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This paper frames itself in an informational rich smart electricity grid where consumers

have access to various streams of information and make decisions over their

daily consumption pattern. In particular, a new intelligent management system to

accommodate possible optimal decisions for elastic load consumption is discussed. The

energy management system implements a fuzzy driven leaky bucket that manages the

elastic load of a consumer by controlling the token rate buffer via a set of four fuzzy

variables (among them the electricity price). The goal of this innovative system is to allow

loads that are identified as elastic to be scheduled only when it is potentially beneficial

to the consumer. To that end, a fuzzy algorithm comprised of a set of rules is developed

to manage the token rate of the leaky bucket and through that the decisions over the

fate of elastic loads. The developed system is applied on a set of real-world electricity

consumption data taken from a residential consumer, and benchmarked against a full

scheduling method, where the elastic load is fully scheduled offline. Results exhibit that

the proposed fuzzy logic method outperforms the full scheduling method in the vast

majority of the cases, i.e., over 79% of the cases with respect to consumption cost.

Furthermore, they validate its ability to conduct real time decision making with no human

in the loop.

Keywords: fuzzy logic, leaky bucket, intelligent management, smart grids, elastic load

INTRODUCTION

Efficient energy management is a topic of paramount significant toward realization of a smart
electricity grid. Given the limitations in the delivery and distribution of electricity imposed by the
physical infrastructure of the grid, the issue of intelligent energy management has been revisited
(Tsoukalas and Gao, 2008). Advances in information technologies and their coupling with the
power system has given rise to the term of smart grid, which is visualized as a resilient infrastructure
that secures a 24/7 energy delivery and accommodates the utilization of intermittent sources,
such as renewables (Shafiullah et al., 2010). Therefore, smart grids consist of information rich
environments where the grid participants have access to a wide variety of heterogeneous modals
of information. Consumers, which consist of the vast majority of the grid participants, utilize
the available information aiming at satisfying their load demand, with the lowest possible cost
(Alamaniotis et al., 2018).
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One of the cornerstones upon which the electrical smart
grid will be built is the utilization of intelligent systems for
the efficient management of energy consumption. Therefore,
the energy management from the consumer side should be
considered as serving two purposes: (i) the first is morphing the
demand in such a way to secure the non-stop grid operation,
and (ii) the second is morphing the demand in such a way that
the consumer has an economical benefit (i.e., low utility bill)
(Alamaniotis et al., 2014). Regarding the consumer, the demand
management mainly refers to the scheduling of the operation of
the electrical appliances that reside within the premises of the
resident. Each electric appliance serves a different purpose, and
hence, it has different operational characteristics and different
load values. However, the loads in a resident can be assigned to
one of the two main classes: (i) inelastic load demand, and (ii)
elastic load demand (Thimmapuram and Kim, 2013). The first
class (i.e., inelastic demand) encompasses all that load demand
that cannot be curtailed or postponed; this type of load has to
be satisfied in its entirety at specific time intervals (Alamaniotis
et al., 2018). For instance, the electricity demand pertained to
fridge operation is inelastic given that the fridge has to operate
non-stop to preserve its contents. The second class encompasses
all those loads that can be either curtailed or postponed for a
later time; in other words, elastic demand may not be satisfied,
implying that there is no operation of the respective appliances.
An example of elastic load is the coffeemaker, whose operation
may take place later or canceled (i.e., consume another drink, e.g.,
apple juice).

It is evident from the aforementioned types of load demand
that the elastic load may be managed, and if efficient, then it
may be of benefit to consumer at first, and to the operation
of electric grid at second. It is common that the consumer
perceives as efficient management the satisfaction of his/her
demand at its entirety while keeping the consumption expenses
(i.e., electric bill) low (Alamaniotis et al., 2018). Furthermore,
if the cost becomes high, then consumers prefer to curtail
their demand—and as a result not to fully satisfy their total
demand (Babar et al., 2013). Therefore, management of elastic
load becomes a complex decision making that is affected by
several factors. Such an environment requires that the decision
making is conducted in an automated way given that the
human consumer cannot afford making decisions 24/7. The
factor that has the most weight in decision making pertained
to load consumption is the electricity prices. A dynamically
varying electricity price has given rise to the price directed
electricity markets, where prices are driven by econometric
models to encourage or discourage the electricity consumption
(Saez-Gallego et al., 2016). In such markets, consumers must
follow the prices 24/7 and make respective purchase decisions
that reduce the expenses (Chrysikou et al., 2015). Though the
idea sounds appealing, it is impossible for humans to non-stop
monitor the market prices and decide accordingly. Therefore,
automated systems that make decisions on behalf of the human
consumer are needed (Jin and Mechehoul, 2010).

