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The goal of this paper is to provide a complete representation of regional linguistic

variation on a global scale. To this end, the paper focuses on removing three constraints

that have previously limited work within dialectology/dialectometry. First, rather than

assuming a fixed and incomplete set of variants, we use Computational Construction

Grammar to provide a replicable and falsifiable set of syntactic features. Second, rather

than assuming a specific area of interest, we use global language mapping based

on web-crawled and social media datasets to determine the selection of national

varieties. Third, rather than looking at a single language in isolation, we model seven

major languages together using the same methods: Arabic, English, French, German,

Portuguese, Russian, and Spanish. Results show that models for each language are able

to robustly predict the region-of-origin of held-out samples better using Construction

Grammars than using simpler syntactic features. These global-scale experiments are

used to argue that new methods in computational sociolinguistics are able to provide

more generalized models of regional variation that are essential for understanding

language variation and change at scale.

Keywords: dialectology, dialectometry, construction grammar, syntactic variation, text classification, language

mapping, dialect mapping, computational sociolinguistics

1. INTRODUCTION

This paper shows that computational models of syntactic variation provide precise and robust
representations of national varieties that overcome the limitations of traditional survey-based
methods. A computational approach to variation allows us to systematically approach three
important problems: First, what set of variants do we consider? Second, what set of national dialects
or varieties do we consider? Third, what set of languages do we consider? These three questions
are usually answered in reference to the convenience or interests of the research project at hand.
From that perspective, the goal of this paper is global, multi-lingual, whole-grammar syntactic
dialectometry. Previous work has performed whole-grammar dialectometry with Construction
Grammars, first using a pre-defined inventory of national varieties (Dunn, 2018a) and then using
data-driven language mapping to select the inventory of national varieties (Dunn, 2019b). This
paper further extends computational dialectometry by studying seven languages across both web-
crawled and social media corpora. The paper shows that a classification-based approach to syntactic
variation produces models that (i) are able to make accurate predictions about the region-of-origin
of held-out samples, (ii) are able to characterize the aggregate syntactic similarity between varieties,
and (iii) are able to measure the uniqueness of varieties as an empirical correlate for qualitative
notions like inner-circle vs. outer-circle.
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What features do we use for dialectometry? Most previous
work relies on phonetic or phonological features (Kretzschmar,
1992, 1996; Heeringa, 2004; Labov et al., 2005; Nerbonne,
2006, 2009; Grieve et al., 2011, 2013; Wieling and Nerbonne,
2011, 2015; Grieve, 2013; Nerbonne and Kretzschmar, 2013;
Kretzschmar et al., 2014; Kruger and van Rooy, 2018) for
the simple reason that phonetic representations are relatively
straight-forward: a vowel is a vowel and the measurements
are the same across varieties and languages. Previous work on
syntactic variation has focused on either (i) an incomplete set of
language-specific variants, ranging from only a few features to
hundreds (Sanders, 2007, 2010; Szmrecsanyi, 2009, 2013, 2014;
Grieve, 2011, 2012, 2016; Collins, 2012; Schilk and Schaub,
2016; Szmrecsanyi et al., 2016; Calle-Martin and Romero-
Barranco, 2017; Grafmiller and Szmrecsanyi, 2018; Tamaredo,
2018) or (ii) language-independent representations such as
function words (Argamon and Koppel, 2013) or sequences
of part-of-speech labels (Hirst and Feiguina, 2007; Kroon
et al., 2018). This forces a choice between either an ad hoc
and incomplete syntactic representation or a reproducible but
indirect syntactic representation.

This previous work on syntactic dialectometry has depended
on the idea that a grammar is an inventory of specific structures:
the double-object construction vs. the prepositional dative, for
example. Under this view, there is no language-independent
feature set for syntax in the way that there is for phonetics. But we
can also view syntax from the perspective of a discovery-device
grammar (Chomsky, 1957; Goldsmith, 2015): in this case, our
theory of grammar is not a specific description of a language like
English but rather a function for mapping between observations
of English and a lower-level grammatical description of English:
G = D(CORPUS). Thus, a discovery-device grammar (G) is
an abstraction that represents what the grammatical description
would be if we applied the learner (D) to a specific sample of
the language (CORPUS). A discovery-device grammar allows us
to generalize syntactic dialectometry: we are looking for a model
of syntactic variation, V , such that when applied to a grammar,
V(G), the model is able to predict regional variation in the
grammar. But G is different for each language, so we generalize
this to V(D(CORPUS)). In other words, we use an independent
corpus for each language as input to a discovery-device grammar
and then use the resulting grammar as a feature space for
performing dialectometry. This approach, then, produces an
inventory of syntactic features for each language in a reproducible
manner in order to replace hand-crafted syntactic features. The
specifics of the datasets used for modeling regional variation are
described in section 2.1 and the discovery-device grammar used
to create reproducible feature sets is described in section 2.2.

What type of model should we use to represent global
syntactic variation? Previous work has relied largely on
unsupervised methods like clustering (Wieling and Nerbonne,
2011), factor analysis of spatial autocorrelation scores (Grieve,
2013), and individual differences scaling as an extension of
multidimensional scaling (Ruette and Speelman, 2014). These
models attempt to aggregate individual variants into larger
bundles of features: which individual features represent robust
aggregate isoglosses with a similar geographic extent? The

problem is that it is difficult to evaluate the predictions of one
such bundle against another. While useful for visualizations,
these models are difficult to evaluate against ground-truths.
Another strand of work models the importance of predictor
variables on the use of a particular variant, with geographic
region as one possible predictor (Szmrecsanyi et al., 2016). These
models are based on multivariate work in sociolinguistics that
attempts to find which linguistic, social, or geographic features
are most predictive of a particular variant.

While useful for understanding individual variants, however,
these models are unable to handle the aggregation of variants
directly. For example, although it is possible to create a distance
matrix between regions for each individual feature and then to
aggregate these matrices, the resulting aggregations are subject
to variability: What is the best aggregation method? If two
methods provide different maps, which should we prefer? How
stable are aggregations across folds? On the one hand, we want
dialectometry to establish a ground-truth about the regional
distribution of variants and dialects. But, on the other hand,
because unsupervised methods like clustering are subject to such
potential variability, we also need a ground-truth to evaluate
which aggregation method is the most accurate.

One solution to this problem is to take a classification
approach, in which the ground-truth is the region-of-origin
for individual samples. Given a model of dialectal variation,
how accurately can that model predict the region-of-origin of
new samples? For example, the idea is that a more complete
description of the syntactic differences between Australian
English and New Zealand English will be able to predict more
accurately whether a new sample comes from Australia or
New Zealand. This prediction task provides a ground-truth
for aggregation. But it comes with two important caveats:
First, a high prediction accuracy does not guarantee that the
model captures all relevant variation, only that it captures
enough variation to distinguish between national varieties. This
can be mitigated, however, by using cross-fold validation and
unmasking as shown in section 3.2. Second, while most work in
dialectometry tries to establish geographic boundaries, this work
assumes geographic boundaries (i.e., polygons of nation-states).

What languages and regions need to be represented in
dialectometry? Because of coloniziation and globalization
(Kachru, 1990), a few languages like English are now used
around the world by diverse national communities. Even though
these international languages have global speech communities,
dialectology and sociolinguistics continue to focus largely on
sub-national dialects, often within so-called inner-circle varieties
(Kachru, 1982). This paper joins recent work in taking a global
approach by using geo-referenced texts (Goldhahn et al., 2012;
Davies and Fuchs, 2015; Donoso and Sanchez, 2017) to represent
national varieties (Szmrecsanyi et al., 2016; Calle-Martin and
Romero-Barranco, 2017; Cook and Brinton, 2017; Rangel et al.,
2017; Dunn, 2018a, 2019b; Tamaredo, 2018). The basic point is
that in order to represent regional variation as a complete system,
dialectometry must take a global perspective. This paper uses
data-driven language mapping to choose (i) which international
languages are used widely enough to justify inclusion and (ii)
which languages in which countries need to be included as
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TABLE 1 | Size of geo-referenced corpora in words by region.

Region Countries Population (%) Web (%) Twitter (%)

Africa, North 9 250 mil 3.4% 123.85 mil 0.7% 85.55 mil 2.1%

Africa, Southern 4 75 mil 1.0% 59.07 mil 0.4% 87.34 mil 2.1%

Africa, Sub-Saharan 73 742 mil 10.1% 424.75 mil 2.6% 254.20 mil 6.1%

America, Brazil 1 206 mil 2.8% 218.11 mil 1.3% 118.13 mil 2.9%

America, Central 25 214 mil 2.9% 886.61 mil 5.3% 383.81 mil 9.3%

America, North 2 355 mil 4.8% 236.59 mil 1.4% 350.12 mil 8.5%

America, South 11 210 mil 2.9% 1,163.00 mil 7.0% 402.15 mil 9.7%

Asia, Central 10 198 mil 2.7% 965.09 mil 5.8% 102.79 mil 2.5%

Asia, East 8 1,635 mil 22.3% 2,201.86 mil 13.2% 95.70 mil 2.3%

Asia, South 7 1,709 mil 23.3% 448.23 mil 2.7% 331.19 mil 8.0%

Asia, Southeast 22 615 mil 8.4% 2,011.06 mil 12.1% 245.18 mil 5.9%

Europe, East 17 176 mil 2.4% 4,553.10 mil 27.4% 322.46 mil 7.8%

Europe, Russia 1 144 mil 2.0% 101.44 mil 0.6% 105.04 mil 2.5%

Europe, West 25 421 mil 5.7% 2,422.85 mil 14.6% 823.80 mil 19.9%

Middle East 15 334 mil 4.5% 660.73 mil 4.0% 222.98 mil 5.4%

Oceania 8 59 mil 1.0% 164.02 mil 1.0% 213.06 mil 5.1%

Total 199 7.35 bil 100% 16.65 bil 100% 4.14 bil 100%

national varieties. We use geo-referenced corpora drawn from
web pages and social media for both tasks. Seven languages
are selected for dialectometry experiments: Arabic, English,
French, German, Portuguese, Russian, and Spanish. These seven
languages account for 59.25% of the web-crawled corpus and
74.67% of the social media corpus. The corpora are regionalized
to countries. Thus, the assumption is that any country which
frequently produces data in a language has a national variety of
that language. For example, whether or not there is a distinct
variety of New Zealand English depends entirely on how much
English data is observed from New Zealand in these datasets.
The models then have the task of determining how distinct New
Zealand English is from other national varieties of English.

