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We apply an artificial intelligence approach to simulate the impact of financial market

regulations on systemic risk—a topic vigorously discussed since the financial crash of

2007–09. Experts often disagree on the efficacy of these regulations to avert another

market collapse, such as the collateralization of interbank (counterparty) derivatives

trades to mitigate systemic risk. A limiting factor is the availability of proprietary bank

trading data. Even if this hurdle could be overcome, however, analyses would still be

hampered by segmented financial markets where banks trade under different regulatory

systems. We therefore adapt a simulation technology, combining advances in graph

theoretic models and machine learning to randomly generate entire financial systems

derived from realistic distributions of bank trading data. We then compute counterparty

credit risk under various scenarios to evaluate and predict the impact of financial

regulations at all levels—from a single trade to individual banks to systemic risk. We

find that under various stress testing scenarios collateralization reduces the costs of

resolving a financial system, yet it does not change the distribution of those costs and

can have adverse effects on individual participants in extreme situations. Moreover, the

concentration of credit risk does not necessarily correlate monotonically with systemic

risk. While the analysis focuses on counterparty credit risk, the method generalizes to

other risks and metrics in a straightforward manner.

Keywords: artificial intelligence, graph theoretic models, data science, machine learning, stochastic Linear

Gauss-Markov model, financial risk analytics, systemic risk, financial regulation

1. FRONTIERS OF ARTIFICIAL INTELLIGENCE

Predicting the next financial crisis is like forecasting the weather, a plethora of variables must
converge at just the right moment in just the right way, invariably, leading experts to arrive at wildly
conflicting prognostications. Advances in artificial intelligence (AI) methodologies have enhanced
the robustness of such predictive models by introducing schemes based on skeletonization that
extract vertices and edges from an initial graph and algorithms that prune unlikely outcomes by
sifting through hundreds of thousands of factors to match shapes to known prototypes1.

Artificial intelligence, which incorporates machine learning and data science, places data
within a context through pattern recognition and iterative learning. What is new about the
latest incarnation of the AI framework is that its draws on many disciplines, such as statistics
and computer science, but also biology, psychology, and game theory, and employs a myriad of
techniques, including:

1See Kamani et al. (2018) for an application of this technique to forecast severe climate events.

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2019.00007
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2019.00007&domain=pdf&date_stamp=2019-05-29
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:so33@columbia.edu
https://doi.org/10.3389/frai.2019.00007
https://www.frontiersin.org/articles/10.3389/frai.2019.00007/full
http://loop.frontiersin.org/people/683027/overview


O’Halloran and Nowaczyk AI and Systemic Risk

1. Rules-based systems that set parameters and conditions to
enable scenario testing;

2. Machine learning that applies algorithms to decipher patterns
and linkages in the data by continuously updating “learning”
through an iterative process;

3. Neural networks that identify interconnected nodes through
multi-layered data to derive meaning;

4. Deep learning that leverages pools of high-dimensional data
to identify patterns of patterns; and

5. Pattern recognition that uses tools, such as natural language
processing to classify and interpret data.

What does this methodology tell us about predicting financial
disasters or, even more importantly, how to avoid them? The
turmoil following the 2008 collapse of Lehman Brothers, gave
rise to a lively debate on how to regulate financial markets.
Governments have imposed a number of regulations to reduce
systemic risk or the possibility that an adverse event at a
single financial institution could trigger severe instability or
the collapse of an entire industry or economy. To mitigate
effects of cascading defaults, for instance, regulators introduced
the collateralization of derivative trades and incentivized
dealers to clear trades on centralized exchanges as opposed to
over-the-counter.

The financial crisis not only called into question the soundness
of such regulations, but also the process to evaluate the efficacy
of new regulations being put into place. Although a decade
has passed, regulators and industry participants alike failed to
arrive at a consensus on: (1) Have the regulations implemented
post-crisis reduced systemic risk? (2) How can we predict the
impact of a financial regulation before it is implemented? and
(3) How can we evaluate which regulation is best to avert
yet another “Financial Katrina?” As many governments once
again face pressure to rollback far reaching financial legislation,
it is necessary to know which regulations promote safety and
soundness of the financial system and which add undue burdens
on markets.

In this paper, we analyze credit exposures created by contracts
among financial institutions that arise when one party defaults
or fails to repay the contracted amount, or counterparty credit
risk. We develop a graph model that characterizes a financial
system as a network, similar to skeletal representations in
meteorology, where the nodes of the graph represent a bank and
the vertices represent credit relations, each with various weights.
We introduce an analytic tool that simulates a financial system
based on real case trade data. Through an iterative process, we
evaluate, predict and optimize the amount of collateralization
required to mitigate counterparty credit risk at the trade, bank
and systemic level.

