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Uncertainty presents a problem for both human and machine decision-making. While

utility maximization has traditionally been viewed as the motive force behind choice

behavior, it has been theorized that uncertainty minimization may supersede reward

motivation. Beyond reward, decisions are guided by belief, i.e., confidence-weighted

expectations. Evidence challenging a belief evokes surprise, which signals a deviation

from expectation (stimulus-bound surprise) but also provides an information gain. To

support the theory that uncertainty minimization is an essential drive for the brain, we

probe the neural trace of uncertainty-related decision variables, namely confidence,

surprise, and information gain, in a discrete decision with a deterministic outcome.

Confidence and surprise were elicited with a gambling task administered in a functional

magnetic resonance imaging experiment, where agents start with a uniform probability

distribution, transition to a non-uniform probabilistic state, and end in a fully certain

state. After controlling for reward expectation, we find confidence, taken as the negative

entropy of a trial, correlates with a response in the hippocampus and temporal lobe.

Stimulus-bound surprise, taken as Shannon information, correlates with responses in

the insula and striatum. In addition, we also find a neural response to a measure of

information gain captured by a confidence error, a quantity we dub accuracy. BOLD

responses to accuracy were found in the cerebellum and precuneus, after controlling for

reward prediction errors and stimulus-bound surprise at the same time point. Our results

suggest that, even absent an overt need for learning, the human brain expends energy

on information gain and uncertainty minimization.

Keywords: uncertainty, information theory, surprise, confidence, probabilistic brain, fMRI, decision-making

1. INTRODUCTION

Uncertainty is a feature of an agent’s interaction with the environment that is both pervasive
and unavoidable. Its ubiquity therefore demands a place in an agent’s decision-making calculus.
But uncertainty emerges in different forms during a decision, each of which can be uniquely
susceptible to dysfunction. During an initial deliberation phase, for instance, agents form a belief on
a decision’s outcome, which is graded by confidence (Kepecs and Mainen, 2012). An outcome that
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challenges beliefs yields surprise (Hsia, 1991; Nour et al., 2018;
Munnich and Ranney, 2019). Both confidence and surprise relate
to uncertainty in the environment but their characterization
remains a topic of debate (Itti and Baldi, 2009; Baldi and Itti,
2010; Munnich et al., 2019). Surprise may generate at least
two quantities: one relating to an event’s frequency (stimulus-
bound surprise), and another back-propagating information
gain that fine-tunes initial beliefs (model update) (Lorini and
Castelfranchi, 2007; Itti and Baldi, 2009; Faraji et al., 2018).
These two quantities together make up the uncertainty defined
in the Free Energy Principle (Friston, 2010), whose minimization
is theorized to be the brain’s primary purpose (Schwartenbeck
et al., 2015) and comprises a compelling theoretical framework
for brain function. Questions on the neural characterization
of different forms of uncertainty persist for both confidence
(Pouget et al., 2016) and surprise (Munnich and Ranney, 2019).
Current studies investigating uncertainty in the brain often
rely on the notion of a Bayesian brain (Friston, 2012), where
a probabilistic model of the world is built (the prior) and
subsequently updated (posterior) through repeated interactions
with the environment. In this paper, we seek to disentangle
different aspects of uncertainty, namely confidence, as well as the
dual facets of surprise, by applying a parsimonious, information
theoretic model to BOLD response signals in a functional
magnetic resonance imaging experiment. A neural response to
these quantities would lend support for their emergence in the
decision-making process.

1.1. Confidence
Human confidence is often thought of as a feeling but its
mathematical definition has been extensively used in the fields of
statistics and economics (Dominitz and Manski, 2004; Cesarini
et al., 2006) and has more recently attracted interest in the
neuroscience of decision-making (Kepecs et al., 2008; Kiani and
Shadlen, 2009; Rolls et al., 2010; De Martino et al., 2013). Most
studies on confidence in decision-making employ a subjective
measure of post-decision confidence, obtained via self-report
or inferred from reaction time (Kepecs and Mainen, 2012).
Confidence arising prior to a decision outcome by contrast is
a form of prediction uncertainty (Meyniel et al., 2015), or the
second-order uncertainty coupled to a first-order expectation
(Preuschoff et al., 2008a,b) and can be represented by the inverse
variance (precision) (Yeung and Summerfield, 2014; Pouget et al.,
2016) or the negative entropy of a probability distribution.
Confidence is thought to weight both belief and the impact
of its eventual violation: the more precise the prediction, the
more significant its associated error (Feldman and Friston, 2010;
Kwisthout et al., 2017). Neuroimaging studies on prediction
uncertainty, specifically entropy and variance, have uncovered
related BOLD responses in the hippocampus (Strange et al., 2005;
Harrison et al., 2006; Davis et al., 2012), the striatum and insula
(Preuschoff et al., 2006, 2008b; Mohr et al., 2010). Although
confidence figures prominently in predictive processing theory
(Friston et al., 2012; Barrett and Simmons, 2015), comparatively
few neuroimaging studies have probed its unique contribution
and neural representation. As confidence can confer an affective
state (Sanders et al., 2016), it may correlate to anterior insular

