the probabilities of up (p), down (pd) and middle
(pm) movements are defined as:

p =





e(r)
1t
2 − e

−σ

√

1t
2

e
σ

√

1t
2 − e

−
√

1t
2





2

, pd =





eσ
1t
2 − e(r)

1t
2

e
σ

√

1t
2 − e

−
√

1t
2





2

,

pm = 1− (p+ pd)
(5)

Among the advantages of using the trinomial trees,
computational efficiency as well as precision are of our interest.
Indeed, the trinomial tree should yield to more precise prices
with less time steps if compared to the binomial counterpart.

2.2. Finite Difference Method
As extensively described in Brennan and Schwartz (1977),
the finite difference method allows to price options through
the solution of some differential equations with respect to the
option prices. These equations are transformed into difference
equations, whose solutions are iteratively solved by CPUs.

According to the finite differencemethod, the time tomaturity
T is segmented into p equally sized time periods 1t, whereas the
asset price is segmented into q steps of length 1S, ranging from a
minimum of 0 to a maximum of Smax. This can be represented as

FIGURE 2 | Trinomial tree.

a grid in which the horizontal line is the number of periods and
the vertical one the asset prices.

In the present case, the application uses the so called explicit
finite difference method, which solves the differential equations
in a forward way, as elucidated by Hull and White (1990b). The
reason behind our choice is that the explicit finite difference
method is arguably more efficient than the implicit one, which in
contrast solves the differential equations backwards. In particular,
the equation to be solved is the well-known partial differential
equation of Black-Scholes, i.e.,

∂C

∂t
+

1

2
σ
2S2

∂
2C

∂S2
+ rS

∂C

∂S
= rC (6)

Where i = 1, 2, ..., p and j = 1, 2, ..., q. The discrete version of
Equation (6) is:

−
Ci,j − Ci−1,j

1t
=

1

2
σ
2Ci,j+1 − 2 Ci,j + Ci,j−1

1S2
+

+rS
Ci,j − 2 Ci,j−1

21S
− rCi+1,j.

(7)

The option price can then be derived as:

Ci,j =
1

1+ r1t
(pCi+1,j+1 + pmCi+1,j + pdCi+1,j−1) (8)

where the probabilities associated with an up, middle or down
movement are respectively:

p = Sjr
1t

21S
+

1

2
S2j σ

2 1t

1S2
(9)

pm = 1− S2j σ
2 1t

1S2
(10)
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pd = −
Sjr1t

21S
+

1

2
S2j σ

2 1t

1S2
(11)

For a detailed explanation of the finite difference method, refer to
Brennan and Schwartz (1977) and Hull and White (1990b).

2.3. Monte Carlo Simulation
The Monte Carlo simulation is used to obtain the underlying
asset price at the option maturity by means of averaging a
sufficiently high number of stochastic asset price paths, obtained
by assuming that the underlying price follows a log-normal
distribution, that is simulating L scenarios for the underlying
price evolution as:

ST = Ste
(r− 1

2 σ )(T−t)+σ
√
T−t1Wt (12)

whereWt denotes a standard Wiener process at time t.
After that, option prices are found by discounting that average

result backwards. In other words, given the payoffs at maturity T
of call and put options, respectively as:

CT = max(0, ST − K), PT = max(0,K − ST) (13)

the resulting call and put prices are obtained as an average of the
L simulated scenarios, i.e.,

Ct =
1

L

L
∑

l=1

Cl, Pt =
1

L

L
∑

l=1

Pl (14)

where l = 1, 2, ..., L.

2.4. Neural Networks to Improve Precision
Option prices dynamics depend on several variables as well as on
an economic environment and rules that continuously change.
Despite parametric methods mimic the behavior of real option
prices, it may be argued that they do not fully reflect the actual
market evolution of option prices.

To cope with that, similarly to Liang et al. (2009), this paper
defines a two-step procedure in order to consistently evaluate
option prices. The first step consists of pricing options according
to the three parametric methods described above, i.e., tree
models, finite difference method, and Monte Carlo simulation.
The prices obtained in the first step are then used as input
training vector of a neural network model in the second step. As
a consequence, once the main information regarding an option’s
price are captured through the parametric methods in the first
step, the machine learning neural network can concentrate its
modeling power to approximate the non-linear features of the
option pricing errors. A graphical representation of the model
can be found in Figure 3.

