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Language grounded image understanding tasks have often been proposed as a

method for evaluating progress in artificial intelligence. Ideally, these tasks should test

a plethora of capabilities that integrate computer vision, reasoning, and natural language

understanding. However, the datasets and evaluation procedures used in these tasks

are replete with flaws which allows the vision and language (V&L) algorithms to achieve a

good performance without a robust understanding of vision and language. We argue for

this position based on several recent studies in V&L literature and our own observations

of dataset bias, robustness, and spurious correlations. Finally, we propose that several

of these challenges can be mitigated by creation of carefully designed benchmarks.

Keywords: computer vision, natural language understanding, visual question answering, captioning, dataset bias,

visual Turing test

1. INTRODUCTION

Advancements in deep learning and the availability of large-scale datasets have resulted in great
progress in computer vision and natural language processing (NLP). Deep convolutional neural
networks (CNNs) have enabled unprecedented improvements in classical computer vision tasks,
e.g., image classification (Russakovsky et al., 2015) and object detection (Lin et al., 2014). Similarly,
various deep learning based approaches have enabled enormous advances in classical NLP tasks,
e.g., named entity recognition (Yadav and Bethard, 2018), sentiment analysis (Zhang et al.,
2018b), question-answering (Saeidi et al., 2018; Reddy et al., 2019), and dialog systems (Chen
et al., 2017). Building upon these advances, there is a push to attack new problems that enable
concept comprehension and reasoning capabilities to be studied at the intersection of vision and
language (V&L) understanding. There are numerous applications for V&L systems, including
enabling the visually impaired to interact with visual content using language, human-computer
interaction, and visual search. Human-robot collaboration would be greatly enhanced by giving
robots understanding of human language to better understand the visual world.

However, the primary objective of many scientists working on V&L problems is to have them
serve as stepping stones toward a visual Turing test (Geman et al., 2015), a benchmark for progress
in artificial intelligence (AI). To pass the visual Turing test, a V&L algorithm must demonstrate a
robust understanding of natural language and an ability to visually ground the linguistic concepts
in the form of objects, their attributes, and their relationships.

Integrating vision and language provides a test-bed for assessing both natural language
understanding and goal-directed visual understanding. V&L tasks can demand many disparate
computer vision and NLP skills to be used simultaneously. For example, the same system may
be required to simultaneously engage in entity extraction, entailment and co-reference resolution,
visual and linguistic reasoning, object recognition, attribute detection, and much more. Most V&L
benchmarks capture only a fraction of the requirements of a rigorous Turing test; however, we
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argue that a rigorous evaluation should test each capability
required for visual and linguistic understanding independently,
which will help in assessing if an algorithm is right for the right
reasons. If it is possible to do well on a benchmark by ignoring
visual and/or linguistic inputs, or by merely guessing based on
spurious correlations, then it will not satisfy these requisites for a
good test.

Many V&L tasks have been proposed, including image and
video captioning (Mao et al., 2015; Yu et al., 2016), visual
question answering (VQA) (Antol et al., 2015; Zhang et al.,
2016; Agrawal et al., 2017, 2018; Kafle and Kanan, 2017a,b),
referring expression recognition (RER) (Kazemzadeh et al.,
2014), image retrieval (Mezaris et al., 2003; Johnson et al.,
2015), activity recognition (Yatskar et al., 2016; Zhao et al.,
2017a), and language-guided image generation (Reed et al.,
2016; Zhang et al., 2017). A wide variety of algorithms have
been proposed for each of these tasks, producing increasingly
better results across datasets. However, several studies have
called into question the true capability of these systems and
the efficacy of current assessment methods (Kafle and Kanan,
2017a; Cirik et al., 2018; Madhyastha et al., 2018). Systems
are heavily influenced by dataset bias and lack robustness to
uncommon visual configurations (Agrawal et al., 2017; Kafle and
Kanan, 2017a; Madhyastha et al., 2018), but these are often not
measured and call into question the value of these benchmarks.
These issues also impact system assessment and deployment.
Systems can amplify spurious correlations between gender and
potentially unrelated variables in V&L problems (Zhao et al.,
2017a; Hendricks et al., 2018), resulting in the possibility of severe
negative real-world impact.

In this article, we outline the current state of V&L research.
We identify the challenges in developing good algorithms,
datasets, and evaluation metrics. We discuss issues unique to
individual tasks as well as identify common shortcomings shared
across V&L benchmarks. Finally, we provide our perspective
on potential future directions for V&L research. In particular,
we argue that both content and evaluation procedure of future
V&L benchmarks should be carefully designed tomitigate dataset
bias and superficial correlations. To this end, we propose a few
concrete steps for the design of future V&L tasks that will serve
as robust benchmarks for measuring progress in natural language
understanding, computer vision, and the intersection of the two.

2. A BRIEF SURVEY OF V&L RESEARCH

Multiple V&L tasks have been proposed for developing and
evaluating AI systems. We briefly describe the most prominent
V&L tasks and discuss baseline and state-of-the-art algorithms.
Some of these tasks are shown in Figure 1.