First, we consider the selection of (i) languages and (ii)
national varieties of languages (section 2.1) as well as the selection
of a syntactic feature space (section 2.2). We then present the
specifics of the experimental framework (section 2.3). Second,
we compare prediction accuracies by language and feature set
(section 3.1), in order to measure the quality of the models.
Next, we evaluate the robustness of the models across rounds of
feature pruning and the similarity of the models across registers
in order to examine potential confounds (section 3.2). Having
validated the models themselves, the next section examines
regional accuracies and the similarities between national varieties
(section 3.3). Finally, we develop measures for the syntactic
uniqueness of each regional variety (section 3.4) and search
for empirical correlates of concepts like inner-circle and outer-
circle within this corpus-based approach (section 3.5). Third,
we discuss two important issues: the application of different
categorizations like inner-circle vs. outer-circle or native vs.

non-native to these datasets (section 4.1) and the implications of
a computational approach to dialectometry for sociolinguistics
more broadly (section 4.2).

2. MATERIALS AND METHODS

2.1. Language Mapping and Dialectometry
We begin with data-driven language mapping: First, what
languages have enough national varieties to justify modeling?
Second, which national varieties should be included for each
language? Third, which datasets can be used to represent specific
national varieties and how well do these datasets represent the
underlying populations? This paper depends on geo-referenced
corpora: text datasets with meta-data that ties each document
to a specific place. The size of both datasets by region is shown
in Table 1, together with ground-truth population data from the
UN (United Nations, 2017). The size of each region relative
to the entire dataset is also shown: for example, 14.6% of the
web corpus comes from Western Europe which accounts for
only 5.7% of the global population. This comparison reveals the
over-representation and under-representation of each region.

Data comes from two sources of digital texts: web pages
from the Common Crawl1 and social media from Twitter2. The
Common Crawl data represents a large snapshot of the internet;
although we cannot direct the crawling procedures, we are able
to process the archived web pages from the perspective of a
geo-referenced corpus. The author of each individual web page

1http://www.commoncrawl.org
2http://www.twitter.com
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FIGURE 1 | Cities for Collection of Twitter Data (50 km radius from each).

may be unknowable but we can use country-specific top-level
domains for country-level geo-referencing: for example, web
pages under the .nz domain are from New Zealand. Previous
work has shown that there is a relationship between domain-
level geo-referenced web pages and national varieties (Cook and
Brinton, 2017). Some countries are not available because their
top-level domains are used for other purposes (i.e., .ai, .fm, .io, .ly,
.ag, .tv). Domains that do not contain geographic information are
also removed from consideration (e.g., .com sites). The Common
Crawl dataset covers 2014 through the end of 2017, totalling
81.5 billion web pages. As shown in Table 1, after processing
this produces a corpus of 16.65 billion words. This dataset
represents 166 out of 199 total countries considered in this
paper. Some countries do not use their country-level domains
as extensively as others: in other words, .us does not account
for the same proportion of web pages from the United States
as .nz does from New Zealand. It is possible that this skews
the representation of particular areas. Thus, Table 1 shows the
UN-estimated population for each region as reference. The web
corpus is available for download3 as is the code used to create
the corpus4.

In isolation, web-crawled data provides one observation of
global language use. Another common source of data used for
this purpose is Twitter [e.g., (Eisenstein et al., 2010, 2014; Roller
et al., 2012; Kondor et al., 2013; Mocanu et al., 2013; Graham
et al., 2014; Donoso and Sanchez, 2017)]. The shared task at
PAN-17, for example, used Twitter data to represent national
varieties of several languages (Rangel et al., 2017). A spatial search
is used to collect Tweets from within a 50 km radius of 10 k
cities5. This city-based search avoids biasing the selection by

3https://labbcat.canterbury.ac.nz/download/?jonathandunn/CGLU_v3
4https://github.com/jonathandunn/common_crawl_corpus
5https://github.com/datasets/world-cities

using language-specific keywords or hashtags. A map of each
city used for collection is shown in Figure 1; while this approach
avoids a language-bias, it could under-represent rural areas given
the 50 km radius of each collection area. The Twitter data covers
the period from May of 2017 until early 2019, drawn from
the Twitter API using a spatial query. This creates a corpus
containing 1,066,038,000 Tweets. The language identification
component, however, only provides reliable predictions for
samples containing at least 50 characters (c.f., the language id
code6 and the models used7). Thus, the corpus is pruned to
include only Tweets above that length threshold. As shown in
Table 1, this produces a corpus containing 4.14 billion words.
While the Common Crawl corpus represents 166 countries, the
Twitter corpus represents 169. There are 33 countries that only
Twitter represents (not the Common Crawl) and 30 that only
the Common Crawl represents (not Twitter). This shows the
importance of drawing on two different sources of language use.

Given the idiosyncracies of these two datasets (i.e., the
availability of country-codes for web data and the selection of
cities for Twitter data), it is quite likely that each represents
different populations or, at least, that each represents different
registers of language usage from the same population. We can
use ground-truth population data to deal with the problem of
different populations. First, notice that both datasets under-
represent all regions in Africa; but the web dataset has the
worst under-representation: while Africa accounts for 14.5% of
the world’s population, it accounts for only 3.7% of the web
corpus. The Americas and Europe, on the other hand, are over-
represented in both datasets. Twitter especially over-represents
North America (8.5% of the corpus vs. 4.8% of the population);
but the web corpus under-represents North America (only 1.4%

6https://github.com/jonathandunn/idNet
7https://labbcat.canterbury.ac.nz/download/?jonathandunn/idNet_models

Frontiers in Artificial Intelligence | www.frontiersin.org 4 August 2019 | Volume 2 | Article 15

https://labbcat.canterbury.ac.nz/download/?jonathandunn/CGLU_v3
https://github.com/jonathandunn/common_crawl_corpus
https://github.com/datasets/world-cities
https://github.com/jonathandunn/idNet
https://labbcat.canterbury.ac.nz/download/?jonathandunn/idNet_models
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Dunn Global Syntactic Variation

of the corpus), mostly from the lack of adoption of the .us
domain. Western Europe is over-represented in both corpora:
while it acounts for only 5.7% of the population, it provides 14.6%
of the web corpus and 19.9% of the Twitter corpus. Although
these trends are expected, it is helpful to quantify the degree
of over-representation. Less expectedly, the web corpus greatly
over-represents Eastern Europe (27.4% of the corpus but only
2.4% of the population). Asia, especially the East and South, are
under-represented in both datasets.

On the one hand, the use of population data here allows
us to quantify exactly how each of these datasets is skewed.
On the other hand, our purpose is to model regional syntactic
variation: do the datasets need to be prefectly aligned with
regional populations in order to achieve this? There are two
observations to be made: First, if a region is over-represented
then we do not need to worry about missing any national
varieties from that area; but we should be worried about over-
representing those particular national varieties (this is why there
is a cap on the number of training samples from each dialect).
Second, it could be the case that we are missing national
varieties from under-represented areas. For example, any missing
national varieties are likely to be from Africa or East Asia,
given the skewed representations of this dataset. Related work,
however, has shown that it in the case of major international
languages like those considered here, the problem is over-
representation rather than under-representation in the form of
missing regional varieties (Dunn and Adams, 2019). We leave it
to future work to make improvements in the selection of regional
varieties using population-based sampling to overcome skewness
in corpus distributions.

What languages should be included in a model of global
syntactic variation? Given that we are using countries to define
regional varieties, a language needs to occur in many countries.
Here we use a threshold of 1 million words to say that a
language is used significantly in a given country. Table 2 shows
the seven languages included in this study, encompassing 59.25%
of the web corpus and 74.67% of the Twitter corpus. Some
other languages occur in several countries in one dataset but not
the other and so are not included. For example, Italian occurs
in 17 countries in the web corpus but only 2 in the Twitter
corpus; Indonesian occurs in 10 countries in the web corpus
but only 3 countries in the Twitter corpus. Given that we model
varieties using a classifier, we focus on those languages that have
a sufficient number of national varieties to make classification a
meaningful approach.

2.2. Finding Syntactic Variants
This paper represents syntactic variants using a discovery-
device Construction Grammar (CxG) that produces a CxG
for each language given an independent corpus representing
that language. CxG itself is a usage-based paradigm that views
grammar as a set of overlapping constructions made up of
slot-fillers defined by syntactic, semantic, and sometimes lexical
constraints (Goldberg, 2006; Langacker, 2008). This paper draws
on recent approaches to computational modeling of CxGs
(Dunn, 2017, 2018b, 2019a), including previous applications

TABLE 2 | Above: number of countries and words by language and domain and

Below: number of varieties and test samples by language and domain.

Language Countries

(Web)

Words (Web) Countries

(Twitter)

Words (Twitter)

Arabic (ara) 19 348,671,000 25 179,473,000

English (eng) 130 4,990,519,000 137 1,552,268,000

French (fra) 36 479,857,000 24 176,009,000

German (deu) 24 500,029,000 7 71,234,000

Portuguese (por) 14 431,884,000 22 199,080,000

Russian (rus) 37 1,361,331,000 9 126,834,000

Spanish (spa) 43 1,757,200,000 44 789,239,000

% of Total: 59.25% % of Total: 74.67%

Language Varieties

(Web)

N. Test (Web) Varieties

(Twitter)

N. Test (Twitter)

Arabic (ara) 4 14,685 7 15,537

English (eng) 14 66,476 14 64,208

French (fra) 13 46,562 4 12,130

German (deu) 7 35,240 2 7,722

Portuguese (por) 4 15,129 2 8,650

Russian (rus) 19 84,925 3 9,164

Spanish (spa) 17 84,093 17 76,653

of a discovery-device CxG to dialectometry for English
(Dunn, 2018a, 2019b).

