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The growing importance of financial technology platforms, based on interconnectedness,

makes necessary the development of credit risk measurement models that properly

take contagion into account. Evaluating the predictive accuracy of these models is

achieving increasing importance to safeguard investors and maintain financial stability.

The aim of this paper is two-fold. On the one hand, we provide an application of

Poisson autoregressive stochastic processes to default data with the aim of investigating

credit contagion; on the other hand, focusing on the validation aspects, we assess

the performance of these models in terms of predictive accuracy using both the

standard metrics and a recently developed criterion, whose main advantage is being

not dependent on the type of predicted variable. This new criterion, already validated on

continuous and binary data, is extended also to the case of discrete data providing results

which are coherent to those obtained with the classical predictive accuracy measures.

To shed light on the usefulness of our approach, we apply Poisson autoregressive

models with exogenous covariates (PARX) to the quarterly count of defaulted loans

among Italian real estate and construction companies, comparing the performance of

several specifications. We find that adding a contagion component leads to a decisive

improvement in model accuracy with respect to the only autoregressive specification.

Keywords: credit risk, systemic risk, contagion, PARX models, validation measures

1. INTRODUCTION

The credit market is experiencing a large growth of innovative financial technologies (fintechs).
In particular, peer-to-peer lending platforms propose a business model that disintermediates the
links between borrowers and lenders and is based on a stronger interconnectedness between the
agents with respect to the traditional banking system. Furthermore, peer-to-peer lenders often do
not have access to individual borrowers’ data usually employed in banks’ credit scoring models,
such as financial ratios and credit bureau information. In this context, models analyzing correlation
in the default dynamics of different agents or sectors can effectively support credit risk assessment.

More generally, interconnectedness, already known as a trigger of the great financial crisis in
2008–2009, is recognized as a source of systemic risk, i.e., according to the European Central Bank,
“the risk of experiencing a strong systemic event, which adversely affects a number of systemically
important intermediaries or markets.” The impact that an event experienced by an economic agent
or sector can have on other institutions in the market is often referred to as contagion. From an
econometric viewpoint, statistical methods able to properly measure the systemic risk that arises
from interconnectedness are necessary to safeguard both traditional intermediaries and peer-to
peer lending investors, therefore maintaining financial stability.
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The first systemic risk measures have been proposed for
the financial sector, in particular by Adrian and Brunnermeier
(2016) and Acharya et al. (2012). These works consider
financial market data, calculating the estimated loss probability
distribution of a financial institution, conditional on an extreme
event in the financial market. Being applied to market prices,
these models are based on Gaussian processes.

Financial market data have also been used in another recent
approach to systemic risk, based on correlation network models,
where contagion effects are estimated from the dependence
structure among market prices. The first contributions in this
framework are Billio et al. (2012) and Diebold and Yilmaz (2014),
who derived contagion measures based on Granger-causality
tests and variance decompositions. Ahelegbey et al. (2016)
and Giudici and Spelta (2016) have extended the methodology
introducing stochastic correlation networks.

Networks represent a relevant modeling approach in peer-to-
peer platforms, where continuous credit demand and lending
activity makes available large amounts of transaction data.
Network models have been recently applied to peer-to-
peer lending platforms data by Ahelegbey et al. (2019) and
Giudici et al. (2019).

Another possible approach to analyze contagion is to build
discrete data models for the counts of default events. Including
exogenous covariates in such models allows to test whether the
failure of a given firm increases the probability that other failures
occur conditional on a set of risk factors. For example, Lando
and Nielsen (2010) model default times by Poisson processes
with macroeconomic and firm-specific covariates entering the
default intensities. Their methodology does not directly include a
contagion component, but investigates possible contagion effects
by testing whether the Poisson model is misspecified. Default
counts are also modeled by Koopman et al. (2012) and, recently,
by Azizpour et al. (2018), who use a binomial specification where
the probability of default is a time-varying function of underlying
factors, also including unobserved components.