2.1. Tasks in V&L Research
Bidirectional sentence-to-image and image-to-sentence retrieval
problems are among the earliest V&L tasks (Mezaris et al.,
2003). Early works dealt with simpler keyword-based image
retrieval (Mezaris et al., 2003), with later approaches using deep
learning and graph-based representations (Johnson et al., 2015).
Visual semantic role labeling requires recognizing activities and

semantic context in images (Yatskar et al., 2016; Zhao et al.,
2017a). Image captioning, the task of generating descriptions for
visual content, involves both visual and language understanding.
It requires describing the gist of the interesting content in
a scene (Lin et al., 2014; Donahue et al., 2015), while also
capturing specific image regions (Johnson et al., 2016). Video
captioning adds the additional complexity of understanding
temporal relations (Yu et al., 2016). Unfortunately, it is difficult
to evaluate the quality and relevance of generated captions
without involving humans (Elliott and Keller, 2014). Automatic
evaluation metrics (Papineni et al., 2002; Lin, 2004) are incapable
of assigning due merit to the large range of valid and relevant
descriptions for visual content and are poorly correlated with
human judgment, often ranking machine-generated captions as
being better than human captions (Bernardi et al., 2016; Kilickaya
et al., 2017).

VQA involves answering questions about visual content.
Compared to captioning, it is better suited for automatic
evaluation as the output can be directly compared against
ground truth answers as long as the answers are one or
perhaps two words long (Antol et al., 2015; Kumar et al., 2016;
Goyal et al., 2017). VQA was proposed as a form of visual
Turing test, since answering arbitrary questions could demand
many different skills to facilitate scene understanding. While
many believed VQA would be extremely challenging, results
on the first natural image datasets quickly rivaled humans,
which was in large part due to question-answer distribution
bias being ignored in evaluation (Agrawal et al., 2016, 2017,
2018; Zhang et al., 2016; Kafle and Kanan, 2017a). Results
were good for common questions, but systems were fragile and
were incapable of handling rare questions or novel scenarios.
Later datasets attempted to better assess generalization. The
Task Directed Image Understanding Challenge (TDIUC) tests
generalization to multiple question-types (Kafle and Kanan,
2017a), Compositional VQA (C-VQA) evaluates the ability to
handle novel concept compositions (Agrawal et al., 2017), and
VQA under Changing Priors (VQA-CP) tests generalization to
different answer distributions (Agrawal et al., 2018). It is harder
to excel on these datasets by just exploiting biases. However, the
vast majority of the questions in these datasets do not require
complex compositional reasoning. The CLEVR dataset attempts
to address this by generating synthetic questions demanding
complex chains of reasoning about synthetic scenes consisting
of simple geometric shapes (Johnson et al., 2017a). Similar to
CLEVR, the GQA dataset measures compositional reasoning
in natural images by asking long and complex questions in
visual scenes involving real-world complexities (Hudson and
Manning, 2019). Video Question Answering has the additional
requirement of understanding temporal dynamics (Zhao et al.,
2017b; Zhu et al., 2017). We refer readers to survey articles for
extensive reviews on VQA (Kafle and Kanan, 2017b) and image
captioning (Bernardi et al., 2016).

With VQA, models do not have to provide visual evidence
for their outputs. In contrast, RER requires models to provide
evidence by either selecting among a list of possible image
regions or generating bounding boxes that correspond to
input phrases (Kazemzadeh et al., 2014; Rohrbach et al., 2016;

Frontiers in Artificial Intelligence | www.frontiersin.org 2 December 2019 | Volume 2 | Article 28

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Kafle et al. Challenges and Prospects in Vision and Language Research

FIGURE 1 | Common tasks in vision and language research.

Plummer et al., 2017). Since the output of an RER query
is always a single box, it is often quite easy to guess the
correct box. To counter this, Acharya et al. (2019) proposed
visual query detection (VQD), a form of goal-directed object
detection, where the query can have 0–15 valid boxes making
the task more difficult and more applicable to real-world
applications. FOIL takes a different approach and requires a
system to differentiate invalid image descriptions from valid
ones (Shekhar et al., 2017). Natural Language Visual Reasoning
(NLVR) requires verifying if image descriptions are true
(Suhr et al., 2017, 2018).

Unlike the aforementioned tasks, EmbodiedQA requires the
agent to explore its environment to answer questions (Das et al.,
2018). The agent must actively perceive and reason about its
visual environment to determine its next actions. In visual dialog,
an algorithm must hold a conversation about an image (Das
et al., 2017a,b). In contrast to VQA, visual dialog requires
understanding the conversation history, which may contain
visual co-references that a system must resolve correctly. The
idea of conversational visual reasoning has also been explored
in Co-Draw (Kim et al., 2019), a task where a teller describes
visual scenes and a drawer draws them without looking at the
original scenes.

Of course, it is impossible to create an agent that knows
everything about the visual world. Agents are bound to encounter
novel situations, and handling these situations requires them to
be aware of their own limitations. Visual curiosity addresses this
by creating agents that pose questions to knowledgeable entities,
e.g., humans or databases, and then they incorporate the new
information for future use (Misra et al., 2018; Yang et al., 2018;
Zhang et al., 2018a).

2.2. V&L Algorithms
In general, V&L algorithms have three sub-systems:
(1) visual processing, (2) language processing, and (3)
multi-modal integration.