In this manuscript, the automated management of consumer’s
elastic load demand in the context of smart grids is of
interest. Several methods that fall under the general approach

of “demand response” have been proposed to deal with
elastic load management. The majority of those systems adopt
various modeling and analytical approaches, encompassing
methods from machine learning and statistics. In particular,
in Yang et al. (2016) a multi-objective stochastic optimization
formulation is used for modeling the relation between prices
elasticity and loads, while in McKenna and Keane (2014) a
Monte Carlo simulation approach for probabilistic modeling
of resident’s elastic consumption is discussed. Furthermore, a
hybrid method that integrates artificial neural networks with
wavelets is introduced in Paterakis et al. (2016), and a method
for clustering the consumer’s profiles based on their elastic
demand is introduced in Dasgupta et al. (2019). In Vázquez
et al. (2011) the management system aims at improving the
elasticity of loads in smart homes by using pervasive systems
and statistical information taken from loads in the country of
Austria. In addition, a logarithmic modeling for direct elastic
load control is proposed in Farahani et al. (2012), while a model
predictive driven utility function for elastic loads control is
presented in Shi et al. (2018). A faithful method that performs
management of distributed energy resources by using a pricing
scheme is introduced in Mhanna et al. (2017), and a dynamic
price scheme are the focal point in Althaher et al. (2015)
where control of the operation of smart appliance takes into
consideration the comfort zone of the consumer. In Hubert
and Grijalva (2012) and Tsui and Chan (2012) the appliance
control in the context of demand response is modeled as complex
optimization whose solution is the optimal in terms of cost for the
home energy consumption management, while in Erdinc et al.
(2014) an optimization problem for household consumption that
takes into consideration electric vehicle demand is presented.
Furthermore, a demand response tool of home appliances in the
event of renewable energy availability is presented in Althaher
and Mutale (2012), and an algorithmic approach that takes into
consideration the rebound effect in demand response at home
consumption is presented in Li et al. (2012). An intelligent DR
method that integrated home load forecasting and predetermines
an operational schedule of appliance based on the time of use
electricity prices is introduced in Ozturk et al. (2013), with a
similar approach focusing on high power consumption appliance
is proposed in Pipattanasomporn et al. (2012). A different
approach where the consumers report their power usage and
allow the utility to decide about the appliance operation is
discussed in Cao et al. (2012), while in Kamyab et al. (2015) the
DR problem is considered as a game between multiple suppliers
and customers without delving into the appliance level.

Notably, there is a high amount of works that have focused
on forecasting as the way to perform load management. The vast
majority of these works are based on artificial intelligence tools
aiming at accurately predicting the load demand as discussed in
Di Santo et al. (2018) and Fallah et al. (2018). The aforementioned
works do not directly deal with the management of the elastic
load of the consumer and they do not assume smart appliances
that handle only elastic loads, or they do it only as fully correlated
with prices. Furthermore, the use of artificial intelligence tools
for elastic load is very limited, allowing room for new and
more sophisticated methods. In addition, none of the current
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works fully exploit the connectivity and the informational rich
environments of smart grids. Therefore, there is need for new
intelligent methods that manage the elastic loads of a consumer
who is connected to the smart grid.