responses, and as it depends on prior knowledge, it may also
relate to memory regions, such as the hippocampus and temporal
lobe. Here, we seek a neural response to confidence as formalized
by an information theoretic quantity, namely the negative
entropy of a probability distribution, when an agent formulates
an expectation.

1.2. Surprise
The error related to prediction uncertainty is commonly cast
as surprise (Hayden et al., 2011; Preuschoff et al., 2011).
The problem of surprise in both artificial intelligence and
cognitive neuroscience hinges on its definition, which in turn
opens a fraught discourse on its putative purpose (Munnich
et al., 2019). From a phenomenological perspective, surprise
is an organism’s response to an unexpected change in her
environment. Formal accounts of the phenomenon include
Shannon surprise (Shannon, 1948); Bayesian surprise (Itti and
Baldi, 2009); a predictive coding account of surprise [as absolute
prediction error (Pearce and Hall, 1980) or risk prediction error
(Preuschoff et al., 2011)]. These accounts share common features
but are not perfectly correlated and, in some instances, can yield
diverging values (Baldi and Itti, 2010). Broadly speaking, all but
Bayesian Surprise can be considered “stimulus-bound” surprise,
although both risk and absolute prediction error further integrate
the value of an event, while Shannon Surprise is invariant to
the latter. Itti and Baldi (2009) posit that an event can only be
surprising if there is post-hoc evidence of learning; that is, the
relevance of an event elicits surprise, not merely its improbability
(Weaver; Faraji et al., 2018). Itti and Baldi formally distinguish
Shannon surprise as stimulus-bound surprise and Bayesian
surprise, an information gain represented by a Kullback-Leibler
divergence (DKL) between prior and posterior beliefs (Itti and
Baldi, 2009). They further argue that it is Bayesian Surprise
that constitutes true surprise. However, one can argue that a
rare event, formalized by Shannon surprise, is always relevant.
The Free Energy framework (Friston, 2009) accounts for these
distinct formulations of surprise by allowing for both stimulus-
bound surprise and model update to constitute a measure of
uncertainty (Free Energy), whose minimization is theorized to
drive an agent (Schwartenbeck et al., 2015). In the brain, surprise
as expectation violation correlates with BOLD responses in the
salience network, including the anterior cingulate cortex and
anterior insula (Uddin, 2014; Gogolla, 2017). Here, we seek to
replicate previous results found in relation to stimulus-bound
surprise specifically by applying an information theoretic account
to the BOLD response, as the latter does not integrate the value
of an event as risk and absolute prediction error do.