Constructions are represented as a sequence of slot-
constraints, as in (1a). Slots are separated by dashes and
constraints are defined by both type (Syntactic, Joint Semantic-
Syntactic, Lexical) and by filler (for example: NOUN, a part-of-
speech or ANIMATE, a semantic domain).

(1a) [SYN:NOUN — SEM-SYN:TRANSFER[V] — SEM-
SYN:ANIMATE[N] — SYN:NOUN]

(1b) “He gave Bill coffee.”
(1c) “He gave Bill trouble.”
(1d) “Bill sent him letters.”
(2a) [SYN:NOUN — LEX:“give” — SEM-SYN:ANIMATE[N] —

LEX:“a hand"]
(2b) “Bill gave me a hand.”

The construction in (1a) contains four slots: two with
joint semantic-syntactic constraints and two with simple
syntactic constraints. The examples in (1b) to (1d) are
tokens of the construction in (1a). Lexical constraints, as
in (2a), represent idiomatic sentences like (2b). A CxG
is a collection of many individual constructions. For the
purposes of dialectometry, these are quantified as one-hot
encodings of construction frequencies. This, in essence, provides
a bag-of-constructions that is evaluated against traditional
bag-of-words features.

A large portion of the language-learning corpus for each
language comes from web-crawled data (Baroni et al., 2009;
Majliš and Žabokrtský, 2012; Benko, 2014) and data from the
CoNLL 2017 Shared Task (Ginter et al., 2017). Because the goal
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is to provide a wide representation of each language, this is
augmented by legislative texts from the EU and UN (Tiedemann,
2012; Skadiš et al., 2014), the OpenSubtitles corpus (Tiedemann,
2012), and newspaper texts. The exact collection of documents
used for learning CxGs is available for download8. While both
web-crawled and social media datasets are used to represent
national varieties, the grammars used are learned mainly from
web-crawled corpora. On the one hand, we use separate datasets
for grammar learning and dialectometry in order to remove the
possible confound that the grammars are over-fitting a specific
dataset. On the other hand, we do not explicitly know which
regional varieties the data used for grammar learning is drawn
from. The discussion in section 3.5, as well as other work (Dunn,
2019b), shows that at least the English grammar better represents
inner-circle varieties like UK English. In this case, then, we prefer
to avoid the possible confound of over-fitting even though the
result is a grammar that is learned from datasets implicitly drawn
from inner-circle varieties.

This paper evaluates two alternate CxGs for dialectometry,
alongside function words and lexical features: CxG-1 (Dunn,
2018a,b) and CxG-2 (Dunn, 2019a). As described and evaluated
elsewhere (Dunn, 2019a), CxG-1 relies on frequency to select
candidate slot-constraints while CxG-2 relies on an association-
based search algorithm. The differences between the two
competing discovery-device grammars as implementations of
different theories of language learning are not relevant here.
Rather, we evaluate both grammars because previous work
(Dunn, 2018a) relied on CxG-1 and this comparison makes it
possible to connect the multi-lingual experiments in this paper
with English-only experiments in previous work. It should be
noted, however, that other work has shown that association-
based constraints out-perform frequency-based constraints
across several languages (Dunn, 2019a). As shown in section 3,
this paper finds that association-based constraints also perform
better on the task of dialectometry. This is important because
the evaluation connects the emergence of syntactic structure with
variation in syntactic structure.

Previous work on syntactic dialectometry focuses on paired
sets of features which can be viewed as alternate choices that
express the same function or meaning. In other words, these
approaches contrast constructions like the double object vs. the
prepositional dative and then quantify the relative preference
of particular varieties for one variant over the other. From our
perspective, such an approach is essential for a limited feature
space because syntactic variation is structured around different
constructions that encode the same function or meaning. In
other words, two constructions which have entirely different
uses cannot be in competition with one another: constrasting
the double object and the get-passive constructions, in isolation,
is not a meaningful approach to syntactic variation because
their frequencies are influenced by other unseen parts of the
grammar. On the other hand, looking at the frequency of a single
construction in isolation can be meaningful but will never reveal
the full picture of syntactic variation.

8https://labbcat.canterbury.ac.nz/download/?jonathandunn/CxG_Data_FixedSize

This whole-grammar construction-based approach to
dialectology represents as much of the functional space as
possible. This provides an implicit pairing of syntactic variants:
without a topic bias, we expect that the relative frequency of
a specific construction will be consistent across documents. If
one construction is more frequent, that indicates an increased
preference for that construction. This approach does not
explicitly pair variants because part of the problem is to
learn which constructions are in alternation. From a different
perspective, we could view alternating variants as knowledge
that is traditionally given to models within quantitative
sociolinguistics: which constructions are in competition with
one another? But the idea here is to leave it to the model itself to
determine which constructions are in competition.

Because this work is situated within both dialectometry
and construction grammar, we view syntactic variation as
fundamentally structured around function and meaning (as
described above). But more traditional sociolinguistic and
generativist work on syntactic variation does not share this
underlying view. In this case the prediction task itself allows
us to translate between competing assumptions: regardless of
how we understand the source of variation, the models are
ultimately evaluated on how well they are able to predict region-
of-origin (samples fromNewZealand vs. samples fromAustralia)
using only syntactic representations. This type of ground-truth
evaluation can be undertaken, with greater or lesser success,
with any set of assumptions. Whether or not dialectal variation
is fundamentally based on alternations and whether or not
dialectometry models require alternations, the argument here is
that the ability to distinguish between dialects (without topic-
based features) is a rigorous evaluation of the quality of a model
of dialects.

Finally, how does geographic variation as modeled here
interact with register variation? We can think about this in two
different ways: First, does register variation within these datasets
present a confound by being structured geographically? In other
words, if the corpus from Australia represents newspaper and
magazine articles but the corpus from New Zealand represents
discussion forums, then the ability to distinguish between
the two is a confound. Given the size of the datasets, the
consistent collection methodology, the cross-fold validation
experiments, the large number of national varieties per language,
and the comparison of web-based and Twitter data, however,
this confound is not likely. Second, is register variation the
same underlying phenomenon as regional variation? In other
words, is the difference between New Zealand English and
Australian English ultimately the same type of phenomenon
as the structured difference between newspaper writing and
discussion forums? This is an empirical question for future work
that requires a dataset containing both register meta-data and
spatial meta-data.

2.3. Modeling National Varieties
The experiments in this paper take a classification approach
to dialectometry: given a one-hot encoding of construction
frequencies (i.e., a bag-of-constructions), can we distinguish
between different national varieties of a language? There are
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two main advantages to this approach: First, the model can be
evaluated using prediction accuracies on held-out testing data.
This is important to ensure that the final model is meaningful.
Second, a classification approach provides an implicit measure
of the degree of syntactic separation between national varieties
across the entire grammar (c.f., region similarities in section 3.3).
A particular construction may be unique to a given variety, but
this in itself is less meaningful if the varieties are otherwise the
same. How deep or robust is the syntactic variation? How distinct
are the national varieties? Dialectometry is about going beyond
variation in individual syntactic features tomeasure the aggregate
syntactic relationships between varieties.

The main set of experiments uses a Linear Support Vector
Machine (Joachims, 1998) to classify varieties using CxG features.
Parameters are tuned using separate development data9. Given
the general robust performance of SVMs in the literature relative
to other similar classifiers on latent variation tasks (Dunn et al.,
2016), we forego a systematic evaluation of classifiers. For
reproducibility against future work, all results are calculated on
pre-specified training and testing sets. Given the large number
of samples in each test set (Table 2) and the robustness in the
cross-validation evaluation (Table 4) we are not concerned with
over-fitting and given the high performance in general we are
not concerned with under-fitting (Table 3). Under this evaluation
regime, any classifier could be used; thus, it is not important to
contrast a Linear SVMwith other shallow classifiers such as Naive
Bayes or Decision Trees in this context. The Linear SVM uses
the training data to learn weights for each construction in the
grammar for each regional variety; in the aggregate, the model
builds a high-dimensional representation of each variety that
maximizes the distance between them (i.e., so that varieties like
American English and Nigerian English can be easily separated).
The quality and generalizability of the models are evaluated using
held-out testing data: how well can those same feature weights be
used to predict which regional variety a new sample belongs to?
Because it is possible here that the varieties could be distinguished
in a low-dimensional space (i.e., being separated along only a
few constructions), we use unmasking to evaluate the robustness
of the models in section 3.2. This classification-based approach
deals very well with the aggregation of features, including being
able to ignore redundant or correlated features. On the other
hand, this robust aggregation of syntactic features requires that
we assume the spatial boundaries of each regional variety.

Moving to data preparation, the assumption is that a language
sample from a web-site under the .ca domain originated from
Canada. This approach to regionalization does not assume that
whoever produced that language sample was born in Canada
or represents a traditional Canadian dialect group; rather, the
assumption is only that the sample represents someone in
Canada who is producing language data; but the two are
closely related (Cook and Brinton, 2017). This corresponds with
the assumption that Twitter posts geo-referenced to particular
coordinates represent language use in that place but do not
necessarily represent language use by locals. Geo-referenced

9Development data allows experimental settings and parameters to be evaluated
without over-fitting the training/testing data that is used for the main experiment.

TABLE 3 | F1 of classification of regional varieties by language and feature type

(web corpus above and twitter corpus below).

CC Function CxG-1 CxG-2 Unigram Bigram Trigram N.