Among the approaches to default counts modeling we focus
on PARX models developed by Agosto et al. (2016), including
autoregressive and exogenous effects in a time-varying Poisson
intensity specification. A recent extension by Agosto and Giudici
(Submitted) makes PARX models suitable to investigate default
contagion. In this paper, PARX models are applied to default
counts data in the Italian real estate sector.

Validation is a critical issue in credit risk modeling, because
of the interest in selecting indicators able to predict the default
peaks, and achieves further importance in artificial intelligence
systems, where the traditional accuracy measures based on
probabilistic assumptions cannot always be implemented.

In the specific case of contagion analysis, such as the
one presented in this paper, model selection also assumes an
explanatory role: the comparison of alternative specifications,
including contagion components or not and considering
different exogenous risk factors, provides a deeper insight into
default correlation.

In our empirical application we validate the models applied
to default counts using several measures, including the Rank
Graduation index RG, recently developed by Giudici and

Raffinetti (Submitted). In Giudici and Raffinetti (Submitted),
the purpose was to propose an index that is objective and not
endogenous to the system itself. The Rank Graduation index
(RG) was originally developed to deal with two real machine
learning applications characterized, respectively, by a binary and
a continuous response variable. It is based on the calculation
of the cumulative values of the response variable, re-ordered
according to the ranks of the values predicted by the considered
model. Giudici and Raffinetti (Submitted) showed that the RG
metric is more effective than the AUROC (typically used for
models with binary response variables) and the RMSE (typically
used for models with continuous response variables). Specifically,
in the binary case, it appears as an objective predictive accuracy
diagnostic, since built on re-ordering the response variable
values according to the predicted values themselves, and, in the
continuous case, it is not affected by the presence of outliers.
Here, the application of the Rank Graduation index is extended
to the case of default count data and the related results are
compared to those obtained with traditional measures, such
as the likelihood-based criteria and RMSE. Given its attractive
features and properties, both regulators and supervisors may
be interested in the RG employment in artificial intelligence
applications, in order to better understand and manage the
business models and avoid decisions based upon wrong outputs
which may lead to losses or reputational risks.

The paper is organized as follows. Section 2 describes PARX
models and how they can be used to study the default count
dynamics and investigate possible contagion effects. Section 3
provides an overview of the main validation criteria and the
basic elements characterizing the Rank Graduation measure.
Section 4 presents the empirical findings derived from the
application and validation of PARX models for default counts.
Section 5 concludes.

2. PARX MODELS

The approach to default counts modeling applied in this work
is based on PARX models (Agosto et al., 2016). PARX models
assume that a count time series yt , conditional on its past,
follows a Poisson distribution with a time-varying intensity
λt > 0, whose formulation includes an autoregressive part
and a d-dimensional vector of exogenous covariates xt : =

(x1t , x2t , ..., xdt)
′ ∈ R

d:

yt|Ft−1 ∼ Poisson (λt) ⇔ P
(

yt = y|Ft−1

)

=
λ
y
t exp (−λt)

y!
(1)

λt = ω +

p
∑

i=1

αiyt−i +

q
∑

i=1

βiλt−i +

d
∑

i=1

γif (xi)

with Ft−1 denoting the σ -field
σ

{

y0, ..., yt−1, λ0, ..., λt−1, x0, ..., xt−1

}

, ω > 0, αi ≥ 0
(i = 1, 2, ..., p) and βi ≥ 0 (i = 1, 2, ..., q).

When the vector of unknown parameters γ : = (γ1, ..., γd)
is null, the model reduces to Poisson Autoregression (PAR)
developed by Fokianos et al. (2009), who showed how including
past values of the intensity λt allows for parsimonious modeling
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of long memory effects. Note that exogenous covariates are
included through a non-negative link function to guarantee that
intensity is positive.
The presence of both dynamic and exogenous effects makes
PARX models suitable for describing count time series of events
that cluster in time, as defaults are known to do. Furthermore,
it can be shown that including an autoregressive component as
well as covariates in a Poisson process generates overdispersion,
that is unconditional variance larger than the mean, a typical
feature of default count time series.
Agosto et al. (2016) applied model (1) to Moody’s rated US
corporate default counts, with the aim of distinguishing between
the impact of past defaults on current default intensity—possibly
due to contagion effects—and the impact of macroeconomic
and financial variables acting as common risk factors. Recently,
Agosto and Giudici (Submitted) proposed to extend PARX
models to accomplish investigation of default contagion
effects. Differently from model (1) and following Fokianos and
Tjøstheim (2011), they use a log-linear intensity specification.
This allows to consider negative dependence on exogenous
covariates, which can be useful in credit risk applications.