It is well-known that the option market is a complex
systemwith non-linear characteristics. This furthermotivates our
approach, since the use of a particular kind of neural network

model, the multilayer perceptron one, allows to account for
these features. Indeed, through the multilayer perceptron neural
network one is able to include include hidden layers and non-
linear activation functions that may capture the non-linearity
of the option market. An organic description of multilayer
perceptron neural networks can be found, for example, in Haykin
et al. (2009).

2.5. Performance Assessment
In this subsection the the assessment criteria used to evaluate
our models are presented. Performances of our pricing methods
are judged according to three widely employed measures, i.e.,
the mean absolute error (MAE), mean squared error (MSE), and
the mean absolute percentage error (MAPE). These criteria are
defined by

MAE =
1

N

N
∑

n=1

|At,n − Ft,n| (15)

MAPE =
1

N

N
∑

n=1

|
At,n − Ft,n

At,n
| (16)

MSE =
1

N

N
∑

n=1

(At,n − Ft,n)
2 (17)

where A is the actual option value and F is the fitted value
obtained by the corresponding pricing model, being t the specific
time at which the option is evaluated and N the number
of observations.

3. DATA

An option market for cryptocurrencies—and Bitcoin—is
gradually emerging. I analyze data from deribit.com, a platform
offering trading of futures and European style options written
on Bitcoin. In particular, the corresponding underlying on which
the options are written consists of the deribit BTC index2.

Data are collected from 16May 2018 to 15 July 2018, on a daily
basis, every day at the same time (11:00 UTC). To be precise, the
retrieved data are the deribit BTC index and all available option
prices related to that day (European calls and puts).

Following Liang et al. (2009) the analysis is restricted
to options having a time to maturity comprised between 5
and 20 days, as well as to in-the-money options having a
spread which is lower than 50%. In this way it is possible
to overcome price fluctuations related to the expiration effect
and liquidity problems linked to the long term time to
maturity options, as well as to eliminate outliers reflecting
expectations which are somehow not rational and may heavily
affect results. Furthermore, the choice of such a maturity

2Detailed information regarding the deribit BTC index can be found on

www.deribit.com
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FIGURE 3 | The multilayer perceptron neural network model. The following notation is used: NN stands for the neural network model, TT corresponds to the trinomial

tree, FDM represents the finite difference method, and MC for the Monte Carlo simulation.

FIGURE 4 | Real option prices (black) against trinomial tree price predictions (red) for the option expiring on 29 June 2018, K = 8000, call (left) and put (right).

range is in line with the peculiar short term feature of
cryptocurrency options, whose maturities are generally smaller
than the ones related to traditional option markets. To illustrate,
the majority of options in our full dataset were issued only 8 days
before maturity.

Given the set of restrictions adopted above, the dataset ends
up with a total number of 281 call and 695 put prices. In the
current analysis, the first 10 weeks will be used for the estimation
purposes, while the last 2 weeks will be used for out-of-sample
performance assessment.

As far as the parameter specifications, a 15-days
historical volatility for the deribit BTC index and the
2-months Libor interest rate as risk-free rate are used.
Moreover, the finite difference method has a grid
of size 3T and the Monte Carlo simulation involves
10,000 repetitions.

The neural network involves several specifications, too.
Firstly, the study relies on the widely spread backpropagation
algorithm for the parameter estimation. Secondly, the most
widely employed activation functions are tested in order to

TABLE 1 | In-sample performance of neural network and classical models.