Regions

Arabic 0.88 0.90 1.00 1.00 1.00 0.96 4

English 0.65 0.80 0.96 1.00 0.98 0.87 14

French 0.61 0.78 0.96 1.00 0.98 0.90 13

German 0.84 0.89 0.96 1.00 0.98 0.86 8

Portuguese 0.89 0.98 0.99 1.00 1.00 0.97 4

Russian 0.41 0.79 0.95 1.00 0.95 0.80 19

Spanish 0.52 0.78 0.95 1.00 0.99 0.91 17

TW Function CxG-1 CxG-2 Unigram Bigram Trigram N.

Regions

Arabic 0.80 0.88 0.98 1.00 1.00 0.94 8

English 0.55 0.76 0.92 1.00 0.97 0.82 14

French 0.88 0.98 0.98 1.00 1.00 0.99 4

German 0.83 0.90 0.95 1.00 0.99 0.95 2

Portuguese 1.00 0.99 1.00 1.00 1.00 0.99 2

Russian 0.73 0.83 0.93 1.00 0.94 0.87 3

Spanish 0.51 0.82 0.94 1.00 0.99 0.92 17

documents represent language use in a particular place. Unlike
traditional dialect surveys, however, there is no assurance that
individual authors are native speakers from that place. We have
to assume that most language samples from a given country
represent the native varieties of that country. For example, many
non-local residents live in Australia; we only have to assume that
most speakers observed in Australia are locals. On the one hand,
this reflects the difference between corpus-based and survey-
based research: we know less about the individuals who are
represented in these datasets. On the other hand, this reflects
increased mobility: the idea that a local individual is born, is
raised, and finally dies all in the same location is no longer
proto-typical.

In order to average out the influence of out-of-place samples,
we use random aggregation to create samples of exactly 1,000
words in both corpora. For example, in the Twitter corpus
this means that an average of 59 individual Tweets from a
place are combined into a single sample. First, this has the
effect of providing more constructions per sample, making
the modeling task more approachable. Second and more
importantly, individual out-of-place Tweets and web pages are
reduced in importance because they are aggregated with other
Tweets and web pages presumably produced by local speakers.
If we think of non-locals as outliers, this approach aggregates
outliers with non-outliers in order to reduce their influence. We
leave for future work an evaluation of different approaches to
this problem. The larger issue is the relationship between small
but carefully curated corpora for which significant meta-data
is available for each speaker and these large but noisy corpora
which are known to contain out-of-place samples (i.e., tourists in
Twitter data). One promising approach is to evaluate such noisy
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FIGURE 2 | Countries with national varieties for selected languages.

corpora based on how well they are able to predict demographic
meta-data for the places they are intended to represent (Dunn
and Adams, 2019). In this case, it has been shown that web-
crawled and Twitter corpora are significantly correlated with
population density (especially when controlling for GDP and
general rates of internet usage) and that both datasets can be used
to predict which languages are used in a country (as represented
using census data). While there is much work to be done on
this problem, the prediction of demographic meta-data provides
a way to evaluate the degree to which large and noisy corpora
reflect actual populations.

We take a simple threshold-based approach to the problem of
selecting national varieties to include. For English and Spanish,
any national variety that has at least 15 million words in both
the Common Crawl and Twitter datasets is included. Given
the large number of countries in Table 2, this higher threshold
accounts for the fact that both English and Spanish are widely
used in these datasets. Lower relative thresholds are used for
the other languages, reflecting the more limited prevalence of
these languages: the thresholds are made relative to the amount
of data per language and are comparable to the English and
Spanish threshold. For English and Spanish, the national varieties
align across both datasets; thus, the experiments for these two
languages are paired and we also consider similarity of models
across registers. But for the other languages aligning the national
varieties in this way removes too many from consideration; thus,
there is no cross-domain evaluation for Arabic, French, German,
Portuguese, or Russian.

The inventory of national varieties in Table 2 is entirely data-
driven and does not depend on distinctions like dialects vs.
varieties, inner-circle vs. outer-circle, or native vs. non-native.
Instead, the selection is empirical: any area with a large amount
of observed English usage is assumed to represent a national
variety of English. Since the regions here are based on national

boundaries, we call these national varieties. We could just as
easily call them national dialects or regional varieties. The global
distribution of national varieties for each language is shown
in Figure 2.

The datasets are formed into training, testing, and
development sets as follows: First, 2k samples are used for
development purposes regardless of the amount of data from a
given variety. Depending on the size of each variety, at least 12k
training and 2.5k testing samples are available. Because some
varieties are represented by much larger corpora (i.e., Tweets
from American English), a maximum of 25k training samples
and 5k testing samples are allowed per variety per register. These
datasets contain significantly more observations than have been
used in previous work (Dunn, 2018a).

For each language, we compare six sets of features: First,
syntactic representations using CxG-1 and CxG-2; Second,
indirect syntactic representations using function words10; Third,
unigrams and bigrams and trigrams of lexical items. Lexical
unigrams represent mostly non-syntactic information while
increasing the size of n begins to indirectly include information
about transitions. The n-grams are representing using a hashing
vectorizer with 30k dimensions (thus, these representations have
no syntactic features present). This avoids biasing the selection
of specific n-grams (i.e., with content more associated with
dominant inner-circle varieties). But this also means that the
lexical features themselves cannot be inspected.

3. RESULTS

This section reports the results of dialectometry experiments
across seven languages. First, in section 3.1 we look at overall
predictive accuracy using the F-Measure metric across feature

10For replicability, these are taken from https://github.com/stopwords-iso
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sets and languages. The purpose of this analysis is to contextualize
and then explore the interpretation of classification-based
dialectometry. Second, in section 3.2 we examine the robustness
of models across registers (using the web corpus and the Twitter
corpus) and across rounds of feature pruning. The purpose of
this analysis is to understand howmeaningful these models are in
the presence of possible confounds such as a reliance on a small
number of highly predictive variants. These first two sections
are important for validating a classification-based approach to
syntactic variation. Third, in section 3.3 we analyze predictive
accuracy and prediction errors across languages and develop
representations of regional syntactic similarity. The purpose
of this analysis is to use dialect classification to understand
global syntactic variation in the aggregate. Fourth, in section
3.4 we examine measures of the uniqueness of different regional
varieties and in section 3.5 we apply these models to evaluate
empirical correlates for notions like inner-circle and outer-circle.
These last two sections are important for understanding what
dialect classification can tell us about global, whole-grammar
syntactic variation once the approach itself has been validated.

3.1. Features, Model Size, and Predictive
Accuracy
The overall prediction accuracy across languages is shown in
Table 3 (with the web corpus above and the Twitter corpus
below). On the left-hand part of the table, the syntactic features
are grouped: function words and the two CxG feature sets.
On the right-hand part, the lexical features are grouped: lexical
unigrams, bigrams, and trigrams. For reference, the number of
regions for each variety is shown in the final column.

A classification-based approach has the goal of distinguishing
between national varieties. We would expect, then, that the task
of distinguishing between a small number of varieties is easier
than distinguishing between a larger number of varieties. For
example, there are only two varieties of German and Portuguese
in the Twitter corpus. For Portuguese, all feature sets have F1s
of 1.00 or 0.99; in other words, this is an easy task and there
are many ways of doing it. This is also an indication that these
varieties of Portuguese (here, from Brazil, BR, and from Portugal,
PT) are quite distinct across all feature sets. On the other
hand, even though German also has a small number of national
varieties (here, from Germany, DE, and from Austria, AT), there
is a wide variation in prediction accuracy, with function words
(F1 = 0.83) and CxG-1 (F1 = 0.90) having markedly lower
performance than other feature sets. The point is that model
performance depends on both the number of national varieties
included in the model (showing the importance of taking an
empirical approach to the selection of varieties) as well as on the
degree of difference between the varieties themselves. Portuguese
as used in Brazil and Portugal is significantly more distinct
than German as used in Germany and Austria. Digging deeper,
however, we also notice that function words as features are more
uneven across languages than other feature sets. For example,
Arabic on Twitter has eight national varieties and function words
achieve an F1 of 0.80; but for Russian on Twitter, with only
three varieties, function words achieve a lower F1 of 0.73. This

is an indication that, as indirect proxies for syntactic structure,
the usefulness of function words for this task varies widely
by language (at least, given the inventory of function words
used here).

Regardless of the number of national varieties per language,
lexical unigrams perform the best (F1 = 1.00). In other words, it
is not difficult to disinguish between samples from New Zealand
and Australia when given access to lexical items (Christchurch vs.
Brisbane). While we know that syntactic models are capturing
linguistic variation, however, the success of lexical models, as
argued elsewhere (Dunn, 2019b), is partly a result of place-names,
place-specific content, and place-specific entities. In other words,
geo-referenced texts capture the human geography of particular
places and this human geography information takes the form of
specific lexical items. Previous work has focused on capturing
precisely this type of content (Wing and Baldridge, 2014; Adams,
2015; Hulden et al., 2015; Lourentzou et al., 2017; Adams
and McKenzie, 2018). The problem is that, without organizing
the frequency of such lexical features according to concept
(Zenner et al., 2012), these models may not represent linguistic
variation11. For example, we know that as n increases n-grams
represent increasing structural information (i.e., transitions
between lexical items instead of lexical items in isolation). Here
we see that, by the time n is raised to three, the predictive
accuracy of CxG-2 always surpasses the predictive accuracy
of trigrams (with the single exception of French on Twitter).
The difference between CxG-2 and bigrams is much smaller
than the distance between the various syntactic features. This
is evidence that the advantage of unigrams over CxG-2 reflects
the advantage of human geography content (i.e., lexical items
in isolation) over linguistic variation (i.e., transitions between
lexical items). In short, while some of the lexical variation is
linguistic (soda vs. pop), a good deal of it is also based on human
geography (Chicago vs. Singapore). The advantage of syntactic
models in this context is that such non-linguistic variations do
not introduce confounds: we know that these models represent
regional varieties of each language.