Letting yjt the number of defaults in economic sector (or, more
generally, group of borrowers) j at time t and ykt the number of
defaults in sector k, they define the following model:

yjt|Ft−1 ∼ Poisson(λjt) (2)

log(λjt) = ωj +

p
∑

i=1

αji log(1+ yjt−i)+

q
∑

i=1

βji log(λjt−i)

+

r
∑

i=1

γjixt−i +

s
∑

i=1

ζji log(1+ ykt−i)

with ωj,αji,βji, γji, ζji ∈ R and xt−i : = (x1t−i, x2t−i, ..., xdt−i)
′ ∈

R
d being a vector of lagged exogenous covariates. In model (2),

that the authors call Contagion PARX, ζj measures the effect
of the covariate default count process on the response default
counts, which can be interpreted as a contagion effect. Taking the
log(·)+ 1 of counts allows to deal with possible zero values. This
specification can easily be extended to the case where the default
counts of a set of different sectors, rather than only one covariate
default series, are included among the regressors.

3. MODEL VALIDATION

A basic issue of the artificial intelligence systems is the validation
process for themodel prediction quality assessment. In this paper,
we consider the available literature for validation procedures and
illustrate a new practice for the validation.

In literature, several metrics aimed at comparing and
improving the models are available, depending on the nature of
data. As mentioned above, one of the focus of this paper is on
the use of the Poisson autoregressive models for modeling default
counts. The presence of a discrete response variable suggests
the choice of the Root Mean Squared Error (RMSE) and the
criteria based on likelihood, such as the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC), as

the most widely employed measures for the model predictive
accuracy evaluation.

It is worth noting that in the model validation research field,
the lack of a standard metric, working regardless of the nature of
the response variable to be predicted, is still a crucial drawback
to be faced. Recently, Giudici and Raffinetti (Submitted) have
worked out one possible solution by proposing a new measure,
the RG Rank Graduation index, which is based on the calculation
of the cumulative values of the response variable, according to
the ranks of the values predicted by a given model. The main
features of the RG criterion together with a brief description
of the conventional validation measures are provided in the
following subsections.

3.1. Conventional Model Validation
Measures
The RMSE, AIC, and BIC criteria, intended as some of the
most broadly used metrics for the model validation, are defined
as follows:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(ŷi − yi)2, (3)

where the yi’s and ŷi’s represent the response variable observed
and predicted values (with i = 1, . . . , n), respectively,

AIC = −2logL(θ̂ |x1, . . . , xn)+ 2k (4)

and

BIC = −2logL(θ̂ |x1, . . . , xn)+ klog(n), (5)

where θ is the set of model parameters, logL(θ̂ |x1, . . . , xn) is
the log-likelihood of the model given the data x1, . . . , xn when
evaluated at the maximum log-likelihood estimate of θ (θ̂), k is
the number of the estimated parameters in the model and n is the
number of observations.

The best model, in terms of predictive accuracy, is the one that
provides theminimumRMSE, AIC and BIC (for more details, see
e.g., Kuha, 2004; Hyndman and Koehler, 2006).