In this paper a new intelligent system for managing the
elastic load of a consumer is presented. The proposed system
implements a fuzzy leaky bucket (Aeron, 2010) as the mean to
manage the elastic load of the electricity consumer. In particular,
the proposed system is based on the development of a fuzzy
system that utilizes several pieces of information (Tsoukalas and
Uhrig, 1997), including electricity prices, to control the token rate
of the leaky bucket. The contribution of the paper contains: (i) the
development of a fuzzy system that implements a leaky bucket
approach, (ii) the application of the fuzzy leaky bucket for elastic
load management, (iii) the utilization of several variables beyond
electricity prices for decision making, and (iv) the introduction
of a fully autonomous energy management system, and the (v)
introduction and testing of a real time decision making system
in smart grids. The concept of fuzzy leaky bucket has been
previously in controlling of power flow in power system nodes
in Alamaniotis et al. (2016), while a simple implementation
for appliance scheduling in smart homes in Alamaniotis and
Ktistakis (2018). Thus, the objectives of this paper are: (a)
present in full details the fuzzy leaky bucket as elastic load home
management, (b) test the proposed method in real world data,
and (c) highlight the conclusions made by methodology testing.

The roadmap of the paper is as follows. In the next section,
a brief description of the leaky bucket approach utilized for
control is given, while in section Fuzzy Leaky Bucket Elastic
Load Management System the developed management system is
introduced and its steps are explained. Section Testing Results
on Elastic Load Management presents the application of the
system in a set of real world-data consumption files and discusses
the results. At last, section Conclusion concludes the paper and
summarizes the main points of it.

BACKGROUND: LEAKY BUCKET
APPROACH

The leaky bucket is an algorithmic approach that has found
wide use in several engineering applications where control of
a process is requested. It mimics the ways that a water filled
bucket which has a leak, may overflown when the incoming
flow rate is higher than the leakage rate. In general, it has been
used for controlling the frequency of discrete events or to limit
the actions associated with those events. The most illustrative
application of leaky bucket is in the domain of communication
networks (packet switched computer networks) where it is used
for controlling the data packet transmission by defining the
channel bandwidth (Bertsekas et al., 1992). Overall, the leaky
bucket approach ensures that the rate of some sequence of
discrete events remains within strictly defined limits.

Visualization of the leaky bucket approach is provided in
Figure 1, where the associated flow rates of the water—incoming
and leaking—are marked as F and L, respectively. The absolute
values of the flow rates define the state of the bucket, which

FIGURE 1 | Leaky bucket approach.

FIGURE 2 | The leaky bucket states: (A) overflown, and (B) non-overflown.

may take one of the two states: (i) the bucket state is defined as
overflown when the incoming flow rate is higher than the leaking
one, i.e., F > L, and (ii) the bucket state is defined as non-flown
when the leaking rate is higher than the incoming, i.e., F< L. The
two states are graphically depicted in Figure 2.

Based on the definition of the leaky bucket, the bucket itself
may be viewed in two different ways. In particular, in the first
way the bucket is viewed as the analog of an event counter, while
in the second way the bucket is viewed as the analog of an event
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FIGURE 3 | Token driven leaky bucket control of data packet transmission.

queue. It should be noted that for the purposes of the current
manuscript the second view is adopted, i.e., the bucket is viewed
as a queue of discrete events-.

Consideration of the leaky bucket as event queue has given rise
to another algorithmic that is used in data package flow control
and adopts the use of a token rate counter as well. The token
driven leaky bucket approach is depicted in Figure 3, where it is
observed the concurrent operation of two buffer components—
the data and the token buffer-. The first of the buffers, i.e., the
data buffer, receives and stores data packets, while the second
one, i.e., the token buffer, receives and stores a sequence of tokens
that arrive with a rate R. The number of tokens stored in the
buffer are compared to a predefined threshold value, and when
this population of token is equal to exceeds the threshold then
a package from the data buffer is transmitted. At this point it
should be noted, that the data buffer implements a first-in-first-
out queue (FIFO queue) and therefore every time the token
threshold is satisfied then the “oldest” packet is transmitted. In
addition, the data buffer has limited storage size, causing the
buffer to overflown when the package arrival rate is higher than
the incoming token rate. In case, the data buffer is overflown
then new incoming packets are not stored and eventually are
lost. Overall, this approach allows the automated control of the
packet transmission via two parameters: the token rate and the
threshold value.