Models on the web corpus (above) have higher predictive
accuracy than models on the Twitter corpus (below). This is
true except in cases, such as Portuguese, where there is a wide
difference in the number of national varieties represented (for
Portuguese, two vs. four). For reasons of data availability, only
English and Spanish have strictly aligned varieties; in both of
these languages, the syntactic features perform better on the web
corpus than the Twitter corpus, although the gap is wider for
English than for Spanish. This raises a question that is addressed
in the next section: are models of syntactic variation consistent
across these registers? In other words, do the web-based and
Twitter-based models make the same types of errors?

The web corpus also provides more varieties per language
(with Arabic as the sole exception, which is better represented
on Twitter). In many cases this difference is significant: there are
19 varieties of Russian on the web, but only three on Twitter.

11This is a simplification, of course, but the underlying point is that it is difficult
to distinguish linguistic lexical variation from human geography-based and topical
lexical variation without relying on the idea of conceptual alternations.

Frontiers in Artificial Intelligence | www.frontiersin.org 9 August 2019 | Volume 2 | Article 15

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Dunn Global Syntactic Variation

In this case, there are competing Russian-language social media
platforms (i.e., www.vk.com) that are not included in this study.
In other words, outside of English and Spanish, which are aligned
across datasets, the Twitter data is less comprehensive.

What does the F-Measure tell us about models of syntactic
variation? First, the measure is a combination of precision and
recall that reflects the predictive accuracy while taking potentially
imbalanced classes into account: howmany held-out samples can
be correctly assigned to their actual region-of-origin? On the one
hand, this is a more rigorous evaluation than simply finding a
significant difference in a syntactic feature across varieties within
a single-fold experimental design: not only is there a difference
in the usage of a specific feature, but we can use the features
in the aggregate to characterize the difference between national
varieties. On the other hand, it is possible that a classifier is
over-fitting the training data so that the final model inflates the
difference between varieties. For example, let’s assume that there
is a construction that is used somewhat frequently in Pakistan
English but is never used in other varieties. In this case, the
classifier could achieve a very high prediction accuracy while only
a single construction is actually in variation. Before we interpret
these models further, the next section evaluates whether this sort
of confound is taking place.

3.2. Model Robustness Across Features
and Registers
If a classification model depends on a small number of highly
predictive features, thus creating a confound for dialectometry,
the predictive accuracy of that model will fall abruptly as such
features are removed (Koppel et al., 2007). Within authorship
verification, unmasking is used to evaluate the robustness of
a text classifier: First, a linear classifier is used to separate
documents; here, a Linear SVM is used to classify national
varieties of a language. Second, for each round of classification,
the features that are most predictive are removed: here, the
highest positive and negative features for each national variety
are pruned from the model. Third, the classifier is retrained
without these features and the change in predictive accuracy is
measured: here, unmasking is run for 100 iterations using the
CxG-2 grammar as features, as shown in Figure 3 (with the
web-based model above and the Twitter-based model below).
For example, this removes 28 constructions from the model of
English each iteration (two for each national dialect), for a total
of approximately 2,800 features removed. The figures show the F-
Measure for each iteration. On the left-hand side, this represents
the performance of the models with all features are present;
on the right-hand side, this represents the performance of the
models after many features have been removed. This provides a
measure of the degree to which these models are subject to a few
highly predictive features.

First, we notice that models with a higher starting predictive
accuracy (e.g., Arabic and Portuguese in the web-based model
and Portuguese and French in the Twitter-based model) tend to
maintain their accuracy across the experiment. Even after 100
rounds of pruning, Arabic and Portuguese (CC) remain above

0.95 with CxG-2 features12. Similarly, French and Portuguese
remain above 0.95 after 100 rounds of pruning (TW). This
indicates that a high performing dialect classification model is
based on a broad and distributed set of features. But this is
not always the case: for example, Arabic (TW) starts out with
the same performance as French but over the course of the
experiment declines to a performance that is 10% lower than
French. This is an indication that this Twitter-based model of
Arabic is less robust than its counter-part model of French
(although keep inmind that the Frenchmodel has only 4 varieties
and the Arabic model has 8).

Second, although Spanish and Russian have a starting
accuracy that is comparable to other languages, with F1s of 0.95
for both languages on the web corpus, their accuracy falls much
more quickly. Spanish and Russian decrease by around 20% by
the end of the experiment while English and French decrease by
only 10% in total. On the Twitter corpus, Spanish and Russian
again pattern together, this time with a 15% reduction. But here
the English model has a somewhat steeper decline. In most
cases, however, the starting accuracy of a model is related to its
rate of decline: more accurate models are also more robust to
feature pruning. The purpose of this evaluation is to show that
a classification approach to dialectometry is not subject to the
confound of a small number of highly predictive features.

The next question is about the similarity of national varieties
as represented in the web corpus vs. the Twitter corpus. Is
there a consistent representation of variation or are the models
ultimately register-specific? For this analysis we focus on English
and Spanish as the two languages that are aligned by national
varieties across both datasets. We focus on an analysis of errors:
First, two national varieties that are more often confused by
the classifier are more similar according to the model. Thus,
we represent the similarity of regions using the total of all
errors between two varieties. For example, if UK English is
predicted to be New Zealand English 50 times and New Zealand
English is predicted to be UK English 25 times, there are 75
total errors between these varieties. More errors reflects more
similar varieties13.

The question is whether the web corpus and Twitter both
provide the same patterns of similarity. Figure 4 shows the
relative errors between varieties for both datasets (with English
above and Spanish below): the web (blue) occupies the left-hand
side of each bar and Twitter (red) occupies the right-hand side.
If both colors are the same size, we see the same proportion
of errors for a given pair across both datasets. This figure also
shows the most similar varieties, with the varieties having the
highest total errors occupying the bottom of each. For example,
the most similar varieties of English on Twitter are American
(US) and Canadian English (CA). The most similar varieties
on the web corpus, however, are New Zealand (NZ) and South
African English (ZA)14. The Pearson correlation between errors,
paired across datasets by varieties, is highly significant for English

12Here and below we focus on CxG-2 as the highest performing syntactic model.
13Country abbreviations are given in Appendix A (Supplementary Material).
14The ISO country codes are used in all figures and tables; these are shown by
common name in the first Appendix in Supplementary Material.
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FIGURE 3 | Model robustness by language using unmasking for 100 iterations with CxG-2 features (web models above and twitter models below).

at 0.494 (note that this involves the number of errors but does
not require that the errors themselves match up across registers).
At the same time, there remain meaningful differences between
the datasets. For example, Nigeria (NG) and Portugal (PT) have
many errors in the Twitter model but very few in the web model.
On the other hand, New Zealand (NZ) and South Africa (ZA)
have a large number of errors in the web model but few in
the Twitter model. This is an indication that the models are
somewhat different across registers.

The errors for Spanish, in the bottom portion of Figure 4,
also are significantly correlated across registers, although the
Pearson correlation is somewhat lower (0.384). For example,
both corpora have significant errors between Argentina (AR)

and Uruguay (UY), although Twitter has a much higher error
rate. But errors between Costa Rica (CR) and Uruguay (UY) and
between Argentina (AR) and Costa Rica (CR) are only found on
Twitter. Errors between Honduras (HN) and Nicaragua (NI), on
the other hand, are only found in the web model. The point is
that the two registers are associated in their error rates for both
English and Spanish (the only languages with regional varieties
aligned across both datasets).

The high accuracy of these models could suggest that the
models are over-fitting the test set, even with a relatively large
number of samples in the test set. Thus, in Table 4, we compare
the weighted F1 scores on the test set with a 10-fold cross-
validation evaluation that includes the training and testing data
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FIGURE 4 | Classification errors by percent of dataset for web and twitter corpora using CxG-2 features (English errors above and Spanish errors Below).

together. The table shows the maximum and minimum values
across folds. There are only three cases in which the minimum
fold F1 is lower than the reported test set metrics: Russian (web
data), Arabic (Twitter data), and Portuguese (Twitter data). In
each case the difference is small and in each case the average fold
F1 is the same as the F1 from the test set alone. This evidence
shows that the models are not over-fitting the test set and that
this reflects a robust classification accuracy.

This section has approached two important questions: First,
is a classification model dependent on a small number of highly

predictive features? Second, does a classification model produce
the same type of errors across both web corpora and Twitter
corpora? In both cases some languages (like English) are more
robust across feature pruning and more stable across registers
than others (like Spanish). This is the case even though the
F-Measure (reflecting predictive accuracy alone) is similar for
both languages: 0.96 vs. 0.95 for the web model and 0.92 vs.
0.94 for the Twitter model. These alternate evaluations, then, are
important for revealing further properties of these classification
models. The predictive accuracy for both languages is high across
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TABLE 4 | Comparison of train/test and cross-validation results by weighted F1 for CxG-2.

CC TW

Train-Test CV-Max CV-Min Train-Test CV-Max CV-Min

Arabic 1.00 1.00 1.00 Arabic 0.98 0.98 0.97

English 0.96 0.96 0.96 English 0.92 0.92 0.92

French 0.96 0.96 0.96 French 0.98 0.98 0.99

German 0.96 0.96 0.96 German 0.95 0.96 0.95

Portuguese 0.99 0.99 0.99 Portuguese 1.00 1.00 0.99

Russian 0.95 0.95 0.94 Russian 0.93 0.95 0.93

Spanish 0.95 0.95 0.95 Spanish 0.94 0.94 0.94

Bold values indicate CV results lower than results on the test set.

TABLE 5 | Classification performance for English regions, web, and twitter corpora, CxG-2 features.