The analysis shows that collateralization reduces the costs
of resolving risk in a financial system, yet it does not change
the distribution of those costs among banks and can have
adverse effects on individual participants in extreme situations.
Consistent with the work of Battiston et al. (2012a,b) we
also find that diversification is not sufficient to ward against
systemic financial failures; indeed, it may exacerbate it. The
analysis measures the impact of collateralization on counterparty
credit risk exposure in the derivatives market, but the method

generalizes to other types of risks andmetrics in a straightforward
manner. The approach developed enables regulators and industry
participants alike to conduct iterative scenario testing and
thereby provides a unique opportunity to make informed
decisions about the impact of public policy before the next
crisis strikes.

2. MODELS IN CRISIS: A NEW APPROACH

The 2008 financial crisis was the perfect storm of failures: Wall
Street, regulators, hedge funds, all played a part. Government’s
response has been to introduce a number of new regulations to
improve the safety and soundness of the banking system as well
as mitigate systemic risk. These include: capital buffers, leverage
requirements and restrictions on derivatives. This has taken place
at both domestics and global levels.

The question is, given all these regulations are we better off
now than before? In particular, is the financial system more
transparent and accountable than prior to the crisis? After all
it was the oblique, complex derivatives that exasperated the
mortgage crisis and almost brought down the international
system in the first place.

The financial industry’s response to these regulations has
been to build black box risk models developed, for the most
part, in institutional silos. The implication is that financial firms
currently conduct risk exposure analysis absent shared standard
models to use as benchmarks and validate results.

Yet, regulations require transparency and flexibility, and these
requirements cannot be met by traditional silo-ed approaches.
In response, collaborative efforts among academia, industry, and
government have formed. Even the banks have come together in
a previously unheard of data consortium, AcadiaSoft.

This reorganization has been accompanied by paradigm shifts
from proprietary, homegrown software to open source. Even in
financial risk management open source solutions, such as ORE,
see Open Source Risk Engine (2016), have emerged. This trend
has facilitated the use of AI technologies in the solution space,
including: machine learning, natural language processing, AI
and neural networks, provide powerful tools to augment risk
analysis. In addition, these technologies provide new ways of
developing models.

2.1. Open Source Risk Engine (ORE)
ORE computes the risks in a derivative portfolio from the
perspective of a single bank. Schematically, it works as follows,
see also Figure 1: It consumes trade data, market data and
some configuration files as inputs, identifies all risk factors
of the trade portfolio and performs a MonteCarlo simulation.
This allows the computation of risk analytics at portfolio,
asset class, and counterparty levels. See Lichters et al. (2015);
Open Source Risk Engine User Guide (2017).

These analytics provide a benchmark that can be shared by
regulators and industry participants to calibrate models around
risk tolerance. As the assumptions are commonly known, it
enables conversations around why and how various models
deviate from the standard benchmarks.
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FIGURE 1 | Open source risk engine (Reprinted with permission by Columbia

University Press).

2.2. A Systemic Risk Engine
One can aggregate firm specific riskmetrics produced by the ORE
into a systemic risk engine to assess the impact that regulations
have on the financial system as a whole. This requires that the
analysis takes into account not only the impact that financial
transactions have on a financial institution but also the impact
that each institution has on the system. Netting these input and
output effects provide a more realistic picture of the impact
of a regulation on the risks in the financial system. Moreover,
adopting graph modeling enables visualization, calculation
and testing of the robustness of various hypotheses under
alternative parameter assumptions. More technical details on
the technology stack used in the simulation can be found in
Anfuso et al. (2017); O’Halloran et al. (2017b).

2.3. Columbia Data Science Institute
FinTech Lab
The Columbia FinTech Lab housed in the Data Science Institute
provides an easily accessible demonstration of how these tools
can produce risk analytic measures. The Fintech Lab website,
see Columbia University Fintech Lab (2018), provides a graphic
display and interface that demonstrates how such analysis can be
conducted.

3. USE CASE: SYSTEMIC FINANCIAL RISK

ORE has been built to compute the risks in a derivatives portfolio
from the perspective of a single bank with purposes of serving
as a bank risk management system or validating such a system.
Its applications have an interesting pivot, however. Because, the
computations of those risks from the perspective of one bank
requires the above mentioned inputs, market data, trade data,
netting agreements and other simulation parameters, one can use
ORE to compute systemic risk, by running the computation from
the perspective of all banks in a system.

The results include all risks of all banks in a financial system.
As the same models are used for each bank, the resulting risk
metrics are consistent and comparable across all banks. Those
metrics can be computed under different regulatory regimes,
allowing a consistent evaluation of the impact of financial
regulation on systemic risk.

In practice, performing such a computation is difficult as
one crucial input, the trade data of all the banks in the system,
is proprietary and thus inaccessible. However, if the purpose
of such a computation is to evaluate the impact of a financial
regulation in general or to guide regulatory decision making
bodies, it is, in fact, undesirable for the outcome to depend
overly on current trade data. Trading activity in the global
financial system is significant. Millions of transactions change
the trade portfolios of the market participants every day, even
every second. Changes in financial regulation, however, happen
over a period of decades. The regulations around Initial Margin,
for instance, a direct reaction to the financial crisis in 2007–
2008, are still not fully implemented and will not be implemented
fully before the early 2020s. Given the different time scales for
changes in trade portfolios and changes in financial regulation,
it would be an undesirable feature of financial regulation if its
impact strongly depended on current trade data as this would
signal overfitting of regulation to the current market.