1.3. Information Gain
An unexpected outcome presents an opportunity to learn
but more fundamentally, a chance to acquire knowledge. An
intelligent agent should therefore exploit unexpected events
so as to gain information. Information gain is commonly
taken to be the Kullback–Leibler divergence, or relative
entropy, which conforms to the notion of a Bayesian brain
(Knill and Pouget, 2004) and therefore, implicitly, an assumption
that certitude is never encountered (Basieva et al., 2017).
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However, an argument can be made that, in some instances and
at higher levels of brain hierarchy, humans rely on approximate
solutions and therefore can experience certitude. When a model
cannot be further updated, or, in Markovian terms, when an
agent reaches a terminal state, information gained from an
event can be characterized as the difference between the truth
(outcome) and the degree of prior belief (confidence), or absolute
entropy (Shannon, 1948). What bridges the gap between belief
and knowledge is an information gain and can be cast as
an accuracy term. While accuracy is commonly taken as the
difference between observed and (average) expected outcomes,
we take it to be the difference between observed and the upper
limit of expected outcomes (confidence). Thus, information gain
may arise even if the model space is confined to one decision
and can be defined for cases in which predictions are perfect, or
outcomes are certain, as the self-evidence of a prediction (Parr
et al., 2018), or the confirmation of a belief. For instance, suppose
an agent invests in a given company’s stock, estimating both it’s
future stock price and a confidence interval on that estimate. The
agent wakes several years later to find the stock price has shot up
suddenly, exceeding her expectations. The difference between the
estimated and true stock price prompts a reward prediction error;
the rarity of the event prompts surprise; and the discrepancy
between the agent’s confidence and the true outcome, or how
far off the mark the agent was, represents a form of accuracy,
or information gain. As in confidence, Bayesian formalization of
information gain has gained considerable traction in recent years,
but it can be argued that purely information theoretic accounts
can simplify uncertainty quantification (Thornton, 2017). It is
possible that the brain expends no resources on information gain
if there is no future model to update however, a case can also
be made for the curious brain, an information-hungry organism
that collects and hoards evidence for possible future use. Here, we
explore the neural response to a non-Bayesian information gain,
which notably can be used in one-shot decisions.

1.4. Empirical Evidence of Stimulus-bound
Surprise and Model Update
The dual aspect of surprise as both an alarm signal and a quantity
of information is theoretically compelling, but less convincing
in a human context. Stimulus-bound surprise necessarily calls
on an autonomic response (Preuschoff et al., 2011), while an
information gain need not. Several empirical studies have sought
neural evidence of surprise’s dual role. An examination of
surprise models in P300 ERP signals finds Shannon information
best explained data rather than a KL divergence, or a model
that discounted forgetting across study blocks (Mars et al.,
2008). Stimulus-bound rather than Bayesian surprise provided a
better fit to the P300 ERP, widely viewed as a neural “surprise”
signal, however, evidence of distinct neural systems correlating to
stimulus-bound surprise and Bayesian surprise were found using
fMRI (O’Reilly et al., 2013; Schwartenbeck et al., 2015; Kobayashi
and Hsu, 2017). These studies suggest that, in humans (1)
stimulus-bound surprise comprises a relevant phenomenon and
that (2) a surprise-related learning signal also implicates a neural
response. What remains unknown is whether a neural response

reflecting information gain, distinct from a signed prediction
error and stimulus-bound surprise, can be identified in the case of
a one-shot decision process with a deterministic outcome where
the Kullback–Leibler divergences cannot be computed. Such a
signal can serve as a stand-in for subjective measures of post-
decision confidence, bypassing report-related error and would
also lend credence to the principle of uncertainty minimization
as a primary neural drive.

In the following study, we examine threemain questions in the
context of value-based decision-making under uncertainty. We
seek the neural representation of distinct but related uncertainty
variables, notably confidence, surprise and accuracy. Specifically
we hypothesize that (1) stimulus-bound surprise will elicit a
BOLD response in the insula, striatum, anterior cingulate as in
previous studies pertaining to error detection; (2) that confidence
signals will be reflected in the insula, striatum and hippocampus,
as entropy and risk have in other studies; (3) that accuracy
signals will incur a unique BOLD response after accounting
for reward prediction error and stimulus-bound surprise at
the same time point. We test our hypotheses using fMRI
within the context of a gambling paradigm that elicits both
uncertainty predictions as well as their concomitant errors while
controlling for reward, motivational, learning and motor effects.
Capturing these quantities in the brain can inform on the human
decision-making process, and notably provide guidance in where
the process can fail. Several clinical populations show signs
of dysfunctional decision-making (Pellicano and Burr, 2012;
Limongi et al., 2018), yet the precise nature of these lapses in
judgment remains difficult to quantify. By the same token, a more
detailed description of the human decision-making process can
guide efforts in artificial intelligence by providing more variables
with which a machine can learn.

2. MATERIALS AND METHODS

To examine our question of interest, we re-analyzed data from
an auditory gambling task performed during fMRI acquisition.
In the previous study, we sought commonalities of uncertainty
processing in perception and value-based decision making
task (Loued-Khenissi et al., 2020).