Prec (CC) Recall (CC) F1 (CC) Prec (TW) Recall (TW) F1 (TW)

AU 0.97 0.96 0.97 AU 0.82 0.83 0.83

CA 0.94 0.94 0.94 CA 0.84 0.79 0.81

IE 0.97 0.97 0.97 IE 0.95 0.95 0.95

NZ 0.91 0.92 0.91 NZ 0.92 0.90 0.91

UK 0.95 0.95 0.95 UK 0.87 0.90 0.89

US 0.93 0.95 0.94 US 0.85 0.89 0.87

ZA 0.94 0.96 0.95 ZA 0.92 0.94 0.93

IN 0.97 0.98 0.97 IN 0.97 0.97 0.97

MY 0.96 0.96 0.96 MY 0.99 0.99 0.99

NG 0.98 0.98 0.98 NG 0.94 0.95 0.94

PH 0.98 0.97 0.98 PH 0.98 0.98 0.98

PK 1.00 0.99 0.99 PK 0.98 0.98 0.98

CH 0.97 0.94 0.96 CH 0.98 0.97 0.97

PT 0.99 0.98 0.98 PT 0.93 0.90 0.92

AVG 0.96 0.96 0.96 AVG 0.92 0.92 0.92

both registers and the regional varieties which are confused is
significantly correlated across both registers.

3.3. Regional Accuracy and Similarity
While the previous sections have evaluated classification-
based models externally (prediction accuracy by feature type,
robustness across feature pruning, error similarity across
registers), this section and the next focus on internal properties
of the models: what are the relationships between national
varieties for each language? Which regions perform best within
a model? In this section we examine the F-Measure of individual
national varieties and the similarity between varieties using
cosine similarity between feature weights. Because the Twitter
dataset has fewer varieties for most languages, we focus on
similarity within the web models alone and only for languages
with a large inventory of varieties (i.e., only for English, French,
and Spanish).

We start with English in Table 5. The left-hand side shows
Precision, Recall, and F-Measure scores for the web corpus and

the right-hand side for the Twitter corpus, both using the CxG-
2 feature set. The higher the scores for each national dialect, the
more distinct that variety is from the others in syntactic terms.
New Zealand English (NZ) has the lowest F1 (0.91) for the web
corpus. While the score of NZ English is the same for the Twitter
model (0.91), it is no longer the lowest scoring variety: this is now
Canadian English (CA) at 0.81. In fact, the lowest performing
varieties for the Twitter model are all inner-circle varieties:
Australia (AU), Canada (CA), United Kingdom (UK), and the
United States (US). This phenomenon is explored further in the
next section: why are more dominant varieties more difficult to
model? Is this consistent across languages? For now we note only
that all of the countries included in the model are expected, with
perhaps the exception of Portugal (PT) and Switzerland (CH).
While previous work made an explicit distinction between inner-
circle and outer-circle varieties (Dunn, 2018a), here we leave this
type of categorization as an empirical question.

We can compare national varieties within a model by
comparing their respective feature weights: which regions have
the most similar syntactic profiles? We use cosine distance to
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FIGURE 5 | Region similarity by cosine between feature weights, English CxG-2.

measure the similarity between feature weights and then use a
heat map, as in Figure 5, to visualize the similarities. Cells with
a higher value (more red) indicate a pair of varieties which the
model is trying hard to separate (thus, a more similar pair).
For example, the most similar pair is UK English (UK) and
Irish English (IE); this is expected given that Northern Ireland
is part of the UK. The next four pairs also are expected: Indian
(IN) and Pakistan English (PK), American (US) and Canadian
English (CA), New Zealand (NZ) and South African English
(ZA), American (US) and Nigerian English (NG). While the
final pair is less transparent, it is important that the model picks
out these pairs of related varieties without any pre-knowledge.
On the other hand, dark blue values indicate that the model is
not concerned with separating the pair (because they are not
very similar): for example, South African English (ZA) and Swiss
English (CH).

French varieties are shown in Table 6, with again a much
larger inventory for the web model than for the Twitter
model. As with English, the lowest performing varieties in
terms of prediction accuracy are the most dominant inner-circle
varieties: France (FR), Belgium (BE), and Switzerland (CH).
One possible reason is that there is more internal variation in
France than in, for example, Cameroon (CM). Another possible
reason is that these inner-circle varieties have influenced the
outer-circle varieties, so that they are harder to distinguish
from the colonial varieties. The regions in the web model
are expected given French colonial history: European varieties
(France, Switzerland, Belgium, Luxembourg), African varieties
(Burkina Faso, Cameroon, Senegal), North African varieties
(Grenada, Algeria, Tunisia), Pacific varieties (New Caledonian,
French Polynesia), and unconnected island varieties with current
or past French governance (Réunion, Grenada). All have a history
of French usage.

Following the samemethodology for English, region similarity
is shown in Figure 6. The closest varieties are from Réunion
and French Polynesia, from Senegal and Burkina Faso, and from

France and Belgium. This again shows that the model not only
distinguishes between varieties but can also situate the varieties
in relationship to one another.

Next, regional accuracies for Spanish are shown in Table 7;
these are aligned by country with the exception of Peru (PE)
which is missing from the Twitter dataset. There is a single
European variety (Spain), South American varieties (Argentina,
Chile, Colombia, Ecuador, Peru, Paraguay, Uruguay, Venezuela),
Central American varieties (Costa Rica, Guatemala, Honduras,
Nicaragua, Panama, El Salvador), as well as Cuban and Mexican
varieties. The alignment across datasets helps to ensure that
only expected varieties occur; as discussed above, there is in
fact a significant correlation between the errors produced on the
two datasets.

The similarity between Spanish regions is shown in Figure 6

(below French). The most similar varieties are from Costa Rica
and Chile, from Spain and Chile, and from Venezuela and
Colombia. The least similar are from Argentina and Chile and
from Peru and Venezuala.

Russian varieties are shown in Table 8, encompassing much
of Eastern Europe and Central Asia. As mentioned before, the
Twitter dataset is missing a number of important varieties, most
likely because of the influence of other social media platforms.
There are two noisy regions, SO and PW, present in the web
corpus15. Beyond this, the countries represented are all expected:
in addition to Russia (RU), there are varieties from Central
Asia (Azerbaijan, Georgia, Kyrgyzstan, Tajikistan, Uzbekistan),
Southeast Europe (Bulgaria, Moldova), and Eastern Europe
(Belarus, Lithuania, Slovenia, Ukraine). There are also varieties
that reflect expanding-circle varieties of Russian (Ecuador, Haiti).
Given the lack of alignment between the datasets, it is difficult
to evaluate whether or not these expanding-circle varieties are

15One approach that could remove the few noisy regions that show up in Russian
and, later, in German is to use population-based sampling to reduce the amount of
data per country before selecting regional varieties.
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TABLE 6 | Classification performance for French regions, web, and twitter corpora, CxG-2 features.

Prec (CC) Recall (CC) F1 (CC) Prec (TW) Recall (TW) F1 (TW)

BE 0.94 0.86 0.90 BE 0.97 0.94 0.96

BF 0.98 0.98 0.98 BF – – –

CH 0.92 0.93 0.93 CH – – –

CM 1.00 1.00 1.00 CM – – –

DZ 0.99 0.99 0.99 DZ – – –

FR 0.92 0.95 0.93 FR 0.97 0.98 0.98

GD 0.94 0.92 0.93 GD – – –

HT – – – HT 1.00 1.00 1.00

LU 0.97 0.96 0.96 LU 1.00 1.00 1.00

NC 0.96 0.95 0.95 NC – – –

PF 0.97 0.97 0.97 PF – – –

RE 0.94 0.95 0.95 RE – – –

SN 0.98 0.98 0.98 SN – – –

TN 0.98 0.97 0.98 TN – – –

AVG 0.96 0.96 0.96 AVG 0.98 0.98 0.98

robust. This reflects another limitation of an entirely data-driven
approach: when is the use of Russian in a country a stable
dialect and when is it a non-native variety that reflects short-term
military or economic connections? The capacity of this syntactic
model to predict both suggests that, in empirical terms, the
distinction is not important. It could be the case, however, that
some varieties are more robust than others to feature pruning.
For reasons of space, similarities between Russian varieties are
not shown.

Because they have fewer national varieties each, we end with
Arabic, German, and Portuguese together (this table is shown
in Appendix 2 (Supplementary Material)). Starting with Arabic,
the regional comparison is made difficult by the little overlap
between the two datasets: only data from Syria is consistent
across registers. Focusing on the Twitter model, then, we note
that it does contain examples of several traditional dialect
groups: Algerian (DZ) represents the Maghrebi group, Egypt
(EG) represents the Egyptian group, Iraq (IQ) and Syria (SY)
represent the Mesopotamian group, Jordan (JO) and Palestine
(PS) represent the Levantine group, and Kuwait (KW) represents
the Arabian group. In addition, there is a Russian (RU) dialect
of Arabic, reflecting an emerging outer-circle variety. Given the
sparsity of regions shared across the two datasets, we do not
explore further the relationships between varieties. The point
here is to observe that the models on both datasets maintain a
high accuracy across regions and that the available countries do
represent many traditional dialect groups.

For German, Twitter provides only a few inner-circle varieties.
Here we see, again, that the most central or proto-typical dialect
(Germany, DE) has the lowest overall performance while the
highest performance is found in less-central varieties. While
other languages have national varieties representing countries
that we expect to see, the German web corpus contains three
regions that are almost certainly noise: the PW (Palau), SO
(Somalia), and TL (East Timor) domains are most likely not
used for regional web pages but rather for other purposes. No

other language has this sort of interference by non-geographic
uses of domain names (except that Russian also picks up
data from .so and .pw). Most likely this results from having
a frequency threshold that is too low. Because a classifier
attempts to distinguish between all classes, the inclusion of
noisy classes like this may reduce performance but will never
improve performance. Thus, we leave this model as-is in order
to exemplify the sorts of problems that an entirely data-driven
methodology can create. Ignoring these varieties, however, the
web-based model does provide a well-performing model of
Austria (AU), Switzerland (CH), Germany (DE), Luxembourg
(LU), and Poland (PL).