Ideally, financial regulation should have the desired impact
and that impact should be largely invariant under trading activity.
Consequently, the evaluation of a regulation should be largely
independent of changes in trade data. The precise trade data of
the current financial system, therefore, should not be needed to
evaluate the impact of a regulation. What is needed to study the
impact of a regulation on a financial system is simply trade data,
preferably as realistic as possible, but not necessarily the live deals
of the current dealer banks. Our approach is to use a simulation
technology. We randomly generate entire financial systems,
including trade data, and calibrate those random generators to
realistic distributions. The result is a representative sample of
possible financial systems, which is transparent and completely
accessible on all levels, from a single trade to the entire system.

3.1. Literature Review of Systemic Risk
Metrics
This simulation approach has the advantage of bridging the
gap that traditionally separates micro- and macro-prudential
regulation, see Figure 2. The micro-prudential side considers a
single bank in all its complexity and is primarily interested in
the risks this bank is exposed to as a result of the trades in its
portfolio. The metrics in which those risks are measured are
standardized and their use is enforced globally by regulators.
Examples include Value-at-Risk (VaR) to measure market risk,
Effectivized Expected Positive Exposure (EEPE) for credit risk,
Liquidity Coverage Ratio (LCR) for liquidity risk or a Basel-II
traffic light test for model risk. Even though the concrete value of
a metric like EEPE can differ between two banks that use internal
models, the regulatory framework around internal models is
designed to minimize those differences and the method, at least,
is consistent. The only drawback of the micro-prudential view is
that it considers only one bank in isolation making it difficult to
study systemic risk.

In contrast, macro-prudential regulation considers an entire
financial system with all its banks, but evaluates each and every
bank from a high level perspective only. From amacro-prudential
view, the amount of risk a bank is exposed to is of less interest
than the amount of risk a bank induces into the financial system.
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FIGURE 2 | Using artificial intelligence to close the gap between micro- and

macro-prudential regulation (Reprinted with permission by Columbia University

Press).

In particular, the question on whether or not a bank default could
result in the default of the system is of particular importance (“too
big to fail”). An excellent overview is provided by Battiston and
Martinez-Jaramillo (2018) of the relationship between micro-
prudential policies, which focus on individual exposures and
leverage and capital ratios, and macro-prudential network-
based policies.

In sharp contrast to the micro-prudential risk metrics, there
is no clear definition on what systemic risk precisely means
nor how it should be measured. In Bisias et al. (2012), the
U.S. Office for Financial Research discusses 31 different metrics
of systemic risk2. A closer look at these metrics, however,
reveals that these are not simply different mathematical functions
measuring the same quantity, but different underlying notions
of systemic financial risk. Most of these metrics focus on the
analysis of market data, such as housing prices or government
bonds and their correlations. For instance, Billio et al. (2012) use
Principal Components Analysis (PCA) and Granger Causality
to study the correlations between the returns of banks, asset
managers and insurance. Unfortunately, most of those macro-
prudential metrics are unsuited to guiding decision making
bodies or regulatory interventions—precisely because their
micro-prudential nature remains unclear (with CoVaR, which
relies on a quantile of correlated asset losses, being a notable
exception; see Adrian and Brunnermeier, 2016).

More recently, Sedunov (2016) compares the performance
of three institution-level systemic risk exposures to forecast the
financial crisis, including Exposure CoVar, Granger causality, and
Systemic Expected Shortfall. Using data from the 25 largest U.S.
banks, insurers, and brokers, the analysis shows that CoVar is
the measure that best forecasts the within-crisis performance of
financial institutions over multiple crisis periods. By contrast,
neither Granger causality nor expected shortfall metrics predict
within crisis performance. A key indicator in forecasting crisis
exposures is the size of the financial institution.

2Similarly, in a meta analysis of the literature on systemic financial risk, Silva et al.

(2017) find that from a sample of 266 articles published from 1990 to 2016, 134

articles directly addressed measures or indices of systemic risk.

3.2. AI: Bridging the Gap Between Micro-
and Macro-prudential Regulation
As Figure 2 demonstratesmicro-prudential regulation is directed
toward the safety and soundness of an individual bank. Financial
crises, however, result from the external actions of a bank,
which may or may not be correlated with its compliance with
regulatory standards. A lessons of the 2007–09 crisis is that
macro-prudential regulation focused only on the risks taken by
individual banks is insufficient to prevent crises.

An AI framework provides a way to bridge this gap.
First, synthetic data of a financial system can be derived by
sampling data from real market, portfolio and bank trades.
Second, given these inputs, simulations can be constructed to
forecast pricing and exposure trends. Computational analytics
provide models for prediction and accuracy testing of sparse,
high dimensional data. Scenario testing enables comparisons
of different policy interventions on market outcomes. Finally,
graphical visualization based on pattern recognition facilitates
classifying outcomes.