Of interest in the current manuscript is the token driven
approach. The reason for adopting this approach is that from a
broad point of view the packets are the analog of load demand
imposed by an electric appliance, while the tokens are the analog
of decision factors.

FUZZY LEAKY BUCKET ELASTIC LOAD
MANAGEMENT SYSTEM

Problem Statement
Load management from the demand side refers to scheduling of
electric consumption in a way that is optimal for the consumer.
Elastic load is comprised of consumption tasks that may be
canceled or deferred at a later time. Every task is associated
with the operation of an electric appliance. In the current
work, the assumption made is that the consumer appliances

share intelligent capabilities and they are able to communicate
with a smart meter that makes the electricity energy purchases.
Furthermore, it is assumed that the smart meter connects to
the smart grid and is able to receive information from the
grid. In addition, the electricity prices vary dynamically and are
announced every 1 h, while they stay valid for the forthcoming
hour. Regarding the elastic loads, every intelligent appliance is
able to know a priori the time it is required to operate for
consuming a specific amount of electricity.

Constraints in the consumption are imposed by the physical
capacity of the delivery lines. For instance, the lines that deliver
the electrical energy have limited capacity C. Given that the
inelastic load, denoted as I, must be satisfied then the maximum
elastic that can be scheduled is

ME(t) = C − I(t)

where t stands for time in the form of the hour of the day, i.e.,
t = 1, . . . , 24. The minimum value of the elastic load is equal to 0
that implies that no elastic load is scheduled.

Fuzzy Leaky Bucket System
In this section the fuzzy system that implements a leaky bucket
approach is presented. The proposed fuzzy leaky bucket system
follows a token driven approach; therefore, its architecture, which
is depicted in Figure 4, contains two buffer components. In
particular, two buffers are: (i) the dynamic load buffer that
receives and stores the elastic load tasks, and (ii) the token buffer
that receives and stores the tokens.

The aim of the dynamic load buffer is to secure that the
amount of scheduled elastic load will never exceed the maximum
value ME(t). To that end, the storage capacity is considered
dynamic, with the storage capacity to be taken equal to ME(t)
at every hour. By setting the size buffer equal to ME(t), the leaky
bucketmay schedule tasks whose aggregated load does not exceed
ME(t). Thus, the system secures that this limit will be definitely
satisfied given that excessive tasks are not stored in the load buffer
(so the buffer is identified as overflown).

The token buffer receives the tokens and compares with the
threshold T as shown in Figure 4. When the number of tokens
in the buffer are equal or exceed T, then the token buffer is
emptied and the “oldest” task in the load buffer is released. The
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FIGURE 4 | Fuzzy leaky bucket system architecture for elastic load management.

rate of token arrival in the buffer, denoted as R, is controlled by
a fuzzy system. In particular, R is considered as a fuzzy variable
whose value is determined by the fuzzy system at the beginning
of every hour.

The fuzzy system applied for token control implements a fuzzy
inference mechanism comprised of four inputs, and one output.
As presented in Figure 4, the four inputs are:

- The electricity price: this is the value of price announced by the

market operator for the hour t.
- Time: this represent the current time in the form of hours.
- Number of tasks in buffer: this number is equal to the number

of the elastic tasks that have made it into the buffer.
- Load satisfaction index: this index exhibits the utilization of

elastic load since the beginning of the day, and it is equal to
the ratio

SI =
# of tasks scheduled since the beginning of the day

# of elastic tasks of the day

while the output of the system is:

- The token rate R: the number of tokens arriving in the buffer
in a single minute.

The goal of the fuzzy system is to determine the token rate at
the beginning of each hour in order to implicitly determine the
number of scheduled tasks for this specific time. The set of four
inputs is selected in such a way that mimics the human way of

decision making. In particular, the four inputs were selected on
the following rationale:

- The electricity price is selected to determine whether it is
economically beneficial to schedule a high or a low number
of tasks.