For Portuguese, again the Twitter model only covers major
varieties: Brazil and Portugal. The web corpus, unlike German,
does not show any noisy regions but it does include two expected
African varieties: Angola (AO) and Cabo Verde (CV). While the
model performs well, we will not delve more deeply into the
region-specific results.

The purpose of this section has been to examine the prediction
accuracies across national varieties alongside the similarity
between varieties. With the exception of some noisy regions for
German and Russian, these results show that the model both is
able tomake accurate predictions about syntactic variation as well
as to make reasonable representations of the aggregate similarity
between national varieties.

3.4. Empirical Measures of Region
Uniqueness
We have seen in the sections above that outer-circle or
expanding-circle varieties often have higher predictive accuracies
even though they are less proto-typical and less dominant.
For example, these sorts of varieties have been shown to have
lower feature densities for these CxG grammars (Dunn, 2019b),
which indicates that the grammars are missing certain unique
constructions. Regardless, these varieties remain unique in that
they are easier to distinguish from more central varieties.
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FIGURE 6 | Region similarity by cosine between feature weights, French (above) and Spanish (below) CxG-2.

For example, the English Twitter models show themain inner-
circle varieties as having the lowest F1 scores: Australia (0.83),
Canada (0.81), United States (0.87), and the United Kingdom
(0.89). This phenomenon is not limited to English, however. In
the French web model, again the inner-circle (i.e., European)
varieties have the lowest F1 scores: Belgium (0.90), Switzerland
(0.93), and France (0.93). The other languages do not present
examples as clear as this; for example, Arabic and German and
Portuguese do not contain enough varieties to make such a
comparison meaningful. Russian and Spanish are characterized
by a large number of varieties that are contiguous in relatively
dense regions, thus showing a less striking colonial pattern. Why
is it that, in cases of non-contiguous dialect areas, the inner-circle
varieties have the lowest prediction accuracy?

In qualitative terms, there are several possible explanations.
First, it could be the case that these inner-circle varieties have
strongly influenced the other varieties so that parts of their

syntactic profiles are replicated within the other varieties. Second,
it could be that there is an immigration pipeline from outer-
circle to inner-circle countries, so that the samples of UK English,
for example, also contain speakers of Nigerian English. Third, it
could be the case that media and communications are centered
around inner-circle markets so that outer-circle varieties are
influenced by one or another center of power. Additional factors
could include the strength of standardization across languages,
the number of L1 vs. L2 speakers that are represented for each
language, and the average level of education for each country.
None of these possibilities can be distinguished in empirical
terms within the current study.

We have shown above, however, that this approach to
dialectometry can (i) make accurate predictions about variety
membership and (ii) can create reasonable representations of
aggregate syntactic similarity between regions. In this section we
formulate an approach to identifying, in purely synchronic terms,
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TABLE 7 | Classification performance for Spanish regions, web, and twitter corpora, CxG-2 features.

Prec (CC) Recall (CC) F1 (CC) Prec (TW) Recall (TW) F1 (TW)

AR 0.94 0.94 0.94 AR 0.85 0.90 0.87

CL 0.99 0.98 0.98 CL 0.97 0.98 0.97

CO 0.95 0.94 0.95 CO 0.95 0.93 0.94

CR 1.00 1.00 1.00 CR 0.91 0.87 0.89

CU 0.96 0.97 0.97 CU 0.98 0.97 0.98

EC 0.96 0.96 0.96 EC 0.98 0.98 0.98

ES 0.94 0.95 0.94 ES 0.94 0.96 0.95

GT 0.96 0.96 0.96 GT 0.94 0.95 0.95

HN 0.93 0.94 0.94 HN 0.94 0.92 0.93

MX 0.94 0.93 0.93 MX 0.92 0.93 0.93

NI 0.92 0.86 0.89 NI 0.98 0.98 0.98

PA 0.98 0.98 0.98 PA 0.95 0.95 0.95

PE 0.94 0.92 0.93 PE – – –

PY 0.94 0.96 0.95 PY 0.93 0.94 0.93

SV 0.95 0.94 0.95 SV 0.93 0.94 0.93

UY 0.91 0.93 0.92 UY 0.88 0.85 0.86

VE 0.97 0.98 0.98 VE 0.94 0.93 0.93

AVG 0.95 0.95 0.95 AVG 0.94 0.94 0.94

TABLE 8 | Classification performance for Russian regions, web, and twitter corpora, CxG-2 features.

Prec (CC) Recall (CC) F1 (CC) Prec (TW) Recall (TW) F1 (TW)

AZ 0.94 0.94 0.94 AZ – – –

BG 1.00 1.00 1.00 BG – – –

BY 0.98 0.95 0.97 BY 0.91 0.85 0.88

EC 0.96 0.98 0.97 EC – – –

EE 0.86 0.89 0.87 EE – – –

GE 0.95 0.95 0.95 GE – – –

HT 0.99 0.99 0.99 HT – – –

KG 0.99 0.99 0.99 KG – – –

KZ 0.96 0.93 0.94 KZ – – –

LT 0.94 0.93 0.94 LT – – –

LV 0.92 0.91 0.91 LV – – –

MD 0.98 0.97 0.97 MD – – –

RU 0.90 0.90 0.90 RU 0.93 0.96 0.94

SI 1.00 1.00 1.00 SI – – –

TJ 0.95 0.97 0.96 TJ – – –

UA 0.93 0.94 0.94 UA 0.98 0.96 0.97

UZ 0.92 0.92 0.92 UZ – – –

AVG 0.95 0.95 0.95 AVG 0.94 0.94 0.93

which varieties within a model represent central inner-circle
countries that are the sources of influence for other outer-circle
countries. The observations about prediction accuracy depend
on the evaluation of the model, but we want this measure of
uniqueness to depend on the model of variation itself.

The feature weights represent the positive and negative
importance of each syntactic feature for each national variety.
We used cosine similarities between feature weights above to

find the most similar regions. Here we are interested in the
overall uniqueness of a particular dialect: which varieties are
in general not similar to any other varieties? We calculate this
by summing the Spearman correlations between each variety
and all other varieties. For example, if UK English has similar
ranks of features as Irish and New Zealand English, then this
will produce a high value. But if Swiss English generally has low
relationships between feature ranks with other varieties, then this
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TABLE 9 | Variety uniqueness by language using spearman correlation, web CxG-2 model.

English French Russian Spanish

1 US -0.46 1 FR -0.49 1 TJ 0.04 1 ES -0.24

2 UK -0.25 2 RE -0.36 2 EE 0.15 2 PY -0.05

3 CA -0.22 3 CH -0.32 3 SI 0.17 3 UY -0.04

4 NZ -0.18 4 LU -0.26 4 LT 0.23 4 AR -0.02

5 AU -0.16 5 PF -0.18 5 EC 0.23 5 CO 0.00

6 IE -0.14 6 SN -0.15 6 KZ 0.23 6 CL 0.03

7 PH -0.06 7 BE -0.10 7 UA 0.23 7 HN 0.04

8 MY -0.05 8 NC -0.08 8 LV 0.26 8 CU 0.06

9 IN -0.01 9 BF -0.03 9 GE 0.32 9 MX 0.10

10 NG 0.02 10 GD -0.02 10 HT 0.35 10 NI 0.12

11 CH 0.05 11 TN 0.05 11 KG 0.35 11 GT 0.13

12 ZA 0.06 12 DZ 0.07 12 UZ 0.36 12 SV 0.15

13 PT 0.13 13 CM 0.25 13 AZ 0.36 13 CR 0.18

14 PK 0.14 – – – 14 BY 0.47 14 VE 0.19

– – – – – – 15 RU 0.56 15 EC 0.23

– – – – – – 16 MD 0.67 16 PE 0.25

– – – – – – 17 BG 0.84 17 PA 0.32

will produce a low value. These uniqueness values are shown
in Table 9 for each of the languages with a large number of
varieties, calculated using CxG-2 web-based models. Spearman
correlations are preferred here instead of Pearson correlations
because this reduces the impact of the distance between varieties
(which the classifier is trying to maximize).

The uniqueness of each region reflects, at least for non-
contiguous languages like English and French, the degree to
which a variety belongs in the inner-circle. For example, the top
three countries for English are the United States, the UK, and
Canada; for French they are France, Réunion (the only French
overseas department in the model), and Switzerland. In both
cases the uniqueness of varieties with this measure reflects the
same scale that categorizations like inner and outer circle are
attempting to create. The most unique variety of Spanish is the
only non-contiguous variety (from Spain). The interpretation of
the rest of the regions on this scale is made more difficult because
they are of course densely situated. Notice, also, that while
English and French have a scale with higher uniqueness (with
starting values of -0.46 and -0.49), both Spanish and Russian
have a scale with higher similarity (with ending values of 0.84
and 0.32). Russian has no negative values at all, for example.
The most unique varieties of Russian are from Tajikistan,
Estonia, and Slovenia. Rather than being inner-circle, as in
French and English, these are more peripheral varieties. While
this uniqueness measure still reflects an important property
of the relationships between varieties, then, its interpretation
is complicated by the different behavior of languages with
contiguous or non-contiguous varieties.

The purpose of this section has been to show that the feature
weights from the model can also be used to create a general
measure of variety uniqueness which reflects an important
property of the status of varieties. While qualitative work creates
categories like inner-circle or outer-circle, this produces a scale

that represents similar intuitions. The difference is that the notion
of inner-circle depends on historical and social information about
variety areas, with little linguistic analysis, while this scale is
entirely linguistic with no historical information whatsoever.

3.5. Empirical Evidence for World Englishes
How can we connect data-driven approaches to syntactic
variation with qualitative assessments within sociolinguistics?
In this section we compare the model of English variation in
this paper with traditional classifications from the World
Englishes paradigm into inner-circle, outer-circle, and
expanding-circle varieties.