3.3. Weighted Degree Metrics
This 2-fold divergence in metrics—the gap between micro-
and macro- prudential regulation and the different notions of
systemic risk—is unfortunate from a methodological point of
view. The various notions of systemic risk are a consequence of
the fact that this is a relatively new field and that the financial
system and hence systemic risks are very complex and have many
different facets. The gap between micro- and macro-prudential
regulation has historic origins: The obvious approach of studying
the macro-prudential impact of a regulation on an entire
financial system as an aggregation of all its micro-prudential
impacts has failed in the past due to the complexities of
both levels.

In recent years there have been tremendous technological
advances in handling big and highly complex data sets. Therefore,
our approach is to use the standardized micro-prudential risk
metrics and aggregate them in a graph model of systemic risk.

The advantages of this methodology are manifold. First, of
the 266 papers reviewed by Silva et al. (2017), the analysis
shows that only 20 articles used a combination of computational,
simulation, and mathematical modeling. AI techniques enable
iterative hypothesis testing to decipher patterns and linkages in
the data, thereby providing more robust models and estimates
of systemic risk. Second, Battiston andMartinez-Jaramillo (2018)
note that existing research addresses systemic risk from either a
micro-prudential or a macro-prudential level, absent any analysis
of how link the two. By contrast, we derive a systemic risk
metric from the ground up. The total risk exposure in the
financial system is an aggregate estimate of individual firms’
credit risk exposure, thereby providing an indicator of howmuch
risk a firm generates and how much it absorbs. And third, as
documented by Silva et al. (2017), network analysis (Battiston
et al., 2012a,b), cascade models (Capponi and Chen, 2015), and
even examinations of the topological structure of inter-bank
networks (Caccioli et al., 2015) are readily adopted constructs to
evaluate contagion effects among financial institutions. Here, we
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employ the mathematics of graph models to analyze the credit
risk in financial systems.

4. GRAPH MODEL OF SYSTEMIC RISK

The trade data in a financial system is naturally organized in
an undirected trade relation graph G = (B,T): The nodes B
represent the banks and the links T represent the trade relations.
The graph is undirected because a trade relation is symmetric—
a deal is only a done deal if both sides sign it. For formal
details on graph models, see Erdős and Rényi (1959, 1960); Bales
and Johnson (2006). An example of a trade relation graph is
shown in Figure 3, where six banks (labeledA-F here) are trading
bilaterally with each other in five trade relations. Any additional
data on the trade portfolios can be attached to the links, for
instance as a list of trade ids. The details of the trades are then
stored in a database. Thismodel serves both as a representation of
a financial system and as a data format for the random generation
of financial system, c.f. section 5.2. Optionally, one can also attach
more information on the nodes in that graph, for instance a
bank’s core capital ratio.

Each trade in a trade relation imposes various types of risks (as
well as rewards) on potentially both banks and these risks can be
computed in various metrics by means of mathematical finance.
By computing a fixed set of risk metrics for all trade relations in a
trade relation graph, we obtain a risk graph that captures the risks
between all the various banks in the system, see Figure 4 for the
example. Formally, the risk graph RG = (B,A,w) is computed
out of the trade relation graph as follows: The risk graph has
the exact same nodes B as the trade relation graph, but each
undirected trade relation t ∈ T is replaced by two directed arrows
a1, a2 ∈ A representing the risks the bank at the tail induces onto
the bank on the head and vice versa as a consequence of their
trade relation. Finally, we attach a (possibly multivariate) weight
function w(a) onto the arrows a ∈ A that quantify the risks. An
example we will use later is EEPE (Effectivized Expected Positive

FIGURE 3 | Trade relations: the nodes represent the banks, the links represent

the trade relations and the labels on the links represent the trade or portfolio

IDs (Reprinted with permission by Columbia University Press).

Exposure) to measure credit risk3. Another example could be the
PFE (Potential Future Exposure) over a certain time horizon at
a fixed quantile (analogous to US stress testing). Notice that the
amount of risk that is induced by a bank b1 onto a bank b2 may
or may not be the same as the amount of risk induced from b2
onto b1 even though both are in the same trade relation. For
example, the loss an issuer of an FX optionmight suffer as a result
of the buyer defaulting is at most zero, while the buyer can in
theory suffer a unlimited losses. Notice that this use of a directed
graph to model exposures in a financial system is consistent with
(Detering et al., 2016), who use this to study default contagion.