For visual processing, almost all algorithms use CNN features.
Typically, ImageNet pre-trained CNNs are used for natural
scene datasets and shallow CNNs are used for synthetic scene
datasets (Santoro et al., 2017). Until 2017, most algorithms
for natural scenes used CNN features directly; however, more
recent algorithms have switched to using CNN region proposal
features (Anderson et al., 2018). Another recent trend is the use
of graph-based representations for image retrieval (Johnson et al.,
2015), image generation (Johnson et al., 2018), VQA (Yi et al.,
2018), and semantic knowledge incorporation (Yi et al., 2018),
due to their intuitiveness and suitability for symbolic reasoning.

For language representation, most V&L systems process
words using recurrent neural networks (RNNs). For tasks
that take queries as input, word tokens fed to the RNN are
commonly learned as vector embeddings in an end-to-end
manner with the network being trained on a downstream-
task (Agrawal et al., 2018; Kim et al., 2018; Zhang et al.,
2018a). Recent V&L systems leverage distributed representations
of words trained on large corpora of natural language text.
Common choices include word2vec (Mikolov and Dean, 2013),
GloVe (Pennington et al., 2014), and fasttext (Singh et al.,
2019). A few approaches have incorporated explicit syntax
and semantic information from language, such as part-of-
speech based semantic parsing (Agrawal et al., 2018) and
dependency trees (Cao et al., 2018); however, distributed vector
representations remain the dominant language representation for
most recent systems.
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A variety of approaches have been explored for fusing
the outputs of the vision and language processing systems.
Fusion mechanisms range from simple techniques, such as
concatenation and Hadamard products (Antol et al., 2015; Kafle
and Kanan, 2016), to more intricate methods, e.g., bilinear
fusion (Fukui et al., 2016), which are argued to better capture
interactions between visual and linguistic representations.
Attention mechanisms that enable extraction of query-relevant
information have also been heavily explored (Yang et al., 2016;
Anderson et al., 2018; Kim et al., 2018; Yu et al., 2018).
Attention mechanisms learn to assign higher importance to
relevant information using both top-down and bottom-up
pathways (Anderson et al., 2018).

Some V&L tasks require compositional reasoning
mechanisms. Typically, these mechanisms enable multiple
explicit processing steps for answering complex queries, e.g,
recognizing visual objects, filtering query-relevant visual regions,
and describing visual entities. Modular networks are one of the
best known compositional reasoningmechanisms (Andreas et al.,
2016; Hu et al., 2017; Yu et al., 2018). Compositional reasoning
can also be achieved by capturing pairwise interactions
between V&L representations (Santoro et al., 2017) and by
recurrently extracting and consolidating information from the
input (Hudson and Manning, 2018). These approaches directly
learn reasoning from data by utilizing structural biases provided
by the model definition.

While these algorithms show impressive new capabilities,
their development and evaluation has been split into two distinct
camps: the first camp focuses on monolithic architectures
that often excel at natural image V&L tasks (Kim et al.,
2016; Yang et al., 2016), whereas the second camp focuses
on compositional architectures, that excel at synthetically
generated scenes testing for compositional reasoning (Santoro
et al., 2017; Hudson and Manning, 2018). Algorithms
developed for one camp are often not evaluated on the
datasets from other camp, which makes it difficult to gauge
the true capabilities of V&L algorithms. Shrestha et al.
(2019) showed that most of the algorithms developed for
natural image VQA do not perform well on synthetic
compositional datasets and vice-versa. The authors further
propose a simple architecture that compares favorably against
state-of-the-art algorithms from both camps, indicating
that specialized mechanisms such as: attention, modular
reasoning and fusion mechanisms, used in more intricate
methods may been over-engineered to perform well on
selected datasets.

3. SHORTCOMINGS OF V&L RESEARCH

Progress in V&L research appears to be swift. For several
V&L benchmarks, algorithms now rival human performance
(Bernardi et al., 2016; Johnson et al., 2017b). However, these
results are misleading because they ensue from the shortcomings
in benchmarks rather than an algorithm’s capability of true
V&L understanding. In this section, we describe several
such shortcomings.

3.1. Dataset Bias
Dataset bias is a serious challenge faced by both computer
vision (Torralba and Efros, 2011; Tommasi et al., 2017) and
NLP (Bolukbasi et al., 2016; Zhao et al., 2017a) systems. Because
V&L systems operate at the intersection of the two, unwanted
and unchecked biases are very prevalent in V&L tasks too. Since
the data used for training and testing a model are often collected
homogeneously (Lin et al., 2014; Antol et al., 2015; Goyal et al.,
2017), they share common patterns and regularities. Hence, it is
possible for an algorithm to get good results by memorizing those
patterns, undermining our efforts to evaluate the understanding
of vision and language. The biases in datasets can stem from
several sources, can be hard to track, and can result in severely
misleading model evaluation. Two of the most common forms of
bias stem from bias in crowd-sourced annotators and naturally
occurring regularities. Finally, “photographer’s bias” is also
prevalent in V&L benchmarks, because images found on the web
share similarities in posture and composition due to humans
having preferences for specific views (Azulay and Weiss, 2018).
Since the same biases and patterns are also mirrored in the
test dataset, algorithms can simply memorize these superficial
patterns (If the question has the pattern “Is there an OBJECT in
the picture?,” then answer “yes”) instead of learning to actually
solve the intended task (answer “yes” only if the OBJECT is
actually present). If this bias is not compensated for during
evaluation, benchmarks may only test a very narrow subset of
capabilities. This can enable algorithms to perform well for the
wrong reasons and algorithms can end up catastrophically failing
in uncommon scenarios (Agrawal et al., 2018; Alcorn et al., 2019).