– TT FDM MC NN

CALL

MAPE 0.0713 0.0713 0.0716 0.0670

MAE 42.78 42.79 43.2 33.55

MSE 5,362.41 5,362.65 5,401.13 1,926.66

PUT

MAPE 0.0546 0.0547 0.0546 0.0506

MAE 56.00 56.05 56.08 33.63

MSE 4,764.71 4,764.81 4,765.29 2,299.11

The following notation is used: NN represents the neural network model, TT corresponds

to the trinomial tree, FDM stands for finite difference method, and MC for the Monte

Carlo simulation.

choose the one ensuring the best performance in terms of fitting3.
Results indicate that the sigmoid function is the one ensuring

3In particular, the following activation functions are tested: sigmoid, taylor,

identity, tanh, softplus, gauss.
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FIGURE 5 | In-sample performance of neural network and “best” classical model. The figure compares the in-sample performance of the neural network model (red)

and “best” classical model (blue). (A–C) Illustrate the MAPE, MAE, and MSE, respectively.

the smallest sizes of prediction error. Thirdly, an analysis of the
optimal number of hidden layers and neurons in the network
is conducted, following the iterative procedure described in
Stathakis (2009). Results suggest a model having two neurons and
one hidden layer.

4. EMPIRICAL FINDINGS

4.1. Experimental Results on Selected
Options
In this section results are presented distinguishing between call
and put options.

Without loss of generality, a plot of a representative option
price evolution against one of the parametric methods (the
trinomial tree) prediction is shown in Figure 4. Overall, classical
parametric option pricing methods (i.e., trinomial tree, finite
difference method and Monte Carlo simulation) lead to price
predictions which are consistently lower than the actual option
prices, both in the put and the call cases. Consequently, it may
be argued that options written on Bitcoin are systematically
overpriced by the platform when considering the parametric
methods in question. Notwithstanding this, theoretical prices
yielded by parametric methods converge to the real option prices
as the time to maturity becomes smaller. This is in line with the
behavior of the traditional markets for option exchanges, where a
small time to maturity leads to a convergence of theoretical and
real option prices.

Prediction errors associated with each category of options are
illustrated in Table 1. Absolute and relative model performance
measures are quite comparable across the considered classical
parametric methods. Besides that, it is clear that the neural

TABLE 2 | Out-of-sample performance of neural network and classical models.

TT FDM MC NN

CALL

MAPE 0.0429 0.0429 0.0425 0.0283

MAE 26.64 26.65 26.77 17.93

MSE 1,016.11 1,016.28 1,026.79 441.94

PUT

MAPE 0.0642 0.0643 0.0642 0.035

MAE 73.4 73.4 73.23 41.45

MSE 6,668.17 6,667.56 6,646.12 2,978.26

The following notation is used: NN represents the neural network model, TT corresponds

to the trinomial tree, FDM stands for finite difference method, and MC for the Monte

Carlo simulation.

network outperforms them in terms of prediction accuracy. This
is also graphically represented in Figure 5, which shows the
model performance metrics of the neural network against those
of the “best” classical model, meaning the parametric model
among the ones used in this study showing the lowest prediction
error. To illustrate, when comparing the neural network and the
“best” classical model performances the MAPE lowers by 6% in
the call case and 7.33% in the put one, the MAE by 21.58% (call)
and 0.4% (put) as well as the MSE by 64.07% (call) and 51.75%
(put). This is mainly due to the fact that themultilayer perceptron
neural network can deal with the complexity and non-linearity of
the option market and the cryptocurrency market. Indeed, price
predictions yielded in the first step by the conventional approach
are then refined into the second step by the neural network, which
focuses on lowering the errors existing between the real option
prices and the predicted ones.
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FIGURE 6 | Out-of-sample performance of neural network and “best” classical model. The figure compares the out-of-sample performance of the neural network

model (red) and “best” classical model (blue). (A–C) Illustrate the MAPE, MAE, and MSE, respectively.

FIGURE 7 | Model performance distribution (call). (A–C) Illustrate the MAPE, MAE, and MSE, respectively.

The obtained results are in accord with the existing literature
on option pricing through non-parametric methods and,
particularly, neural networks—see Hutchinson et al. (1994),
Malliaris and Salchenberger (1996), Amilon (2003), Binner et al.

(2005), and Lin and Yeh (2005). Indeed, all these studies point
to an overall predominance of neural network based models in
pricing options with respect to conventional methodologies. It
may be argued that this holds true also for particular markets
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FIGURE 8 | Model performance distribution (put). (A–C) Illustrate the MAPE, MAE, and MSE, respectively.

like the cryptocurrency one, whose particular features are well-
captured by non-parametric models, such as the neural network.