The weight functions, that is, the risk metrics, can be
computed using ORE. The resulting data produces a weight w(a)
for each arrow a ∈ A in a risk graph. This provides a complete
picture of risk in the financial system modeled by the trade
relation graph in established micro-prudential risk metrics. We
then aggregate this data by a purely graph theoretic construction
from the arrows of the risk graph to the nodes and then further
to a systemic level as follows: For each bank b ∈ B, we compute
the weighted in/out-degree

w−(b) :=
∑

a∈A
a ends at b

w(a), w+(b) :=
∑

a∈A
a starts at b

w(a). (1)

The in-degree w−(b) represents the total amount of risk the bank
b is exposed to from the system and thus corresponds to the
micro-prudential view of b. The out-degree w+(b) represents the
total amount of risk the bank b induces into the system and
thus corresponds to the macro-prudential view of b. Therefore,
this graph theoretic construction bridges the gap between the
micro- and the macro-prudential by providing a coherent metric
of both in the same model. In the example shown in Figure 4,

FIGURE 4 | Exposures: the nodes represent the same banks as in Figure 3,

the arrows represent that risk is induced from the bank on the tail onto the

bank on the head, the weights on the arrows quantify that risk and the

percentages in the nodes represent the share of risk induced by that bank

(Reprinted with permission by Columbia University Press).

3This is a regulatory standard metric to measure exposure. Notice that the

exposure is a key ingredient in the calculation of capital requirements. Thus, a

reduction in exposure automatically causes a reduction in capital requirements.
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the in-degree of the big bank A in the middle is w−(A) = 537 +
142 + 112 + 491 = 1282 and the relevant arrows going into A
are highlighted as H⇒. The out-degree is w+(A) = 491+ 112+
142+ 537 = 1282 and the outgoing arrows are highlighted as;.

In a second step, we aggregate the risk metrics to a system
wide level by computing w(G) : =

∑
a∈A w(a) the total weight

in the system. It is instructive to express the weighted in- and
out-degree as a percentage of that total, i.e., to compute

ρ−(b) :=
w−(b)

w(G)
, ρ+(b) :=

w+(b)

w(G)
, (2)

a relative version of the weighted in/out-degree. In the example
shown in Figure 4, the total amount of risk in the system
in w(G) = 3, 836 and e.g., counterparty A has ρ+(A) =

w+(A)/w(G) = 1, 282/3, 836 = 33%. Any of the quantities

w(G), max
b∈B

w+(b), max
b∈B

ρ+(b) (3)

are (possibly Rk valued) metrics that capture the total amount of
weight in the graph and its concentration. These metrics serve as
weighted degree metrics of systemic risk.

5. COLLATERALIZATION

The financial crisis exposed vividly the credit risk component
in derivative contracts. Any two banks that enter into a
derivative contract fix the terms and conditions of the contract
at inception and both commit to payments according to the
contract until it matures. While the rules on how to compute the
payment amounts are fixed at inceptions, the payment amounts
themselves are not as they depend on future market conditions.

In particular in the interest rate derivatives market that has an
estimated total aggregated notional in the hundreds of trillions,
the maturities of these contracts can be several decades. This
exposes the two trading counterparties to each others credit
risk: A payment in 10 years would simply not happen if one of
the counterparties defaults in 9 years. As a derivative contract
with a defaulted counterparty is worth zero, a default induces a
significant shock to the value of a derivatives book of a bank.

Figure 5 shows the magnitude of the over-the-counter
derivative market. The top part of the chart displays the notional
amounts of outstanding derivatives in millions of U.S. dollars
from 1998 to 2018. The data covers all derivative types, e.g.,
currency and interest rate swaps, for all risk types and all
countries. The graph illustrates a steeply rising trend that
peaks during the financial crisis, 2007–2009. The bottom half
of the chart shows the increases and decreases in the trend
line. The onset of the liquidity crisis in the U.S. and the
sovereign debt crisis in Europe led to decreases in derivative
trading activity. The subsequent introduction of new regulatory
standards to force dealers to trade derivatives through central
counterparties (CCPs) or exchanges precipitated sharp declines
in notional amounts. By the end-June 2018, however, the notional
value outstanding had once again reached 595 trillion USD,
close to pre-crisis levels. The resumption of an upward trend
suggests that despite new regulations to push more dealers onto
central clearing platforms, banks continue to use non-standard
derivative contracts.

Figure 6 compares OTC derivative gross market values and
gross credit exposure from 1998 to 2018. The solid line shows
the gross values, which measure a bank’s total exposure to
financial markets or the investment amount at risk. Once again,
the trend peaks before the crisis and declines afterwards. This

FIGURE 5 | Notional value of over-the-counter derivatives, 1998–2017. See stats.bis.org; BIS derivatives statistics, OTC derivatives outstanding for all counterparties

and risk categories on a net-net basis.
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FIGURE 6 | Gross credit exposure and gross market values, 1998–2018. See stats.bis.org; BIS derivatives statistics, OTC derivatives outstanding for all

counterparties and risk categories on a net-net basis.

time, however, the line continues its decent. For regulators,
this indicates the success of stringent clearing and collateral
requirements. By contrast, gross credit exposures, shown on the
bottom of Figure 6 by the light blue bar chart, tell a different
story. Credit exposure is the total amount of credit made available
to a borrower by a lender and calculates the extent to which a
lender is exposed to the risk of loss in the event of the borrower’s
default. The chart shows that while market values have decreased,
credit exposures have remained unchanged. In short, the credit
risk resulting from a failure has not altered even as the total
amount of market risk has declined. Moreover, the proportion of
outstanding OTC derivatives that dealers cleared through CCPs
held steady, at around 76 percent for interest rate derivatives and
54 percent for credit default swaps (CDS)4.