Several studies demonstrate the issue of bias in V&L tasks. For
example, blind VQA models that “guess” the answers without
looking at images show relatively high accuracy (Kafle and
Kanan, 2016). In captioning, simple nearest neighbor-based
approaches yield surprisingly good results (Devlin et al., 2015).
Dataset bias occurs in other V&L tasks as well (Shekhar et al.,
2017; Zhao et al., 2017a; Cirik et al., 2018; Zellers et al., 2018).
Recent studies (Zhao et al., 2017a) have shown that algorithms
not only mirror the dataset bias in their predictions, but in fact
amplify the effects of bias (see Figure 2).

Numerous studies have sought to quantify and mitigate the
effects of answer distribution bias on an algorithm’s performance.
As a straightforward solution, Zhang et al. (2016) and Kafle and
Kanan (2017a) proposed balanced training sets with a uniform
distribution over possible answers. This is somewhat effective for
simple binary questions and synthetically generated visual scenes,
but it does not address the imbalance in the kinds of questions
present in the datasets. Re-balancing all kinds of query types
is infeasible for large-scale natural image datasets. Furthermore,
it may be counterproductive to forgo information contained in
natural distributions in the visual and linguistic content, and
focus should instead be on rigorous evaluation that compensates
for bias or demonstrates bias robustness (Agrawal et al., 2018).
We discuss this further in the next section.

3.2. Evaluation Metrics
Proper evaluation of V&L algorithms is difficult. In computer
vision, challenges in evaluation can primarily be attributed
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FIGURE 2 | Answer distribution for questions starting with the phrase “How many” in the train and test splits of VQA-CP dataset (Agrawal et al., 2018), alongside the

test-set predictions from a state-of-the-art VQA model, BAN (Kim et al., 2018). In VQA-CP, the distribution of test set is intentionally made different from the training

set to assess if the algorithms can perform well under changing priors. Algorithms not only fail to perform well under changing priors, but they also demonstrate

bias-amplification, i.e., the predictions show increased bias toward answers that are more common in the training set than the actual level of bias.

to class imbalance and dataset bias (Godil et al., 2014; Buda
et al., 2018). Evaluation of NLP algorithms often poses greater
challenges since the notion of goodness is ill-defined for
natural language. These challenges, especially in the automatic
translation and natural language generation tasks (Novikova
et al., 2017; Shimanaka et al., 2018), have been thoroughly
documented in the NLP community. Unsurprisingly, these issues
also translate to V&L tasks, and are often further exacerbated
by the added requirement of V&L integration. In V&L tasks,
language can be used to express similar visual semantic content in
different ways, which makes automatic evaluation of models that
emit words and sentences particularly challenging. For example,
the captions “A man is walking next to a tree” and “A guy
is taking a stroll by the tree” are nearly identical in meaning,
but it can be hard for automatic systems to infer that fact.
Several evaluation metrics have been proposed for captioning,
including simple n-grammatching systems [e.g., BLEU (Papineni
et al., 2002), CIDEr (Vedantam et al., 2015), and ROUGE (Lin,
2004)] and human consensus-based measures (Vedantam et al.,
2015). Most of these metrics have limitations (Bernardi et al.,
2016; Kilickaya et al., 2017), with n-gram based metrics suffering
immensely for sentences that are phrased differently but have
identical meaning or use synonyms (Kilickaya et al., 2017).
Alarmingly, evaluation metrics often rank machine-generated
captions as being better than human captions but fail when
human subjectivity is taken into account (Bernardi et al., 2016;
Kilickaya et al., 2017). Even humans find it hard to agree on
what a “good” caption entails (Vedantam et al., 2015). Automatic
evaluation of captioning is further complicated because it is
not clear what is expected from the captioning system. A given
image can have many valid captions ranging from descriptions of
specific objects in an image, to an overall description of the entire
image. However, due to natural regularities and photographer

bias, generic captions can apply to a large number of images,
thereby gaining high evaluation scores without demonstrating
visual understanding (Devlin et al., 2015).

Evaluation issues are lessened in VQA and RER where
the output is better defined; however, it is not completely
resolved. If performance for VQA is measured using exact
answer matches, then even small variations will be harshly
punished, e.g., if a model predicts “bird” instead of “eagle,”
then the algorithm is punished as harshly as if it were to
predict “table.” Several solutions have been proposed, but
they have their own limitations, e.g., Wu-Palmer Similarity
(WUPS), a word similarity metric, cannot be used with sentences
and phrases. Alternately, consensus based metrics have been
explored (Antol et al., 2015; Malinowski et al., 2015), where
multiple annotations are collected for each input, with the
intention of capturing common variations of the ground truth
answer. However, this paradigm can make many questions
unanswerable due to low human consensus (Kafle and Kanan,
2016, 2017a). Multiple-choice evaluation has been proposed by
several benchmarks (Antol et al., 2015; Goyal et al., 2017). While
this simplifies evaluation, it takes away a lot of the open-world
difficulty from the task and can lead to inflated performance via
smart guessing (Jabri et al., 2016).