2.1. Participants
Twenty-nine healthy participants (10 F, average age 25.13 years)
completed the experiment. Participants were recruited via paper
and online advertisements targeting the student populations of
Ecole Polytechnique Fédérale de Lausanne and Université de
Lausanne. Exclusion criteria included metal implants, previous
psychiatric illness, and psychotropic drug use within the past
year. Inclusion criteria included proficiency in English.

2.2. Behavioral Task
To induce our target uncertainty variables, we employed
an auditory version of a gambling task that has previously
yielded responses to both prediction uncertainty and surprise
(Preuschoff et al., 2006, 2008b). In the task, participants were
asked to bet on the outcome of a card game. Starting with an
initial endowment of 25 CHF ( 25 USD), participants bet 1
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CHF that a second card drawn from a deck of 10 cards would
be higher or lower than a first card. Bets were placed prior
to any card being sounded. After the bet, the two cards were
revealed sequentially, with a time lag of 5.5 s between their
sounding. After the first card, participants could compute their
chance of winning (predicted reward), as well as a confidence in
their trial outcome prediction (predicted uncertainty). Once the
second card was revealed, participants could assess their errors in
reward and uncertainty prediction. Following the second card’s
sounding, participants were asked to report the bet’s outcome,
as a means of controlling for attention. Onsets for Cards 1
and 2 were separated by 5.5 s intervals, to better differentiate
hemodynamic response function peaks relating to predictive
and outcome phases of decision-making. A random jitter of
2–5 s was included following each trial. Each round of the
card game lasted 25 s. To control for fatigue and attention,
a penalty of 25 c was included for each missed bet and each
missed or incorrect report. Participants viewed a black fixation
cross on a gray screen during the imaging session, while stimuli
were presented in pre-recorded wav files transmitted to MR
compatible headphones, using Mac OS’s text to speech function
(Figure 1). The experimental task was written in Matlab (Matlab
and Statistics Toolbox Release 2013a, TheMathWorks, Inc.,
Natick, Massachusetts, United States) using the Psychophysics
toolbox (Kleiner, 2010). Participants were paid for their time

at the end of the experimental session; task-related payout was
reserved for a subsequent second experimental session, to lower
rates of attrition.

2.3. Imaging Procedure
All neuroimaging data were acquired on a Siemens 3T Prisma at
the Centre Hospitalier Universitaire Vaudois. Parameters for the
EPI sequence were: 2D EPI, Multi-Echo sequence (3 echo times),
3 x 3 x 2.5 mm resolution, FOV = 192 mm; FA = 90 degrees,
slice TR = 80 ms; TE = (17.4; 35.2; 53ms); base resolution
64mm; 34 slices; volume TR = 2.72 s; parallel acceleration
mode = GRAPPA, with an acceleration factor = 2. At the
end of the experimental session, anatomical T1 images were
acquired with the following parameters: T1MPRAGE, 1x1x1mm
resolution; FOV= 256mm; slice TR/TE= 2ms/2.39ms; FA= 9
degrees; base resolution= 256 mm).

2.4. Image Preprocessing
Functional scans were preprocessed and analyzed using SPM12.
Echo volumes were first summed to obtain one scan per TR.
We then performed slice-timing correction and generated voxel
displacement maps (VDM) to apply to functional volumes.
Volumes were warped and realigned to the mean functional
image using a 6 parameter (translations and rotations in space),
rigid-body transformation to correct motion artifacts, before

7 s 5.5 s 5.5 s

A

B

“Place your Bet.” “Five” “Seven” “Did you win or 

lose?”

1.Reward Prediction Error

2.Shannon Surprise

3.Information Gain

1.Expected Reward

2.Con!dence

“Place your Bet.”

Trial Duration: 

~ 25 s

1.Expected Reward

2.Con!dence

7 s 5.5 s 5.5 s

“Two” “One” “Did you win or 

lose?”