These data highlight that regulatory interventions may have
unintended consequences. Adopting an AI framework—e.g.,
generating synthetic data from real bank distribution, simulating
a financial system, and conduct scenario testing by introducing
policy interventions and compare outcomes, may help avert
implementing poorly tailored policies.

For example, a standard financial regulation to mitigate credit
risk exposures is collateralization. That means that the two
counterparties exchange collateral (typically in cash or liquid
bonds) with each other during the lifetime of the trade. In a first
step, counterparties exchange variationmargin (VM) to cover the
current exposure to daily changes in the value of a derivatives
portfolio, sometimes subject to thresholds andminimum transfer
amounts. This regulation is already fully phased in. In a second

4See Bank of International Settlements, Statistical release: OTC derivatives

statistics at end- June 2018.

FIGURE 7 | A randomly generated trade relation graph (Reprinted with

permission by Columbia University Press).

step, on can post initial margin (IM) to each other to cover for the
potential exposure to close out risk after a default would occur. A
more detailed description of these regulations can be found in
(O’Halloran et al., 2017a, section 4); see also the Basel Committee
on Banking Supervision (2015); Andersen et al. (2016, 2017);
ISDA (2016); Caspers et al. (2017).

5.1. Collateralization Regimes
These collateralization regulations lead to four different
regulatory regimes:

1. All derivative trades are uncollateralized.
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2. All derivative trades are VM collateralized, but some may only
be partially collateralized due to thresholds and minimum
transfer amounts.

3. All derivative trades are fully VM collateralized.
4. All derivative trades are fully VM collateralized and also fully

IM collateralized.

For reasons of clarity, we exclude regime (2) from the present
discussion. It is obvious that collateralization mitigates the
exposure to credit risk on a micro-prudential level from the
perspective of each counterparty5. We now test the hypothesis
that collateralization also reduces systemic risk using the graph
model from section 4 and simulated financial systems.

We consider regime (1) as our baseline scenario and will
compute all relative impacts with reference to (1).

5.2. Simulation Technology
We use a systemic risk engine, see O’Halloran et al. (2017b),
to compare the collateralization regimes described above. The
engine generates trade relation graphs using the Python

libraries numpy.random and networkx and then computes
the risk metrics associated to all trades in all trade relations
using an open source risk engine, see Open Source Risk Engine
(2016). The resulting risk data is then aggregated using pandas.
This process is repeated for each of the collateralization regimes
such that their effect on the computed risk metrics can be
systematically studied.

5In the language of section 4 this means that collateralization reduces the w−(b),

i.e., the amount of risk bank is exposed to, where w is a credit risk metric (EEPE in

our case).

5.3. Synthetic Data
The first step in the generation of the data is the generation
of financial systems like Figure 3, where we want to calibrate
the distributions of our random generator to realistic data.
A statistical analysis of the macro exposures in the Brazilian
banking system carried out in Cont et al. (2013) (based on
central bank data) has shown that the degrees of the nodes in
the trade relation graph, i.e., the number of links attached to
each node, follow approximately a Pareto distribution. Therefore,
we randomly generate Pareto distributed sequences and then
compute a graph, which realizes that sequence. While the
first step is straightforward, the second is a hard problem in
discrete mathematics, which is still under active research. For the
purposes of this paper, we use the so called erased configuration
model as implemented in the Python library networkx and
described in Newman (2003). Further details can also be found
in Britton et al. (2006), Bayati et al. (2010). The resulting graphs
look like Figure 7. We can see that the Pareto distributed node
degree yields to graphs which have a few nodes with many links
representing a few big banks, and many nodes with only one
or a few links representing a large number of smaller firms in
the system.

The trades in the trade relations are interest rate swaps (fixed
vs. floating) and FX forwards in EUR and USD. Technically,
these are implemented as boilerplate ORE XMLs and the trade
parameters are chosen at random. For the FX forwards we
use uniformly distributed maturities of up to 5Y, uniformly
distributed notionals of between 100k and 100m and log-
normally distributed strikes. For the interest rate swaps we use
the same distributions for the notionals and the fixed rates are
uniformly distributed between 0.01 and 5%. A coin flip decides
whether or not a generated trade is an FX forward or an interest
rate swap and the same applies to the long/short flag.