- The time is used to determined how much is the remaining
time until the end of the day. With this variable time
constraints are also part of the decision making. It should
be mentioned that the tasks are considered on a day by day
basis: therefore deferring of a task may happen only within the
same day.

- The number of tasks in the buffer denotes the resolution of the
load. This number shows whether there are many small tasks
or a few but large tasks. This information is essential given that
the system nomatter the size of the load a task is released when
the tokens reach the threshold value.

- The load satisfaction index quantifies the degree of elastic
load satisfaction. In other words, how much of the elastic
load for that specific day has been already scheduled. This
input is essential in management since it implicitly denotes
the remaining elastic load to be scheduled. The goal of every
consumer is to fully satisfy his/her demand and this index
will express the risk taken to defer some of the load for
later scheduling.

- The output variable of token rate will control the scheduling of
the tasks. If the above inputs indicate a high token rate then a
high number of tasks will be scheduled. If the token rate is low,
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FIGURE 5 | Fuzzy set representation of the input variable: (A) “electricity price,” (B) “time,” (C) “# of tasks in the buffer,” and (D) “load satisfaction index”.

FIGURE 6 | Fuzzy set representation of the output variable “Token rate R”.

then a low number of tasks is scheduled. The R value is valid
for an hour.

The above values are recognized in the current manuscript as
fuzzy variables and therefore they are represented by a group
of fuzzy values expressed in the form of linguistic terms. Each
linguistic term is modeled by a fuzzy set, with the population
of fuzzy sets to span the range of values of the variable. The
fuzzy sets used for the four input and the single output variables
are provided in Figure 5, respectively, where the fuzzy sets are
modeled in the form of triangular membership functions, which
is a convenient choice.

The ranges of the values (universe of discourse in fuzzy
parlance) as shown in Figures 5, 6 are the following:

➢ 0–100 ($) for electricity price,

➢ 1–24 (h) for time,
➢ 0–12 for # of tasks in the buffer (assuming that every

consumer can have max 12 tasks),
➢ 0–1 for load satisfaction index,
➢ 0–10 (tokens/min) for token rate.

The above ranges were selected either based on assumptions, as
in # of task in the buffer, or based on design, as in the token rate.
The range of electricity prices was selected by observing the prices
in one of the major US market operators.

Having defined the fuzzy sets for the input and output
variables, then a fuzzy inference engine is developed that
associates the inputs to the output. The association is
implemented in the form of IF/THEN fuzzy rules given
that the rules associate fuzzy sets and take the form:

IF “Conditions”, THEN “Output”

where the conditions consist from one up to four conditions (i.e.,
four input values). The fuzzy conditions in the left-hand side of
the rules consist of fuzzy relations of the form “X is A” with A
being a fuzzy set. The conditions are connected with the operator
AND, which analytically expresses the max operation among the
membership functions of the conditions. Thus, the LHS of the
rules are formulated as:

IF “Condition 1” AND “Condition 2” AND “Condition 3” AND
“Condition 4”,

whose evaluation provides a number that coincides with the
maximum degrees of membership value among the conditions.
Furthermore, evaluation of the rules is performed with the
implication operatorMamdani Min (Tsoukalas and Uhrig, 1997)
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FIGURE 7 | Fuzzy rule based for implementing leaky bucket approach: (A) Rules 1–15 and, (B) Rules 16–30.

FIGURE 8 | Visualization of decision surface of the fuzzy system.

whose analytical formula is given below:

ϕ(x, y) = µ (x) ∩ µ(y)

where the operator retains the minimum of the two
membership values.

At this point it should be mentioned that the rule base of
the fuzzy leaky bucket system is populated with a set of 30

fuzzy rules. In particular, the encoded rules in the base, which
has been developed in the programming environment of the
Matlab software (Sivanandam et al., 2007), are given in Figure 7.
Given that the output of the fuzzy inference is a fuzzy set then
a defuzzification method is applied to obtain a crisp value, and
more particularly the Center of Area (CoA) method, whose
analytical formula is given by:

CoA =

∫ xmax

xmin
µ (x) · x · dx

∫ xmax

xmin
µ (x) · dx

where x is the linguistic (fuzzy) variable and [xmin, xmax]
is the range of the linguistic variable. CoA is selected
since it provides the best compromise among multiple
output linguistic terms. The decision surface taken with
CoA for the developed 30 rule fuzzy system in depicted
in Figure 8.