1.Reward Prediction Error

2.Shannon Surprise

3.Information Gain

FIGURE 1 | Probabilistic Gambling Task. Participants were asked to place bets on whether a second card draw from a deck of 10 would be higher or lower in value

than a first card. Bets were placed before either card was revealed. Participants estimate their reward (expected value) and confidence (expected uncertainty) in the

bet outcome after hearing card 1. After hearing card 2, agents can compute their reward prediction error; their stimulus-bound surprise and also their confidence error

or information gain. Let us assume in the above example that a participant bets the second card will be lower. In (A), confidence in the outcome will be low, given that

the first card is a five; surprise is also expected to be low when card 2 is revealed, but information will be high, as the second card can take on several states for each

outcome (1–4 for lower values, 6–10 for higher values) relative to the first card. In (B), a participant should be confident that she will lose, as there is only one card out

of a possible 9 that can deliver a win; therefore, when the second card yields the improbably one, surprise is expected to be high. Concomitantly, information gain is

expected to be low, as confidence in the outcome had to be high.
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being bias-field corrected. Then individual T1 volumes were co-
registered to themean functional image using a rigid bodymodel,
estimated with mutual information. The T1 image was then
segmented (6 class tissue probability maps) and normalized to
MNI space using unified segmentation (Ashburner and Friston,
2005). These normalization parameters were then applied to
functional volumes. Volumes were then smoothed with a
Gaussian kernel of 8 mm FWHM.

2.5. Mathematical Models
The task employed was designed to evoke probabilistic inferences
in participants. The decision variables derived below are based
on the probability distribution of winning (or losing) a gamble.
Our computational model for reward prediction at card 1 reflects
the average expected reward given the bet placed (higher or
lower), and card 1’s value (Preuschoff et al., 2011). The reward
prediction error at card 2 reflects the trial outcome (win or
loss) minus the reward prediction. Confidence is taken as the
negative entropy H of outcome probability distributions after
Card 1. This quantity is always negative and tends, when H = 0,
toward 0. While negative entropy and inverse variance are often
used interchangeably to quantify uncertainty and are numerically
equivalent for most cases in our dataset, the inverse variance
is necessarily undefined when ρ = 0. One could approximate
such “infinite” confidence by setting ρ(0) = ǫ, however resultant
values will 1) depend on ǫ; 2) yield a value for infinite confidence
that is not ordinal to other values of confidence (Figure 2). At
card 2, Shannon information quantifies stimulus-bound surprise,
as the negative log of the probability of the observed outcome,
x, given the bet placed, b and the value of Card 1, c. Finally,
information gain was captured by the difference between the
maximal value of confidence (certitude), minus confidence at

Card 1.We take this maximal confidence to be 0; the information
gain is thus always =< 0, as it is the DKL; to differentiate
this quantity from other forms of information gain, we call it
accuracy. Because our task begins with an equal probability of
outcome and ends with a terminal state that is independent of
prior and future trial outcomes, we do not expect any learning
to occur between trials. The trial begins with a flat prior and
ends with a pseudo-deterministic outcome. Therefore, trials are
assumed to be independent.

H = −pwin · log2(pwin)− (1− pwin) · log2(1− pwin) (1)

Confidence = −H (2)

Surprise = − log2 · (p(outcome|bet, card1)) (3)

Accuracy = 0− Confidence (4)

2.6. Imaging Analysis
We performed a model-based analysis on our functional
neuroimaging data. Specifically, we parametrically modulated
onsets of interest by mathematical quantities described below.
At the subject level, we constructed a general linear model
including one regressor for sound activation (following onset
of instructions to place the bet and to report the gamble
outcome, modeled by a Dirac function); one regressor for
motor response (including onsets for bet placement and
outcome report, modeled as a Dirac function); a regressor
for onsets of the first card’s presentation (modeled as 5.5.s
boxcar function), parametrically modulated first by reward
prediction, followed by confidence; and a regressor for onsets
of card 2’s presentation (modeled as 5.5.s boxcar function),
parametrically modulated first by the reward prediction error;
second, by stimulus-bound surprise; and finally by an accuracy
term. Parametric modulators were serially orthogonalized in the

FIGURE 2 | Decision variables. (A) Confidence as negative entropy or inverse variance. When outcomes are certain, neither inverse variance nor negative entropy are

defined. However, approximating negative entropy by 0 yields a value that is ordinal to the next highest levels of confidence, while approximating 0 variance with an ǫ

of 0.001 gives a value that does not scale with others confidence values. (B) We show the relationship between stimulus-bound surprise and information gain.