FIGURE 8 | Total reduction of EEPE (Reprinted with permission by Columbia University Press).
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We run this simulation with parameters, which can be
summarized as follows:

• Risk Type: Counterparty Credit Risk
• Risk Metric (choice of weight function w): EEPE (Effectivized

Expected Positive Exposure)
• Asset classes: IR/FX Derivatives
• Number of financial systems: 10
• Number of banks in each system: ≤ 50
• Number of trades: 2, 360
• Number of netting sets: 1, 378
• Number of Monte Carlo paths: 500

5.4. Results
In Figure 8 we see a highly aggregated overview of the results of
the simulation. We can see that measured in average total levels
of credit risk [i.e., w(G)] measured in w = EEPE collateralization
reduces this risk. The relative reduction between regime (1),
that is the uncollateralized business, and regime (3), that is
the fully VM collateralized business, is 74% and the relative
reduction between regime (1) and (4), that is the fully VM and
IM collateralized business is even 95%. Notice that this level of
aggregation is even higher than in macro-prudential regulation
as we aggregate across multiple financial systems representing
possible future states of the world.

As all data is created during the simulation and thus
completely accessible, we can now drill down to the macro-
prudential view and study the impact of those regulations on
an example system. In Figures 9–11 we see the risk graph of
a financial system under the three regulatory regimes. The size
of the node indicates the amount of risk the bank at that
node induces into the system, that is the w−(b). We see that
collateralization significantly reduces risk in the entire system.

This optical impression can be confirmed by drilling down
further to the micro-prudential view. In Figure 12 we plot the
EEPE+(b) for every bank b in the system. We can confirm that

FIGURE 9 | Example of a financial system (uncollateralized) (Reprinted with

permission by Columbia University Press).

the impact of collateralization on every bank is qualitatively the
same as on the average, that is it reduces individual risk, but the
amount of reduction can vary among the banks. It is interesting
to note that the concentration of those risks, see Figure 13, i.e.,
the ρ+(b) stays mostly the same across the regulations and for
banks, where it does change, it is not necessarily smaller. We
conclude that collateralization has the desired effect of reducing
total levels of risk of each counterparty, but is inadequate to
address concentration risks.

We can now drill down even further than the micro-
prudential level. As a byproduct of the simulation, we obtain
exposure data of 1,378 netting sets, which we can mine to gain
insight into all the micro impacts of the various regulations.
In Figure 14 we see the distribution of relative reductions
in EEPE of the various netting sets when comparing REG_1

(uncollateralized) with REG_3 (VM collateralized). While most
of the netting sets show a significant relative reduction in

FIGURE 10 | Example of a financial system (VM collateralized) (Reprinted with

permission by Columbia University Press).

FIGURE 11 | Example of a financial system (VM & IM collateralized) (Reprinted

with permission by Columbia University Press).

Frontiers in Artificial Intelligence | www.frontiersin.org 9 May 2019 | Volume 2 | Article 7

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


O’Halloran and Nowaczyk AI and Systemic Risk

FIGURE 12 | Impact of collateralization on individual banks (EEPE+) (Reprinted with permission by Columbia University Press).

FIGURE 13 | Impact of collateralization on individual banks (ρ+) (Reprinted with permission by Columbia University Press).

exposure, we can see that some of them also show a significant
relative increase in exposure. The explanation for this is as
follows: Assume bank A has trades in a netting set with bank
B. These trades are deeply out of the money for bank A,
meaning the markets have moved into bank B’s favor. Then
the uncollateralized exposure for bank A is very low6. Under
VM collateralization however, as the trades are deeply in the
money for bank B, bank B will call bank A for variation
margin. Bank A will then pay the variation margin to bank
B, where it is exposed to the default risk of B, because B
might rehypothecate7 this variation margin. In some situations

6Due to the finite number of MonteCarlo paths, it is sometimes even numerically

zero in the simulation.
7i.e., posting margin received from one counterparty to another.

this results in higher exposure under VM collateralization than
under no collateralization. We see that on a micro level, VM
collateralization can have an adverse effect in rare cases of netting
sets, which are deeply out of the money.

Initial Margin cannot be rehypothecated and, therefore,
posted Initial Margin is not treated as being at risk8. In Figure 15

we see the relative reductions in EEPE of the various netting sets
when comparing REG_3 (VM collateralization) vs. REG_4 (VM
& IM collateralization). Here, we can see that the effect of the

8It should be highlighted that in our simulation we model the bilateral trading

between various banks, where Initial Margin is posted into segregated accounts.

Derivatives that are cleared through a central counterparty (CCP) or exchange

traded derivatives (ETDs) are not in scope of this simulation.
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FIGURE 14 | Histogram of relative reduction in EEPE over all netting sets (197 out of 1,378 have more than 150% increase and are not shown, 29 of those have

zero uncollateralized EEPE). Mean: −57.42%, SD: 38.33% (Reprinted with permission by Columbia University Press).

FIGURE 15 | Histogram of relative reduction in EEPE over all netting sets (0 out of 1,378 have more than 150% increase and are not shown, 0 of those have zero

VM collateralized EEPE). Mean: −85.78%, SD: 20.76% (Reprinted with permission by Columbia University Press).

additional IM overcollateralization unambiguously reduces the
exposure further.