3.2. The RG as an Additional Model
Validation Criterion
Besides the conventional model validation criteria, the RG
measure deserves a wider discussion, especially because it appears
as a more general predictive accuracy criterion which does not
depend on the type of data to be analysed. As mentioned above,
in Giudici and Raffinetti (Submitted), the RG was proposed as a
unique metric to assess the model predictive accuracy in presence
of both binary and continuous response variables. Moreover,
due to its features and construction it fulfills some attractive
properties: (1) it appears as an objective criterion compared with
the AUROCmetric, which depends on the arbitrary choice of the
cut-off points; (2) it is a robust criterion since non-sensitive to
the presence of outliers. Given the topic of this paper, related
to the employment of discrete data models for default counts, it
is therefore worth to extend the frontiers of the RG application
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areas to the context of discrete response variables.
The interest in applying the RG index to default count data

is also linked to some typical features shown by the time series
of defaults. The common presence of peaks and outliers makes
indeed preferable to evaluate predictive accuracy of default
count models through concordance measures rather than error
measures that are known to be sensitive to outliers.

In order to better highlight the main strengths of our
validation approach, a brief overview on the RG construction
seems to be basic. The proposal is based on the so-called C
concordance curve, which is obtained by ordering the normalized
Y response variable observed values according to the ranks of the
predicted Ŷ values provided by the model.

Let Y be a discrete response variable and let X1, . . . ,Xp be
a set of p explanatory variables. Suppose to apply a model
such that ŷ = f (X). The model predictive accuracy is
assessed by measuring the distance between the set of the C
concordance curve points, whose coordinates are denoted with
(i/n, (1/(nȳ))

∑i
j=1 yr̂j ), where ȳ = 1

n

∑n
i=1 yi and yr̂j represents

the j-th response variable value ordered by the rank of the
corresponding predicted value ŷj (with j = 1, . . . , i and i =

1, . . . , n), and the set of the bisector curve points of coordinates
(i/n, i/n). As an example, the graphical representation of the
C concordance (in red) and bisector (in black) curves is
displayed in Figure 1. Figure 1 reports also two other curves:
the response variable LY Lorenz curve (in blue), which is
defined by the normalized Y values ordered in non-decreasing
sense, and the response variable L′Y dual Lorenz curve (in
green), which is defined by the normalized Y values ordered in
non-increasing sense.

Both the response variable Lorenz and dual Lorenz curves
take a remarkable role in the RGmeasure construction, especially
the response variable LY Lorenz curve. Indeed, since the
model predictive accuracy degree depends on the distance
between the bisector and the C concordance curves, it follows
that the more the C concordance curve moves away from
the bisector curve, the more the model predictive accuracy
improves. This because the bisector curve detects a model
without predictive capability. Indeed, if ŷi = ȳ, for any
i = 1, . . . , n, through some manipulations, the coordinates of
the C concordance curve becomes (i/n, i/n), which perfectly
corresponds to the coordinates of points characterizing the
bisector curve. Analogously, if the C concordance curve perfectly
overlaps with the LY Lorenz curve, then the model is perfect
because it preserves the ordering between the observed response
variable Y values and the corresponding Ŷ estimated values.
In such a case, the coordinates of the C concordance curve
become (i/n, (1/(nȳ))

∑i
j=1 y(j)), where y(j)’s, with j = 1, . . . , i

and i = 1, . . . , n, are the response variable values ordered in
non-decreasing sense.

Based on the above considerations, the RG measure takes the
following expression:

RG =

n
∑

i=1

{

(1/(nȳ))
∑i

j=1 yr̂j − i/n

}2

i/n
=

n
∑

i=1

{

C(yr̂i )− i/n
}2

i/n
,

(6)

FIGURE 1 | The LY (blue) Lorenz curve, dual L′Y (green) Lorenz curve, and

the C (red) concordance curve.

where C(yr̂j) =

∑i
j=1 yr̂j

∑n
i=1 yi

represents the cumulative values of

the (normalized) response variable Y . The RG measure in (6)
appears as an absolute metric, since it takes values in the close
range [0,RGmax], where RGmax is the maximum value that can
be achieved. Trivially, the maximum RG value can be reached if
the model perfectly explains the response variable, meaning that
the C concordance curve indifferently overlaps with the response
variable Lorenz or dual Lorenz curves. Indeed, the distance
between the Y Lorenz or dual Lorenz curves and the bisector
curve is the same, being the two curves symmetric around the
bisector curve. A normalized RG measure is then defined as
the ratio between the absolute RG measure ad its maximum
value RGmax.