The output of the fuzzy system provides the token rate
in the form of tokens/minute. The tokens accumulated
in the token rate are continuously compared to a
predetermined threshold that in this case has been set equal to
50 tokens:

T = 50 tokens.

Hence, the above threshold T indicates that the arrival of 50
tokens activates the release and subsequent scheduling of a task
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from the load buffer, while the token buffer will empty and wait
for the new tokens.

TESTING RESULTS ON ELASTIC LOAD
MANAGEMENT

Test Setup
The goal of management systems is tomake optimal decision that
will return the highest benefit to the consumer. Regarding elastic
load the decisions refer to either canceling or postponing the
consumption task. In this manuscript, the presented fuzzy leaky
bucket system is applied to a set of real-world datasets taken from
a household in France that is publicly available at UCI Repository
(2019). The datasets contain the daily consumption pattern in
kilowatts (kW) of a single residential consumer as measured from
2006 to 2010. The dataset contains measurement of the resident
energy consumption on a minute basis and more details can be
found in UCI Repository (2019). In this manuscript, the testing
dataset are taken from the year 2007 and more specifically days
were sampled from April to December of that year, i.e., 2007.

It should be noted that the initial consumption data do not
encompass the amount of elastic and inelastic load.

In order to separate the overall consumption into elastic
and inelastic, we created a randomizer that (randomly) selects
the hourly inelastic load. The assumption made in creating the
randomizer is that the inelastic load at any time lies between 40
and 70% of the overall consumption. Furthermore, to separate
the elastic load into tasks, we developed another randomizer that
splits the elastic load amount into one ormore tasks: this happens
by randomly select a number between 1 and 15 (max number of
tasks) and then randomly assign at each task an amount of load
under the constraint:

Elastic
(

h
)

=

N
∑

n=1

(

Load_taskn
)

where h stands for the hour of the day and N is the number of
tasks determined by the randomizer. Regarding the capacity of
the consumer, which is denoted as C, is taken to be equal to 280
kW (arbitrary selection). In addition, real world electricity prices
taken of the same period, i.e., April 2–April 11, are utilized to

FIGURE 9 | Hourly electricity price signals utilized for computing the daily consumption of the 10 tested days.
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compute the cost of the electricity consumption. The respective
price signals are depicted in Figure 9.

Lastly, the fuzzy leaky bucket is benchmarked against the
case that no leaky bucket is adopted and the load is consumed
as initially scheduled (i.e., no curtailment of elastic load and
no separation between inelastic and elastic loads). Results
are recorded and presented with respect to final daily cost
of consumption.

Results
Detailed Cases

In this section the presented elastic consumption management
system is applied to the test set comprised of 10 residential
consumption patterns that are depicted in Figure 10. Each of
the consumption pattern is divided into two different parts, i.e.,
elastic and inelastic, by using the randomizer that was discussed
in the previous section.

In the current work, management results are recorded in the
form of daily consumption costs in US dollars. It should be

noted that because of the use of randomizer to determine the
number and the size of consumption tasks, it is expected that
multiple runs on the same dataset will provide different results.
To overcome this hurdle in this work, every case is run 13
times and the main statistics of the results are obtained: mean
and standard deviation. Notably, the benchmarking method,
i.e., scheduling of the initial load without use of leaky bucket
denoted as “full scheduling method” in Table 1, makes use of
no randomizer and therefore provides a constant cost value
independent of the number of runs. It should be noted that
the “full scheduling method” assumes no real time decision
making and coincides with the demand response methods which
determine the consumption schedule in an offline manner.