When comparing REG_1 (uncollateralized) vs. REG_4 (VM
& IM collateralization) directly, we can see in Figure 16 that the
reduction in exposure is larger and distributed more narrowly
compared with just the VM collateralization, see Figure 14.
There are still some netting sets left, which show an increase
due to posted variation margin. However, this increase is smaller
than under REG_3, as it is partially mitigated by the additional
IM collateral.

It should be noted that while the increases in exposure we
see in Figures 14, 16 are large in relative terms, they are actually

quite small in absolute terms. In Figure 17 we compute the total
increases and decreases in EEPE of all the netting sets separately.

5.5. Summary
The directed weighted graph metrics provide a useful
comparative statistics to evaluate the impact of various
regulatory regimes on systemic risk. Applied to our hypothesis
testing we arrive at the following conclusions:

• Collateralization reduces systemic credit risk significantly
(measured in EEPE, i.e., the cost of resolving a failed system).
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FIGURE 16 | Histogram of relative reduction in EEPE over all netting sets (69 out of 1,378 have more than 150% increase and are not shown, 29 of those have zero

uncollateralized EEPE). Mean: −83.83%, SD: 34.44% (Reprinted with permission by Columbia University Press).

FIGURE 17 | Total increases and decreases in EEPE of all netting sets between the various regimes (Reprinted with permission by Columbia University Press).

• Collateralization does not materially change the concentration
of credit risk in a financial system.

• In corner cases (deeply out of the money portfolios), VM
collateralization can increase credit risk.

Notice that these results are an interplay of the aggregatedmacro-
exposures and a systematic analysis of all micro-exposures, which
would not be possible outside of the present framework.

6. CONCLUSION

Over the past two decades, the interconnected nature of global
financial markets has increased dramatically, exacerbating threats
to the financial system through the domino effect, the fire-sale

effect, and oversized role certain firms. Just like predicting the
weather, financial service firms are nowmore interconnected and
inherently more complex than ever before. The financial crisis
highlighted the dangers of relying too heavily on proprietary
models developed in silos. The open source paradigm introduced
provides a means to benchmark models and to have common
standards across the industry. The analytic approach adopted
merges the structural and predictive properties of graph model
and AI techniques to generate a financial system from real
distributions of bank trading data.

Our analysis advances the literature in three ways:

1. Provides a simulation environment that enables iterative
stress testing to decipher patterns and linkages in the data,
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thereby providing more robust models and estimates of
systemic risk;

2. Generates entire financial systems from a single trade to
the entire trade relation graph, resulting in a graph model
of systemic risk derived from random distributions of bank
data; and

3. Aggregates standardized micro-prudential risk exposures into
a macro-systemic risk metric that captures both the amount of
risk a firm generates and the amount it absorbs.

We will expand the substantive analysis and methodological
approach developed here in a number of directions:

Large scale simulation: The simulation performed to obtain the
results in section V-D ran on a standard desktop computer.
We plan to deploy the systemic risk engine in a cloud
environment and run a large scale simulation to achieve an
even higher statistical robustness.

Dependence on distributions of the trades: During the
random generation of the trade relations, various
distributional choices have to be made. It is interesting to
study the dependence of the results on those choices. We
expect them to be fairly stable under distributions.

Agent based creation of trade relation graphs: The current
model assumes a Pareto distribution of the trade
relations. It would be interesting to enhance the
nodes representing the banks in the graph model
with dynamic agent based rules of trading and study
under what conditions the resulting trade relations are
Pareto distributed.

Joint modeling of all major risk classes: In the present article
we study the impact of collateralization on credit risk.
However, regulation can affect all types of risk and
the metrics used to measure it. We plan to conduct a
joint analysis of market risk, credit risk, liquidity risk,
operational risk and model risk. In fact, there is significant
interplay between the various risks. Figures 5, 6 highlight a
paradox: the notional amount of OTC derivatives increased
simultaneously as market risk decreased and credit risk

remained changed. One explanation is that collateralization
may decrease market risk at the expense of increased
liquidity risk. We can test this possibility with the AI
framework detailed above9.

Initial Margin and Funding Costs: We believe that the key
to understanding the interplay between credit risk and
liquidity risk, in particular when studying the impact of
collateralization, is its effect on funding costs and other
value adjustments of derivative trades, the so called XVAs.
These quantify the price of the reduction in risk.

Derivatives Market vs. Money Market: It is to be expected that
collateralization will not only impact the derivatives market,
but also the money market. As initial margin cannot be
rehypothecated, its impact could be large. It is therefore
interesting to study the interplay between those markets,
both in case studies and simulations.

Central Clearing: The current analysis focuses on the study of
the impact of collateralization on systemic risk as this was
one of the major regulatory responses to the crisis. Another
response was the incentivization of central clearing, which
can be studied in a similar fashion. Notice that the graph
model presented in section 4 is already able to capture
the effect of this regulation: Any bilateral trade relation
of a bank A with a bank B has to be replaced by two
trade relations—one of bank A with the clearing house and
another one for bank B with the clearing house. We expect
to obtain results quantifying how much safer a clearing
house needs to be in order to reduce systemic risk compared
to bilateral trading.
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