5. ROBUSTNESS ANALYSIS

With the aim of testing the robustness of our model, this
section provides an out-of-sample performance analysis
as well as a cross-validation analysis through repeated
random sub-sampling.

5.1. Out-of-Sample Performance
The out-of-sample performance is tested on the options available
on the deribit platform between 1 August 2018 and 15 August
2018. Options are selected according to the same criteria
described in section 3. The final out-of-sample dataset consists
of 29 call and 47 put option prices.

Results of the out-of-sample performance of the investigated
models are illustrated in Table 2. At a first glance, one may notice
that results linked to both absolute and relative performances
change quite consistently. This is mainly due to the different
structure of the out-of-sample dataset, in particular to the
different maturities and market expectations.

As also depicted in Figure 6, it is clear that the neural
network model proposed still outperforms the considered
parametric methods. In addition, the difference in performance
is even higher than the in-sample one. When comparing the
performance of the neural network and the “best” classical model,
theMAPE lowers by 33.41% in the call case and 45.48% in the put
one, the MAE by 32.7% (call) and 43.4% (put) as well as the MSE
by 55.23% (call) and 55.06% (put). This provides further support

to the fact that the neural network is a feasible model to price
Bitcoin options.

5.2. Cross-Validation
To further assess the robustness of our proposed model, the
approach of repeated random sub-sampling for cross-validation
purposes is adopted. In other words, the dataset is randomly
split into training and validation set for 50 times and then
the methodology and procedures described in this study are
repeated. In this way one is able to determine whether the neural
network performance achieved in the results section are stable,
as well as to evaluate the model’s relative performance after
random sub-sampling with respect to the conventional option
pricing methods.

Results linked to the random sub-sampling procedure are
illustrated through the boxplots contained in Figure 7 (call
case) and Figure 8 (put case). Overall, outcomes are satisfactory
provided that performance variability lies in ranges which are
arguably not too wide. To illustrate, the interquartile ranges for
MAPE and MAE are respectively <3% and below 10 USD in the
call case, whereas in the put case they amount to roughly 1% and
5 USD.

Furthermore, comparing the distributions of the assessment
criteria with the results in Table 1, it may be noticed that even
in the context of resampling the neural network achieves again
satisfactory results in terms of precision. Indeed, despite the
MAPE results coming from the repeated random sub-sampling
are partly worse than those of classical option pricing methods,
the absolute assessment criteria still point to a substantial
improvement when considering the neural network model rather
than the conventional option pricing methods.
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To conclude, there may be room for improvement in the
modeling strategy, as well as this needs to be adapted to the
specific case of interest. As an example, it can be argued that
the neural network performances would benefit from increasing
the number of observations and, specifically, by using high
frequency data. In addition, as the market is highly volatile
and the option market follows fast changing rules and patterns,
different choices of the neural network specifications—different
input layers, structure of the layers, activation functions, etc.,—
may result more feasible in other contexts. Nevertheless, it
may be claimed that the multilayer perceptron neural network
model proposed is suitable for pricing options written on
Bitcoin. Moreover, it may be argued that its application can be
extended to the whole cryptocurrency framework, as well as to
traditional markets.

6. CONCLUSION

This paper proposes an approach that relies on artificial neural
network models for the purpose of Bitcoin option pricing. The
methodology involves a first step in which options are priced
according to some of the most widely employed parametric
methodologies, i.e., tree models, Monte Carlo simulation, and
finite difference method. The option prices obtained in this
way are then used as input layers in a second step by the
neural network, which is capable to refine the price predictions
delivered by the parametric models in the first step. We believe

that the proposed model can be extended, without loss of
generality, to other cryptocurrency derivatives, as well as to
traditional ones.

Empirical results show that the investigated conventional
pricing methodologies yield to the conclusion that Bitcoin
options are extensively overpriced. In contrast, by applying
the proposed neural network model one is able to better
represent the real market dynamics of Bitcoin option
prices. Indeed, prediction errors consistently reduce when
comparing the neural network pricing model to the classical
parametric ones.

Further studies may benefit and improve prediction precision
by using high frequency data as well as different model
specifications. As an example, improvements could be achieved
by the use of differentmodels, such as stochastic volatilitymodels,
as input layers in the proposed neural network framework.
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