Confidence is at its lowest when the probability of a win is 0.5; in such an instance, an agent has the most information to gain but does not experience the least (or

most) surprise. Highest surprise is reserved for instances where confidence was high, such as cases where the probability of a win is 0.9; in such an instance, a loss

would necessarily incur high Shannon surprise.
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order described above, ensuring that related BOLD responses
to specific decision-making variables reflect that variable’s
unique contribution to the signal. Also included in the
model were 6 motion-related regressors of no interest. We
note that BOLD responses to expected reward and reward
prediction errors were not of primary interest to our study;
they are nonetheless included in the general linear model so
as to account for their unique contribution to the BOLD
response, thereby allowing for the isolation of uncertainty-
related variables. Onsets were convolved with the canonical
hemodynamic response function. The time-series was high-
pass filtered (128 s); autocorrelation was modeled by an
AR(1) function. We performed t-tests at the single subject
level on confidence, Shannon surprise and accuracy regressors.
Individual contrast images were then pooled as estimates in a
random-effects model. At the group level, we conducted non-
parametric tests using the SnPM13 toolbox (10 000 permutations,
variance smoothing= 8 mm).

3. RESULTS

3.1. Behavioral Results
Twenty-five participants were included in the analysis.
Behavioral data was not acquired for the first three participants.
A fourth participant showed an error rate in excess of 30%
(tallied from missed bets and reports, as well as incorrect
reports) and was excluded from further analysis. Average
task-related payout was 29.57 CHF; across all sessions and
subjects, payoffs were in the range of 13-39 CHF. As the task
designed included a truly random presentation of card pairs,
we performed post-hoc analyses on potential differences for
several variables of interest across sessions. We performed
an F-test to determine if any one session contained more of
one type of card value for card 1 and found no significant
differences across sessions (F = 0, p = 0.996). We then
performed tests on the mean differences of higher bets and
lower bets across sessions and found no significant differences
(F = 0.19, p = 0.8324 and F = 0.2, p = 0.8204, respectively),
suggesting participants did not “switch” strategies across
sessions. We also analyzed bet choices within blocks, by
summing bet switches following a loss with bet persistence
after a win, to assess the possible influence of prior bet
outcomes. We find participants chose “non-strategic” bets
more often (t = −3.01, p = 0.0035, df = 74), suggesting
participants did not attempt to “learn” from previous outcomes.
We also found a significant difference in bet choices with
a higher likelihood for selecting a higher bet in all sessions
(F = 34.69, p < 0.001).

3.2. Neuroimaging Results
We report results of voxels that remain significant when
corrected for multiple comparisons, at a threshold of
p = 0.05, FWE corrected at the whole brain level. Voxels
were localized with the use of the Neuromorphometrics toolbox
(Neuromorphometrics, Inc).

3.2.1. Confidence at Card 1
We performed a t-test on the onset of card 1’s sounding for the
prediction phase of the trial (duration = 5.5 s), parametrically
modulated by confidence. Confidence here is orthogonal to
reward prediction (experienced during the same time interval).
We find a significant cluster in the right hippocampus; bilateral
middle frontal gyrus; left supramarginal gyrus; right angular
gyrus; right middle temporal gyrus; left superior temporal gyrus;
and left inferior frontal gyrus. (Figure 3; Table 1).

3.2.2. Stimulus-Bound Surprise at Card 2
A t-test was performed on the onset of Card 2, parametrically
modulated by stimulus-bound surprise of the trial for the
duration between card 2’s sounding and the outcome report (5.5
s). Significant clusters were found in expected regions, notably
in the dorsal striatum (left putamen, right caudate); bilateral
inferior frontal gyrii, extending into the anterior insula; left
posterior cingulate cortex; bilateral medial temporal gyrii; and left
supramarginal gyrus (Figure 4; Table 2).

3.2.3. Accuracy at Card 2
A t-test was performed on the onset of Card 2, parametrically
modulated by the accuracy of a trial, for a duration of
5.5 s. This quantity was included in the GLM as a third
parametric modulator to Card 2’s onset, following reward
prediction error and stimulus-bound surprise. Significant
voxels were found in the left supramarginal gyrus; bilateral;
precuneus; bilateral cerebellum (exterior); and left central
operculum (Figure 5; Table 3).