Dataset biases introduce further complications for evaluation
metrics. Inadequate metrics can conflate the issues of bias when
the statistical distributions of the training and test sets are not
taken into account, artificially inflating performance. Metrics
normalized to account for the distribution of training data (Kafle
andKanan, 2017a) and diagnostic datasets that artificially perturb
the distribution of train and test data (Agrawal et al., 2018) have
been proposed to remedy this. Furthermore, open-ended V&L
language tasks can potentially test a variety of skills, ranging from
relatively easy sub-tasks (detection of large, well-defined objects),
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to fairly difficult sub-tasks (fine-grained attribute detection,
spatial and compositional reasoning, counting, etc.). However,
these tasks are not evenly distributed. Placing all skill types on
the same footing can inflate system scores and hide how fragile
these systems are. Dividing the dataset into underlying tasks can
help (Kafle and Kanan, 2017a), but the best way to make such a
division is not clearly defined.

3.3. Are V&L Systems “Horses?”
Sturm defines a “horse” as “a system that appears as if it is

solving a particular problem when it actually is not” (Sturm,
2016). Of course, the “horse” here refers to the infamous horse
named Clever Hans, thought to be capable of arithmetic and
abstract thought but was in reality exploiting the micro-signals
provided by its handler and audience. Similar issues are prevalent
in both computer vision and NLP, where it is possible for models
to arrive at a correct answer by simply exploiting spurious
statistical cues rather than through robust understanding of
the underlying problem. This results in algorithms that achieve
higher accuracy but are brittle when subjected to stress-tests. For
example, in computer vision, CNNs trained on the Imagenet
are shown to be biased toward textures rather than the shape
resulting in poor generalization to distortions and sub-optimal
object detection performance (Geirhos et al., 2019). In NLP,
these issues are even more prevalent. Sharma et al. (2019)
shows that it is possible to guess the correct answer in a
conversational question-answering task by exploiting cues in
the prior conversation for up-to 84% of the time. Similarly, in
natural language inference (NLI), where the task is to determine
whether a hypothesis is neutral, an entailment, or a contradiction
to the given premise, a hypothesis-only baseline (which has
not seen the premise) significantly outperforms majority-class
baseline (Poliak et al., 2018). This shows that exploiting statistical
cues contributes to inflated performance. Niven and Kao (2019)
shows similar effects of spurious correlations in argument
reasoning comprehension. As V&L research inherits from these
research, similar issues are highly prevalent in V&L research.
In this section, we review several of these issues and highlight
existing studies that scrutinize the true capabilities of existing
V&L systems to assess whether they are “horses.”

3.3.1. Superficial Correlations and True vs. Apparent

Difficulty
Due to superficial correlations, the difficulty of V&L datasets
may be much lower than the true difficulty of comprehensively
solving the task (see Figure 3). We outline some of the
key studies and their findings that suggest V&L algorithms
are relying on superficial correlations that enable them to
achieve high performance in common situations but make
them vulnerable when tested under different, but not especially
unusual, conditions.

3.3.1.1. VQA
Image-blind algorithms that only see questions often perform
surprisingly well (Kafle and Kanan, 2016; Yang et al., 2016),
sometimes even surpassing the algorithms having access to
both (Kafle and Kanan, 2016). Algorithms also often provide

inconsistent answers due to irrelevant changes in phrasing (Kafle
and Kanan, 2017b; Ray et al., 2018), signifying a lack of question
comprehension. When a VQA dataset is divided into different
question-types, algorithms performed well only on easier tasks
that CNNs alone excel at, e.g., detecting whether an object
is present, but they performed poorly for complex questions
that require bi-modal reasoning (Kafle and Kanan, 2017a). This
discrepancy in accuracy is not clearly conveyed when simpler
accuracy metrics are used. In a multi-faceted study, Agrawal
et al. (2016) showed several quirks of VQA, including how VQA
algorithms converge to an answer without even processing one
half of the question and show an inclination to fixate on the
same answer when the same question is repeated for a different
image. Similarly, Goyal et al. (2017) showed that VQA algorithm
performance deteriorates when tested on pairs of images that
have opposite answers. As shown in Figure 2, VQA systems can
actually amplify bias.

3.3.1.2. Image captioning
In image captioning, simply predicting the caption of the training
image with the most similar visual features yields relatively
high scores using automatic evaluation metrics (Devlin et al.,
2015). Captioning algorithms exploit multi-modal distributional
similarity (Madhyastha et al., 2018), and generate captions
similar to images in the training set, rather than learning concrete
representations of objects and their properties.

3.3.1.3. Embodied QA and visual dialog
EmbodiedQA ostensibly requires navigation, visual information
collection, and reasoning, but Anand et al. (2018) showed
that vision blind algorithms perform competitively. Similarly,
visual dialog should require understanding both visual content
and dialog history (Massiceti et al., 2018), but an extremely
simple method produces near state-of-the-art performance
for visual dialog, despite ignoring both visual and dialog
information (Massiceti et al., 2018).