Finally, we remark that when some of the Ŷ values are equal
to each other, we take into account the adjustment suggested by
Ferrari and Raffinetti (2015) in order to solve the re-ordering
problem. Specifically, the original Y values associated with the
equal Ŷ values are substituted by their mean.

4. APPLICATION

In this section we provide the application of PARX models to
Italian corporate default counts data in the real estate sector and
their evaluation through different validation measures. Bank of
Italy’s Credit Register collects the quarterly number of transitions
to bad loans in major economic sectors. Bad loans are exposures
to insolvent debtors that cannot be recovered and that the bank
must report as balance sheet losses. Being an absorbent state,
the number of loans turned out to be bad in a given period
can be used as a proxy of the default count at that time. The
data are quarterly and divided by economic sector. Among the
sectors included in the database we focus on the Real Estate
and Commercial ones, using data covering the period March
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FIGURE 2 | Default count time series of real estate and commercial corporate

sectors (logarithmic scale): Italian data.

TABLE 1 | Summary statistics for the real estate sector default counts: Italian data.

Mean Std. Dev. Min Max

1132.9 711.7 368 2825

1996–June 2018 (90 observations). The real estate sector includes
both real estate and construction companies and was one of the
most hit by the recent financial crisis. Our choice is motivated
by the economic interest in verifying the impact that the default
dynamics of commercial firms, highly influenced by the changes
in consumption behavior, may have on the real estate sector.
Possible contagion from the commercial to the real estate sector
is mainly due to the decrease of both business and private
investments by the owners of commercial activities, causing a
reduction in the demand of new buildings and real estate services.

Figure 2 shows the default count time series of the two
economic sectors considered. Both series exhibit clustering
and a possible structural break in 2009, with an increase in
both level and variability. Table 1 reports the main summary
statistics for the response variable of our exercise, that is the
default counts among real estate Italian firms, while Figure 3

shows the autocorrelation function of the series. Both the
presence of overdispersion (the empirical variance is 506468.7
and the empirical average 1132.9) and the slowly decaying
autocorrelation encourage the use of PARX to model the data.

To investigate credit contagion effects between the two sectors
and show our validation procedure, we consider the model
regressing real estate sector default counts on their past values
and on past commercial sector default counts.

An important robustness and validation step when applying
PARX models is assessing the effects of including exogenous
covariates summarizing the macroeconomic context, such as
the business cycle. The aim is to verify to what extent the
macroeconomic stress affecting all the economic agents and
sectors explains the default and contagion dynamics.

FIGURE 3 | Sample autocorrelation function of real estate default count time

series: Italian data.

TABLE 2 | Parameter estimates for real estate sector default counts.

Variable Estimate Standard error t-stat

Constant −0.1339 0.3285 0.4075

Real estate sector bad loans in t-1 0.6062 0.1591 3.8103***

Commercial sector bad loans in t-1 −0.2886 0.2689 −1.0732

Commercial sector bad loans in t-2 0.7161 0.1299 5.5129***

GDP growth rate in t-1 −0.0341 0.0284 −1.2009

GDP growth rate in t-2 −0.0705 0.0274 −2.5732**

***p < 0.001; **p < 0.01.

Thus, we first estimate a model (Full Contagion PARX)
that, according to specification (2), includes both a contagion
component and the exogenous covariate GDP in a log-linear
intensity specification1:

log(λt) = ω +α log(1+ yt−1)+ γ1GDPt−1 + γ2GDPt−2

+ζ1 log(1+ yCt−1)+ ζ2 log(1+ yCt−2) (7)

whereGDPt is the Italian GDP growth rate and yCt is the number
of defaults among commercial sector companies at time t.

FromTable 2, reporting the parameter estimates for themodel
above, note that the effect of GDP variation on the real estate
sector default risk is significant at the second lag, suggesting a
delayed effect of the business cycle on the corporate solvency
dynamics which is reasonable from an economic point of view.
Also the impact of commercial sector default counts turns out to
be significant with a two quarters lag.