3.2.4. Learning Across Trials
The experimental paradigm employed assumes no learning
occurs across trials. Where there may be a learning effect
is in the unlikely event that a subject counts card pairs
as they are presented, because each possible card pair is
only presented once. Should a subject deduce that each
card pair is only presented once and also retain card pair
values in memory as the experiment proceeds, we may
expect the model space to expand to the experimental
session. We nonetheless controlled for the possibility that a
subject counted cards during the experimental sessions by
designing a second GLM that differed from that described
above only in swapping information with a Bayesian update
measure. We computed this Bayesian update measure by
employing a Dirichlet counting process, as per Strange
et al. (2005), where wins were counted across a session,
and included this measure of learning or divergence in a
general linear model as a parametric regressor at Card 2. No
significant voxels emerged, even when lowering the threshold to
p= 0.05, uncorrected.

pwini =

∑i
1Wins+ 1

∑i
1 Outcomes+ 1

(5)
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FIGURE 3 | Statistical non-parametric map of significant clusters correlating to confidence in the interval between Card 1 and Card 2. Maps were thresholded with

p = 0.05, FWE-corrected for multiple comparisons. The colorbar indicates t-values.

4. DISCUSSION

The results above show that (1) confidence, as negative
entropy, correlates with the hippocampus, a region previously
linked to uncertainty processing; (2) stimulus-bound surprise
elicits activity in the insula and striatum, replicating previous
studies; (3) accuracy, as a measure of information gain
sampled at the same timepoint as stimulus-bound surprise,
elicits a BOLD response in distinct regions, namely the
cerebellum and precuneus. By using a formal account of all
three measures while controlling for reward-related decision
variables as well as task-related phenomena, such as overt
learning and motor action, we link confidence, surprise
and information gain to distinct neural correlates using
information theoretic accounts. The emergence of a BOLD
response for these three quantities underlines uncertainty’s
importance in human decision-making and lends empirical
support to the principles of both uncertainty minimization
and evidence maximization in brain function (Hohwy, 2012;
Fiorillo, 2017; Pezzulo and Friston, 2019). Moreover, the
localization of neural responses to surprise and information
gain closely mirror a recent fMRI study investigating the
similar questions but with the use of a Bayesian model
(Kobayashi and Hsu, 2017).

4.1. Confidence
In our study, both the hippocampus and temporal gyrus correlate
with confidence measures, in line with our hypothesis. Our
results support the notion that confidence occupies a particular

TABLE 1 | Statistics and locations of significant (p = 0.05, FWE-corrected) peaks

and clusters related to confidence at Card 1.

Confidence

k FWE T x y z Region

65 0.0022 5.61 −42 48 6 L MFG

32 0.0028 5.56 46 −32 −2 R MTG

32 0.006 5.33 −58 −50 38 L Supramarginal Gyrus

96 0.006 5.32 58 −54 28 R Angular Gyrus

23 0.0162 4.95 −44 18 44 L MFG

11 0.0188 4.9 32 −8 −22 R Hippocampus

12 0.0208 4.87 −48 44 −4 L IFG

9 0.0354 4.64 −60 −56 22 L Superior Temporal Gyrus

2 0.0368 4.63 −58 −42 40 L Supramarginal Gyrus

1 0.0464 4.54 62 −48 18 R Angular Gyrus

role in decision-making variables (Friston, 2018; Kiani and
Shadlen, 2009; Insabato et al., 2010; Pouget et al., 2016).
Confidence measures in human studies often suffer from being
a self-reported, subjective measure assessed post-hoc. Here, we
examine an objective form of confidence, captured by the
negative entropy computed during a passive, predictive phase
of an event’s outcome. As prediction is theorized to arise
from integrating an incoming stimulus into prior knowledge
(Clark, 2013), memory regions should be implicated in this
phase of decision-making. Previous studies have found a BOLD
response in the hippocampus for related measures of prediction
uncertainty such as variability (Rigoli et al., 2019) and entropy
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FIGURE 4 | Statistical non-parametric map of significant clusters correlating to stimulus-surprise at trial outcome. Stimulus-bound surprise represented a second

parametric modulator of Card 2’s event onset, after accounting for the reward prediction error. Maps were thresholded with p = 0.05, FWE-corrected for multiple

comparisons. The colorbar indicates t-values.

TABLE 2 | Statistics and locations of significant (p = 0.05, FWE-corrected) peaks

and clusters related to stimulus-bound surprise at Card 2.