3.3.1.4. Scene graph parsing
Predicting scene graphs requires understanding object properties
and their relationships to each other. However, Zellers et al.
(2018) showed that objects alone are highly indicative of their
relationship labels. They further demonstrated that for a given
object pair, simply guessing the most common relation for those
objects in the training set yields improved results compared to
state-of-the-art methods.

3.3.1.5. RER
In a multi-faceted study of RER, Cirik et al. (2018) demonstrated
multiple alarming issues. The first set of experiments involved
tampering with the input referring expression to examine if
algorithms properly used the text information. Tampering should
reduce performance if algorithms make proper use of text to
predict the correct answers. However, their results were relatively
unaffected when the words were shuffled and nouns/adjectives
were removed from the referring expressions. This signifies
that it is possible for algorithms to get high scores without
explicitly learning to model the objects, attributes and their
relationships. The second set of experiments demonstrated that
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FIGURE 3 | The apparent vs. true complexity of V&L tasks. In RER (left), omitting a large amount of text has no effect on the output of the system (Yu et al., 2018).

Similarly, a seemingly detailed caption (right) can apply to a large number of images from the dataset making it easy to “guess” based on shallow correlations. While it

appears as though the captioning system can identify objects (“bus,” “building,” “people”), spatial relationships (“next to,” “on”), and activities (“walking”). However, it is

entirely possible for the captioning system to have ‘guessed’ the caption by detection of one of the objects in the caption, e.g., a “bus” or even a common latent

object such as “traffic light”.

it is possible to predict correct candidate boxes for over 86%
of referring expressions, without ever feeding the referring
expression to the system. This demonstrates that algorithms can
exploit regularities and biases in these datasets to achieve good
performance, making these datasets a poor test of the RER task.

Some recent works have attempted to create more challenging
datasets that probe the abilities to properly ground vision and
language beyond shallow correlations. In FOIL (Shekhar et al.,
2017), a single noun from a caption is replaced with another,
making the caption invalid. Here the algorithm, must determine
if the caption has been FOILed and then detect the FOIL word
and replace it with a correct word. Similarly, in NLVR (Suhr
et al., 2017), an algorithm is tasked with finding whether a
description applies to a pair of images. Both tasks are extremely
difficult for modern V&L algorithms with the best performing
system on NLVR limited to around 55% (random guess is
50%), well short of the human performance of over 95%. These
benchmarks may provide a challenging test bed that can spur
the development of next-generation V&L algorithms. However,
they remain limited in scope, with FOIL being restricted to
noun replacement for a small number of categories (<100
categories from the COCO dataset). Hence, it does not test
understanding of attributes or relationships between objects.
Similarly, NLVR is difficult, but it lacks additional annotations to
aid in the measurement of why a model fails, or eventually, why
it succeeds.

3.3.2. Lack of Interpretability and Confidence
Human beings can provide explanations, point to evidence,
and convey confidence in their predictions. They also have an
ability to say “I do not know” when the information provided
is insufficient. However, almost none of the existing V&L

algorithms are equipped with these abilities, making the models
highly uninterpretable and unreliable.

In VQA, algorithms provide high-confidence answers even
when the question is nonsensical for a given image, e.g., “What
color is the horse?” for an image that does not contain a horse
can yield “brown” with a very high confidence. Very limited work
has been done in V&L to assess a system’s ability to deal with lack
of information. While Kafle and Kanan (2017a) proposed a class
of questions called “absurd” questions to test a system’s ability
to determine if a question was unanswerable, they were limited
in scope to simple detection questions. More complex forms of
absurdity are yet to be tested.

Because VQA and captioning do not explicitly require or test
for proper grounding or pointing to evidence, the predictions
made by these algorithms remain uninterpretable. A commonly
practiced remedy is to include visualization of attention maps
for attention-based methods, or use post-prediction visualization
methods such as Grad-CAM (Selvaraju et al., 2017). However,
these visualizations shed little light on whether the models
have “attended” to the right image regions. First, most V&L
datasets do not contain attention maps that can be compared

to the predicted attention maps; therefore, it is difficult to

gauge the prediction quality. Second, even if such data were
available, it is not clear what image regions the model should be

looking at. Even for well-defined tasks such as VQA, answers to
questions like “Is it sunny?” can be inferred using multiple image
regions. Indeed, inclusion of attention maps does not make a
model more predictable for human observers (Chandrasekaran
et al., 2018), and the attention-based models and humans
do not look at same image regions (Das et al., 2016). This
suggests attention maps are an unreliable means of conveying
interpretable predictions.
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Several works propose the use of textual explanations to
improve interpretability (Hendricks et al., 2016; Li et al., 2018).
Li et al. (2018) collected text explanations in conjunction
with standard VQA pairs and a model must predict both
the correct answer and the explanation. However, learning
to predict explanations can suffer from many of the same
problems faced by image captioning: evaluation is difficult and
there can be multiple valid explanations. Currently, there is no
reliable evidence that such explanations actually make the model
more interpretable, but there is some evidence of the contrary
(Chandrasekaran et al., 2018).