Table 1 presents the results obtained with the fuzzy leaky
bucket and the benchmark method in the 10 test consumption
cases. It is clear from the results that the average cost obtained
by fuzzy leaky bucket indeed provides is lower in all tested cases
as compared to the “fully scheduling method.” The reduction in
cost as compared to the benchmark method, is not uniform for

FIGURE 10 | Set of 10 test electricity consumption patterns from the period April 2–April 11 (day 1–10).
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TABLE 1 | Obtained results in the form of daily consumption cost for the tested

methods, and percentage of cases where the fuzzy leaky bucket provided higher

cost than the full scheduling method.

Costs in US dollars ($)

Fuzzy leaky bucket Full scheduling

method

Case Mean % of runs above the full

scheduling method

Day 1 45.82 30% 47.47

Day 2 32.91 23% 34.66

Day 3 47.91 30% 54.16

Day 4 65.01 15% 76.90

Day 5 103.95 15% 118.26

Day 6 70.52 30% 71.51

Day 7 24.81 23% 25.45

Day 8 31.32 0% 38.07

Day 9 43.95 0% 62.55

Day 10 19.94 0% 24.75

all tested cases. It is observed that for some days—days 1, 2, 6,
7—the reduction in cost is around 10%, while for other days the
reduction is above 20% and more specifically for days 3, 4, 5, 8,
and 10. Lastly, day 9 provides the highest cost reduction which is
around 40%.

In addition to costs, Table 1 provides in the third column the
percentage of runs that provided consumption cost higher than
that of the benchmark. In other words, it shows the number of
times that the fuzzy leaky bucket provided a higher cost than the
benchmark method. It is observed that the fuzzy leaky bucket is
outperformed by the benchmarkmethod only for a small amount
of runs. As it is shown in Table 1, the presented method is
outperformed at a maximum of 30% for days 1, 3, and 6, while for
days 8, 9, and 10, that percentage drops down to 0%. Computing
the average percentage per case where the “full scheduling
method” provides lower cost turns to be equal to 16.6%. Hence,
the fuzzy leaky bucket provides lower cost in the 83.4 of the tested
cases. This is also shown in Figure 11 where the box plots of the
cost obtained per run per case are given. The boxplots also verify
that (i) in the first seven cases there are runs of fuzzy leaky bucket
with cost higher than that of full scheduling method, and (ii) in
the last three all fuzzy leaky bucket runs provide lower cost than
the benchmark method. For visualization purposes, Figure 12
shows the initial consumption pattern against the consumption
pattern obtained by the proposed system for Days 1 and 9,
where we observe that for Day 1 there was consumption task
postponement, while for Day 9 there was essentially curtailment
in the elastic consumption (cancelation).

The obtained results confirm the potency of the presented
fuzzy system to operate as an autonomous consumption
management system. The observations show that the fuzzy leaky
bucket is able to reduce the cost in the vast majority of the cases.
Furthermore, this reduction came with no human participation
at all: the human consumer had not intervention in the process
of decision making whether the elastic tasks will be curtailed or

postponed. In addition, the proposedmethod performed efficient
even under the cases of high uncertainty. The use of randomizer
processes in order to simulate the consumer behavior resulted
in seeding of uncertainties within the problem in the form of
random number of tasks, random size of tasks. However, the
system was able to overcome the inherent uncertainties as it
is shown from the fact that it provided the lowest cost in the
vast majority of the cases. At last, computationally, the proposed
system is inexpensive, while being scalable and easy to update.

Further Results

In this section, the proposed fuzzy leaky bucket methodology
is further tested for intelligent management of elastic load for
load patterns taken from various seasons. Notably, in this section
the results are recorded and discussed but no full details are
given as in previous section. More specifically, the testing dataset
is comprised of 23 residential consumption patterns of the
following days of the year 2007 (UCI Repository, 2019): May 1–5,
June 11–14, July 16–18, August 23–25, September 12–13, October
2–3, November 16–17, and December 11–12.

The testing of the fuzzy leaky bucket is performed as before:
we run the fuzzy leaky bucket for 12 different scenarios and
then we compute the consumption cost provided by each
scenario. The average cost computed by the 12 scenarios for
each of 23 test days is provided in Figure 13, where the
cost are computed as $/day). Furthermore, the consumption
cost as taken with the full scheduling method (i.e., no
fuzzy leaky bucket is used) is also computed and shown in
Figure 13 as well.