In order to highlight the contribution of the
different components—autoregressive, contagion, and
exogenous—and validate the model we then consider two
alternative specifications.

1The number of lags has been determined through preliminary model selection

based on likelihood ratio and BIC criterion.
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TABLE 3 | Validation measures for the considered models.

Model RMSE AIC BIC RG

Full contagion PARX model 207.68 −1,256,019 −1,256,004 6.098

Contagion PARX model 222.02 −1,255,643 −1,255,633 6.114

PAR model 272.06 −1,254,332 −1,254,327 5.796

We first estimate a PARX model that, following specification
(1), includes an autoregressive and an exogenous component in a
linear intensity specification:

λt = ω + αyt−1 + γ1GDP
−
t−1 + γ2GDP

−
t−2 (8)

where GDP− : = IGDP<0|GDP|, that is the absolute value
of the negative part of GDP growth rate. This ensures that
default intensity is positive, as needed in the linear specification.
Fitting the model above, we do not find significant effects
of GDP decrease on the real estate sector. Thus, the model
reduces to an only autoregressive Poissonmodel as the previously
cited PAR. According to this result, while negative correlation
with the business cycle taken into account by the log-linear
model significantly explains the default dynamics, the positive
association between the GDP decrease and the default counts is
not significant in our exercise. This highlights the advantage of
using specifications that allow to consider negative dependence.

The last competing model is a Contagion PARX without other
covariates than commercial sector default counts [γ parameters
equal to 0 in specification (2)]:

log(λt) = ω+αyt−1+ ζ1 log(1+ yCt−1)+ ζ2 log(1+ yCt−2) (9)

We now compare the in-sample performances of the three
models above: PAR model, Contagion PARX model, and Full
Contagion PARX model by using the RMSE, AIC, BIC and RG
validation measures. The results are illustrated in Table 3.

First note that the Full Contagion PARX model is the
most performing according to RMSE, AIC, and BIC criteria.
In particular, moving from the PAR to the Contagion PARX
specification leads to a decrease of nearly 24% in the RMSE. The
model ordering changes when considering the RG index. The
model showing the higher RG index is indeed the Contagion
PARX one, with a value of 6.114. The Full Contagion PARX
model shows a slightly lower value (6.098), while the RG index
of the PAR model is 5.796. As RGmax = 6.709, it follows that the
PARmodel explains the 86.4% of the variable ordering, compared
with the 90.9% of the Full Contagion PARXModel and the 91.1%
of the Contagion PARXModel.

According to all the considered measures, adding the
contagion component leads to a decisive increase in model
performance with respect to the only autoregressive specification,

with a decrease of 18% in RMSE and an increase of nearly
3.5% in accuracy. Considering the negative association between
the macroeconomic stress and default risk considerably reduces
the error measure—the decrease in RMSE with respect to the
Contagion PARX model is around 7% - but does not improve
model performance in terms of accuracy, measured through the
RG index. In such a case, the choice of the preferable specification
depends on the objective of model comparison. If the aim,
as in our contagion analysis, is validating a model that well
explains the empirical distribution of the data even with a limited
number of parameters, rather than getting a point forecast of the
response variable, decisions based on a concordance measure are
more appropriate.

5. CONCLUSION

In this paper, we have illustrated an application of PARX models,
which investigate contagion through Poisson autoregressive
stochastic processes, and we have evaluated the predictive
accuracy of different specifications. While previous works
focused on the theory development and extension of PARX,
we concentrate on the issue of validating these models
and measuring the contribution of contagion and exogenous
components to their predictive performance. For doing so, we
resorted to a novel metric, called RG index, which is independent
on the involved response variable nature. Specifically, the RG
measure, originally considered in the cases of binary and
continuous data, was here extended with the aim of covering also
the case of discrete data.

Fitting several PARX-type specification to the quarterly count
of defaulted loans in the Italian real estate sector, we find
evidence of a significant effect of commercial sector defaults on
real estate default risk. We also find that considering the effect
of the business cycle improves model performance according
to likelihood-based criteria and traditional error measures, but
it does not increase predictive accuracy according to the new
concordance metric.
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