Modular and compositional approaches attempt to reveal
greater insight by incorporating interpretability directly into
the design of the network (Hu et al., 2017; Johnson et al.,
2017b, 2018). However, these algorithms are primarily tested on
simpler, synthetically constructed datasets that lack the diversity
of natural images and language. The exceptions that are tested
on natural images rely on hand-crafted semantic parsers to pre-
process the questions (Hu et al., 2017), which often over-simplify
the complexity of the questions (Kafle and Kanan, 2017b).

3.3.3. Lack of Compositional Concept Learning
It is hard to verify that a model has understood concepts. One
method to do this is to use it in a novel setting or in a previously
unseen combination. For example, most humans would not
have a problem recognizing a purple colored dog, even if they
have never seen one before, given that they are familiar with
the concepts of purple and dog. Measuring such compositional
reasoning could be crucial in determining whether a V&L system
is a “horse.” This idea has received little attention, with few
works devoted to it (Agrawal et al., 2017; Johnson et al., 2017a).
Ideally, an algorithm should not show any decline in performance
for novel concept combinations. However, even for CLEVR,
which is composed of basic geometric shapes and colors, most
algorithms show a large drop in performance for novel shape-
color combinations (Johnson et al., 2017a). For natural images,
the drop in performance is even higher (Agrawal et al., 2017).

4. ADDRESSING SHORTCOMINGS

In this survey, we complied a wide range of shortcomings and
challenges faced by modern V&L research based on the datasets
and evaluation of tasks.

One of the major issues stems from the difficulty in evaluating
if an algorithm is actually solving the task, which is confounded
by hidden perverse incentives in modern datasets that cause
algorithms to exploit unwanted correlations. Lamentably, most
proposed tasks do not have built-in safeguards against this
or even an ability to measure it. Many post-hoc studies have
shed light on this problem. However, they are often limited in
scope, require collecting additional data (Shekhar et al., 2017),
or the modification of “standard” datasets (Kafle and Kanan,
2016; Agrawal et al., 2017, 2018). We outline prospects for
future research in V&L, with an emphasis on discussing the
characteristics of future V&L tasks and evaluation suites that
are better aligned with the goals of a visual Turing test. Table 1

TABLE 1 | A summary of challenges and potential solutions for V&L problems.

Shortcomings/challenges Potential solutions

Evaluation metrics are a poor

measure for competence of

algorithms due to dataset bias.

• Use metrics that account for dataset

biases.

• Carefully measure and report

performance on individual abilities.

It is hard to tell if algorithms are

“right for the right reasons.” They

can perform well on benchmarks

without actually solving the

problem.

• Test the algorithms by withholding

varying degrees of task-critical

information from them to measure if

they understand concepts.

• Measure task understanding by asking

the model to do the same task in

dissimilar contexts and with alternative

phrasing.

• Develop defense mechanisms against

“accidentally” reaching the correct

solutions.

Trained systems are fragile and

easily break when humans use

them.

• Incorporate prediction confidence into

evaluation.

• Allow systems to output “I dont know.”

V&L Systems are one-trick-ponies,

rarely able to generalize to more

than one task.

• Create a V&L decathlon that tests

numerous V&L tasks. Assess positive

transfer among tasks.

presents a short summary of challenges and potential solutions
in V&L research.

4.1. New V&L Tasks That Measure Core
Abilities
Existing V&L evaluation schemes for natural datasets ignore
bias, making it possible for algorithms to excel on standard
benchmarks without demonstrating proper understanding of
underlying visual, linguistic or reasoning challenges. We argue
that a carefully designed suite of tasks could be used to address
this obstacle. We propose some possible approaches to improve
evaluation by tightly controlling the evaluation of core abilities
and ensuring that evaluation compensates for bias.

CLEVR (Johnson et al., 2017a) enables measurement of
compositional reasoning, but the questions and scenes have
limited complexity. We argue that a CLEVR-like dataset for
natural images could be created by composing scenes of
natural objects (see Figure 4). This could be used to test
higher-levels of visual knowledge, which is not possible in
synthetic environments. This approach could be used to examine
reasoning and bias-resistance by placing objects in unknown
combinations and then asking questions with long reasoning
chains, novel concept compositions, and distinct train/test
distributions.Current benchmarks cannot reliably ascertain
whether an algorithm has learned to represent objects and their
attributes properly, and it is often easy to produce a correct
response by “guessing” prominent objects in the scene (Cirik
et al., 2018). To examine whether an algorithm demonstrates
concept understanding, we envision a dataset containing simple
queries, where given a set of objects and/or attributes as queries,
the algorithm needs to highlight all objects that satisfy all of the
conditions in the set, e.g., for query={red}, the algorithm must
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FIGURE 4 | Posters dataset can help test bias. In this example, both

contextual and gender bias are tested by placing out-of-context

poster-cut-outs. Snowboarding is generally correlated with gender “male” and

context “snow” (Hendricks et al., 2018).

detect all red objects, and for {red,car}, it must detect all red
cars. However, all queries would have distractors in the scene,
e.g., {red, car} is only used when the scene also contains (1) cars
that are non-red, (2) objects other than cars, or (3) other non-red
objects. By abandoning the complexity of natural language, this
dataset allows for the creation of queries that are hard to “guess”
without learning proper object and attribute representations.
Since the chance of a random guess being successful is inversely
proportional to the number of distractors, the scoring can
also be made proportional to additional information over a
random guess. While this dataset greatly simplifies the language
requirement, it would provide better measurement of elementary
language grounded visual concept learning.