Results exhibit that the use of fuzzy leaky bucket reduces
the consumption cost in the vast majority of the scenarios.
More particularly, in 17 out of 23 scenarios the fuzzy leaky
bucket average cost is lower than the one obtained with the full
scheduling method. Therefore, this implies that the utilization
of fuzzy leaky bucket is beneficial to the user in the long run—
it may not always provide lower cost but it reduces the cost in
the majority of the cases. In the test set in this section, the fuzzy
leaky bucket provided lower cost in the 74% of the cases (and
higher in the 36% of the cases) as compared to the benchmark
method. Therefore, the proposedmethod clearly outperforms the
full scheduling method in the vast majority of the tested cases.
The specific cost values obtained by each method on each tested
day are also provided in Figure 13.

Overall, the proposed methodology provides a specific set
of advantages. The most important of them encompasses the
automated scheduling of elastic load tasks at any time of the day.
The system required no human intervention at any stage of the
testing. Furthermore, the proposed system—in fact that specific
implementation of the system—provided lower consumption
cost in the vast majority of the cases as compared to full
scheduling method. In the cases that the system was beat by
the full scheduling method were cases where the randomizer
provided high load elastic load thus making the rescheduling less
flexible; however, even in those cases the proposed fuzzy leaky
bucket provided costs close to the full scheduling. By inspecting
the obtained results on all the 33 tested cases, it is concluded that
the fuzzy leaky bucket is able to provide lower cost in the long
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FIGURE 11 | Boxplots for the 13 test runs of each consumption patterns of the period April 2–April 11 (day 1–10).

FIGURE 12 | Consumption patterns obtained by fuzzy leaky bucket compared to initial patterns for Day 1 and Day 9 of Table 1.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 January 2020 | Volume 3 | Article 1

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Alamaniotis Fuzzy Leaky Bucket for Elastic

FIGURE 13 | Results obtained in the form of $/day for Fuzzy Leaky Bucket and the benchmark method of full scheduling for a set of 23 days.

run as compared to a full scheduling method (i.e., that can be
considered as a DR method that performs offline scheduling). In
sum, the proposed fuzzy leaky bucket system managed to lower

the cost in the 84% of the cases examined in the previous section
(detailed cases) and in 74% of the cases examined in the current
section; putting together all those cases, it is concluded that the
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presented system outperformed the offline scheduling in the 79%
of the cases.

CONCLUSION

In this paper a new fuzzy system that implements a leaky
bucket management approach was presented and applied to
management of elastic load in electricity consumption patterns.
The system proposes a new approach by adding a fuzzy inference
system in controlling the token rate of the token buffer as
implemented in the control approach of leaky bucket. The fuzzy
system gets a set of four inputs that are used to mimic the human
way of making decisions regarding electricity consumption.
Essential part of the proposed system is the fuzzy rule base
comprised of 30 rules that associates the inputs to the output.
The goal of the systems is to control the token rate in order to
control the release of the consumption tasks that are accumulated
in the task buffer. In addition, the leaky bucket secures also the
safe operation of the system by allowing the task to vary in size
and remain within the safety limits. Therefore, the limited size of
task buffer allows for rejection of excess tasks ensuring that the
capacity of the system won’t be exceeded.

The proposed system has been tested in a set of 33 real world
consumption patterns. Simulations of consumption behavior
were done with the aid of randomizer processes that provided

determined in a stochastic behavior the amount of elastic
consumption, the number of elastic tasks and their size. Obtained
results support the belief that the fuzzy leaky bucket provides
lower consumption cost in the vast majority of the test cases-
−79% of the cases—compared to the case that it is not used.
Furthermore, the proposed system is fully autonomous and
requires no human intervention at any stage, while being
computationally inexpensive.

As the power grid will become smarter and more information
will flow in it, the benefits of using fuzzy leaky bucket for
management of elastic load will become more apparent. An
advantage of the presented approach is the use of fuzzy rules:
their scalability will allow fuzzy leaky bucket system to adapt to
new and evolving informational environments.
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