First we look at classification accuracy (c.f., Table 5). We
expect that inner-circle varieties will be more closely clustered
together as they are more closely related and are used in mainly
monolingual contexts. There is a significant difference between
inner-circle and outer-circle performance in both datasets using
a two-tailed t-test (p = 0.0183 for CC and p = 0.004 for TW).
Upon inspection we see that the outer-circle varieties have higher
accuracies, in part because they are more unique.

Second, we look at the degree of fit between the grammar and
each regional variety using the relative average frequency: how
often do constructions in the grammar occur in each variety?
In other words, because the grammar is learned on a different
dataset which is likely skewed toward inner-circle varieties, we
would expect that the grammar itself would better describe these
varieties. A higher average frequency means a better default
description (i.e., because the samples are all the same length
and so should contain approximately the same number of
constructions per sample). We again divide the varieties into
inner-circle and outer-circle and test the significance of this
difference using a two-tailed t-test: the result is significant (p =

0.0011 for CC and p = 0.0004 for TW). In this case, inspection
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shows that the inner-circle varieties have higher frequencies than
the outer-circle varieties.

Third, we look at uniqueness values as calculated in Table 9.
First, we see that there is a clear separation between inner-circle
and outer-circle varieties, with the exception of South African
English. But is the difference significant? Again using a two-tailed
t-test there is a significant difference, although to a lesser degree
p = 0.024 for CC).

In all three cases, there is a significant difference between
attributes of inner-circle and outer-circle varieties: the proto-
typical inner-circle varieties are better described by the grammar
but less distinguishable in terms of classification accuracy and
in terms of aggregate similarities. There is a consistent and
significant distinction, even when the model of varieties of
English makes no geographic or sociohistorical assumptions.

4. DISCUSSION

This paper has shown (i) that whole-grammar dialectometry
and data-driven language mapping can be brought together to
produce models capable of predicting the membership of held-
out samples with a high degree of accuracy. In addition, we
have shown (ii) that these models do not depend on only a
small number of highly predictive variants, (iii) that there is a
strong association between classification errors across registers
in those languages that are paired across both datasets, (iv) that
the models can be used to create reasonable representations
of the aggregate similarity between varieties, and (v) that
measures of uniqueness based on these models provide an
empirical approximation of categorical notions like inner-circle
vs. outer-circle varieties. Taken together, these results show that
a computational approach to dialectology can overcome the
limitations of traditional small-scale methods. The discussion
in this section focuses on two questions: First, how do these
computational models of dialect relate to previous qualitative
understandings of dialect? Second, what does the increased
scale and scope of these models mean for interactions between
sociolinguistics and computational linguistics?

4.1. Categorizing Varieties
At its core, the goal of computational dialectology is to provide
precise global-scale models of regional linguistic variation that
are both replicable and falsifiable. In other words, these models
are descriptions of how linguistic structure (specifically, syntax as
represented by CxG) varies across national varieties. But we also
want to explain linguistic variation in historical or social terms:
what real-world events caused the spread of these languages in
order to create the aggregate relationships that we now observe?
While such historical explanations are often ad hoc, this paper has
attempted to explain synchronic variation using only empirical
measures. While it is certainly the case that the concepts used
here (predictive accuracy, region similarity, region uniqueness)
tell us about varieties, it is not the case that they tell us the
same things as traditional qualitative studies. In this case, two
clear differences between this paper and traditional approaches
to dialectology and dialectometry are (i) the focus on global

variation with countries as the smallest spatial unit and (ii) the
focus on written as opposed to spoken language.

First, we have a distinction between places (i.e., English used
in the United States) and varieties (i.e., American English). There
is a claim, whether implicit or explicit, in traditional dialectology
that these two are not the same thing. For example, some speakers
(older, male, rural, less educated) are taken asmore representative
than others (younger, urban, immigrant). A farmer born and
raised in Kansas is assumed to be a local, a representative of
American English; an IT specialist born in India but educated
and living in Kansas is not. The argument in this paper, and
perhaps in corpus-based research more broadly, is that this
starting assumption is problematic. In short, we take American
English to be English as used in the United States. We make no
effort to exclude certain participants. This approach, then, can
be situated within a larger movement away from NORM-based
studies (Cheshire et al., 2015; Scherrer and Stoeckle, 2016).

Second, the dialect areas used in this paper ignore distinctions
between native speakers and non-native speakers. Similar to the
idea of locals vs. non-locals, the claim is that some places that
produce a great deal of English data (for example, Nigeria or
Malaysia) do not have the same status as American English
as sources of ground-truth English data. This distinction is
clearly a slippery-slope: while some language learners are not
fully fluent, people who use a language like English for regular
communicative functions cannot be categorized given a priori
reasonings. We take this instead as an empirical question:
language mapping is used to discover countries where English
is regularly and robustly produced and dialect modeling is used
to validate that these countries have distinct and predictable
varieties. The social status of different English users (i.e., native
vs. non-native) is entirely non-empirical and irrelevant. Given
that these datasets do not come with individual demographics,
however, it is important to also evaluate how well they reflect
known demographic properties of the places they are taken to
represent in order to ensure the connection between places and
syntactic variants (Dunn and Adams, 2019).

Third, a distinction is sometimes made between varieties and
dialects. For example, outer-circle and expanding-circle dialects
are often called varieties. But what is the basis of this distinction?
The argument in this paper is simple: the status of Nigerian
English or Cameroon French or Angolan Portuguese is an
empirical matter. The question is whether we can find these
varieties using data-driven language mapping and can model
their syntactic profile accurately enough to distinguish them from
other varieties consistently across registers.

While previous work in dialectology and dialectometry
focuses specifically on variation within individual countries, this
paper has focused on global variation across many national
varieties. One on the hand, this is important because the seven
languages studied in this paper are used around the world: any
local study will overlook important interactions. On the other
hand, this means that these results are difficult to compare
with previous small-scale studies. How could these methods be
adapted to traditional problems of, for example, dividing Britain
or the United States into dialect regions? First, there is no explicit
spatial information provided to the models in this paper because
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the classes are all pre-defined. On approach would be to use
existing sub-national administrative boundaries (such as postal
codes) and apply a meta-classifier to evaluate different groupings.
Which combinations lead to the highest predictive accuracy?
This could be undertaken with the Twitter dataset but not with
the web-crawled dataset.

4.2. Sociolinguistics and Computational
Linguistics
Why should sociolinguistics more broadly care about a
computational approach to dialectology? The first reason is
simply a matter of descriptive adequacy: the models of variation
in this paper have a broad and replicable feature space that is
ultimately more meaningful and robust than multivariate models
containing only a few features. While the grammars used are not
explored further here, quantitative and qualitative evaluations are
available elsewhere (Dunn, 2017, 2018a,b, 2019a). These models
are more meaningful because they make predictions about
categories as a whole (i.e., American English). They are more
robust because they are evaluated against held-out samples using
predictive accuracy. For both of these reasons, computational
models of variation provide more accurate descriptions; this
is important for quantitative sociolinguistics, then, simply as
an extension of existing methods for discovering externally-
conditioned variants (here, conditioned by geography). On the
other hand, this approach of combining grammar induction and
text classification produces models that, while easily understood
in the aggregate, ultimately give us intricate and detailed
descriptions that are difficult for human analysts to understand.
The question is, do we expect human analysts to have full and
complete meta-awareness for all variants in all national varieties
of a language?

Beyond this, however, sociolinguistics is currently limited to
small-scale studies, as discussed in the introduction. But the
languages studied in this paper are used in many countries
around the world. Each of these varieties has the potential
to influence or be influenced by other distant varieties. In
the same way, limiting a study to a handful of constructions
ignores most of the functional capability of a language. Thus,
current methods provide tiny snapshots of variation. But, moving
forward, our ability to further understand syntactic variation and
change depends on modeling entire grammars across all relevant
varieties. While recent work has increased the number of features
in order to produce larger-scale studies (Szmrecsanyi, 2013; Guy
and Oushiro, 2015), such features remain language-specific and
are defined a priori. On the other hand, however, a continued
question for work that is bottom-up, such as this paper, is how
to evaluate the connection between corpus-based models (which
have been shown to be stable, robust, and highly accurate from
an internal evaluation) and speech communities in the real world.
How can computational descriptions and qualitative fieldwork be
better combined?

Given the higher performance of lexical features in this paper,
why should work in NLP that is not directly concerned with
linguistic variation take a CxG or some other syntactic approach?
There is an important distinction between topic variation (i.e.,

content arising from differences in human geography) and
latent variation (i.e., structural variations arising from differences
in variety). Any purely-lexical model is unable to distinguish
between these two sources of information: Is this text written by
someone from New Zealand or is it about New Zealand? Does
this Tweet describe a vacation in New Zealand or was it written
by a New Zealander on a vacation in the United States? Any
model that is unable to distinguish between topical and latent
properties within geo-referenced datasets will confuse these two
types of cases. On the other hand, this is an incomplete approach
the problem: how can we distinguish between topical variation,
human geography-based varation, and linguistic variation within
lexical items in order to have a better understanding of how these
languages are used around the world? This remains a problem for
future research.

Why should computational linguistics, and artificial
intelligence more broadly, care about dialectology? As
computational models become more important to society,
it is essential that such models reflect all speakers equally. In
spite of this, many models are biased against certain populations:
either directly encoding the biases of individuals (Bolukbasi
et al., 2016) or indirectly encoding a preference for dominant
inner-circle varieties (Jurgens et al., 2017). Dialectometry can
be used to prevent indirect biases against varieties like Nigerian
English or Cameroon French by, first, identifying the relevant
varieties that need to be considered and, second, providing a
method to optimize language models for region-specific tasks.
For example, if we can identify the membership of a sample
that is part of an independent text classification problem (i.e.,
identifying helpful reviews or removing harrassing messages),
then we can evaluate the degree to which existing models prefer
dominant varieties (i.e., only suggesting reviews written in
American English). This is important to ensure that inner-circle
dominated training sets do not encode implicit biases against
other varieties. It is also important because computational
dialectometry can potentially improve equity between varieties
in a way that traditional methods cannot.
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