Similarly, the core abilities needed for language understanding
can be tested using linguistic variations applied to the same
visual input. Keeping the visual input unchanged can allow
natural language semantic understanding to be better studied.
Recent works have done this by rephrasing queries (Shah
et al., 2019). To some extent, this can be done automatically
by merging/negating existing queries, replacing words with
synonyms, and introducing distractors.

We hope that carefully designed test suites that measure
core abilities of V&L systems in a controlled manner will be
developed. This serves as a necessary adjunct to more open-
ended benchmarks, and would help dispel the “horse” in V&L.

4.2. Better Evaluation of V&L Systems
V&L needs better evaluation metrics for standard benchmarks.
Here, we will outline some of the key points future evaluation
metrics should account for:

• Evaluation should test individual skills to account for dataset
biases (Kafle and Kanan, 2017a) and measure performance
relative to “shallow” guessing (Kafle and Kanan, 2017b;
Agrawal et al., 2018; Cirik et al., 2018).

• Evaluation should include built-in tests for “bad” or “absurd”
queries (Kafle and Kanan, 2017a; Cirik et al., 2018).

• Test sets should contain a large number of compositionally
novel instances that can be inferred from training but not
directly matched to a training instance (Devlin et al., 2015;
Johnson et al., 2017a).

• Evaluation should keep the “triviality” of the task in mind
when assigning score to a task, e.g., if there is only a single cat
then ‘Is there a black cat sitting between the sofa and the table?’
reduces to “Is there a cat?” for that image (Agrawal et al., 2016;
Cirik et al., 2018).

• Robustness to semantically identical queries must be assessed.
• Evaluation should be done on questions with unambiguous

answers; if humans strongly disagree, it is likely not a good
question for a visual Turing test.

We believe future evaluation should probe algorithms from
multiple angles such that a single score is derived from a
suite of sub-scores that test different capabilities. The score
could be divided into underlying core abilities (e.g., counting,
object detection, fine-grained recognition, etc.), and also higher-
level functions (e.g., consistency, predictability, compositionality,
resistance to bias, etc).

4.3. V&L Decathlon
Most of the V&L tasks seek to measure language grounded visual
understanding. Therefore, it is not unreasonable to expect an
algorithm designed for one benchmark to readily transfer to
other V&L tasks with only minor modifications. However, most
algorithms are tested on single task (Kafle and Kanan, 2016; Yang
et al., 2016; Yu et al., 2018), with very few exceptions (Anderson
et al., 2018; Kim et al., 2018; Shrestha et al., 2019). Even within
the same task, algorithms are almost never evaluated on multiple
datasets to assess different skills, which makes it difficult to study
the true capabilities of the algorithms.

To measure holistic progress in V&L research, we believe it
is imperative to create a large-scale V&L decathlon benchmark.
Work in a similar spirit has recently been proposed as
DecaNLP (McCann et al., 2018), where many constituent NLP
tasks are represented in a single benchmark. In DecaNLP, all
constituent tasks are represented as question-answering for an
easier input-output mapping. To be effective, a V&L decathlon
benchmark should not only contain different sub-tasks and
diagnostic information but also entirely different input-output
paradigms. We envision models developed for a V&L decathlon
to have a central V&L core and multiple input-output nodes
that the model selects based on the input. Both training and test
splits of the decathlon should consist of many different input-
output mappings representing distinct V&L tasks. For example,
the same image could have a VQA question “What color is the
cat?,” a pointing question “What is the color of ‘that’ object?,”
where “that” is a bounding box pointing to an object, and a RER
“Show me the red cat.” Integration of different tasks encourages
development of more capable V&L models. Finally, the test set
should contain unanswerable queries (Kafle and Kanan, 2017a;
Cirik et al., 2018), compositionally novel instances (Agrawal
et al., 2017; Johnson et al., 2017b), pairs of instances with subtle
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differences (Goyal et al., 2017), equivalent queries with same
ground truth but different phrasings, and many other quirks that
allow us to peer deeper into the reliability and true capacity of the
models. These instances can then be used to produce a suite of
metrics as discussed earlier.

5. CONCLUSION

While V&L work initially seemed incredibly difficult, rapid
progress on benchmarks made it appear as if systems would soon
rival humans. In this article, we argued that much of this progress
may be misleading due to dataset bias, superficial correlations
and flaws in standard evaluation metrics. While this should serve
as a cautionary tale for future research in other areas, V&L
research does have a bright future. The vast majority of current
V&L research is on creating new algorithms, however, we argue
that constructing good datasets and evaluation techniques is just
as critical, if not more so, for progress to continue. To this
end, we outlined several potential solutions. First, we proposed
the creation of diagnostic datasets that explicitly and carefully
control for multiple sources of bias in vision and/or language.

Next, we proposed the development of a large-scale benchmark
consisting of a suite of V&L tasks that enable evaluation of
various capabilities of algorithms on rich real-world imagery and
natural language. V&L has the potential to be a visual Turing test
for assessing progress in AI, and we believe that future research
along the directions that we proposed will foster the creation of
V&L systems that are trustworthy and robust.
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