Stimulus-bound Surprise

k FWE T x y z Region

655 0.0008 6.24 −22 −2 8 L Putamen

- 0.0012 5.85 −22 8 −6 –

- 0.002 5.57 −34 18 2 L Ains

738 0.0014 5.69 18 10 12 R Caudate

- 0.0022 5.51 44 20 −12 –

- 0.0022 5.49 24 −4 6 R Putamen

272 0.002 5.59 58 18 12 R IFG/Ains

- 0.0118 5.04 52 14 18 –

- 0.0126 5.02 52 30 16 –

69 0.0022 5.47 −62 −52 4 L MTG

38 0.007 5.19 0 −30 28 L PCG

108 0.0096 5.14 58 −56 6 R MTG

- 0.014 4.97 54 −46 12 –

110 0.0106 5.1 −50 38 6 L IFG

- 0.0156 4.91 −44 34 12 –

59 0.0128 5.01 -58 −52 24 L SupraMarginalGyrus

55 0.015 4.94 56 −36 −2 R MTG

57 0.016 4.9 −56 16 12 L IFG

- 0.021 4.82 −50 10 14 –

Clusters with more than one significant peak in the same region are indicated with a dash.

(Strange et al., 2005; Harrison et al., 2006) but here we explicitly
find hippocampal responses for confidence, and not entropy
or risk. Further, by using negative entropy rather than inverse
variance, we divorce this quantity from the expected mean; that
is, confidence is invariant to the value of the prediction. Our
results further add to the current body of knowledge pertaining to
brain correlates of confidence because we employ a whole-brain
rather than ROI-based analysis. Other areas correlating with
confidence include parietal regions, namely bilateral angular and
supramarginal gyri. Angular gyri have previously been implicated
in decision-making under uncertainty in humans (Symmonds
et al., 2011; Studer et al., 2014). Inmonkeys, parietal neurons have
previously been found to encode perceptual confidence using an
evidence accumulationmodel (drift diffusion) in rhesus monkeys
(Kiani and Shadlen, 2009). Finally, parietal lesions in humans
have been found to leave recollection unaltered, but to specifically
impair memory confidence (Simons et al., 2010). It is noteworthy
that none of the studies above explicitly model confidence as
negative entropy, but nonetheless yield similar neuroanatomical
correlates. While the parietal lobe was not a primary focus of our
hypothesis on the neural correlates of confidence, results from
the extant literature validate our use of an information theoretic
model of confidence.

4.2. Stimulus-Bound Surprise
We find evidence of stimulus-bound surprise in the (posterior)
cingulate cortex and anterior insula, regions thought to signal
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FIGURE 5 | Statistical non-parametric map of significant clusters correlating to information gain at trial outcome. Information gain represented a third parametric

modulator of Card 2’s event onset, after accounting for the reward prediction error and stimulus-bound surprise. Maps were thresholded with p = 0.05,

FWE-corrected for multiple comparisons. The colorbar indicates t-values.

error detection and conflict (Ullsperger et al., 2010); and the
striatum, all regions previously implicated in studies on surprise
(Preuschoff et al., 2011; Kobayashi and Hsu, 2017) but not found
in other studies investigating both stimulus-bound surprise
and information gain (O’Reilly et al., 2013; Schwartenbeck
et al., 2015). Our results reaffirm the neural relevance of event
improbability decoupled from the nature of the event (gain or
loss) and by extension, the likely behavioral pertinence of such
outcomes. Here, by controlling for the contributions of both
the reward prediction error and information gain to the BOLD
response at the outcome of a trial, we can confidently assert
that our measure of surprise captures error-detection free of a
hedonic component. Significant responses in the temporal lobe, a
memory region, further add credence to the predictive processing
framework. Stimulus-bound surprise can only occur when an
event is compared to a prior expectation, a state of affairs that
necessitates a memory component.

4.3. Model Update, Learning, and Accuracy
Evidence of learning can best reflect an information gain.
However, no learning is expected to occur in our task, and this
by design. All trials start with an equal probability of winning,
so no strategizing can occur and outcomes do not depend
on previous trials. We nonetheless captured signals related to
a quantity of information gain by measuring maximal minus
predicted confidence, or absolute entropy (Shannon, 1948). To
distinguish this quantity from a model update (O’Reilly et al.,
2013) we call this error term accuracy. Absent such a signal,
we can hypothesize that no information has been gained, which

TABLE 3 | Statistics and locations of significant (p = 0.05, FWE-corrected) peaks

and clusters related to Information Gain (Accuracy) at Card 2.

Information Gain (Accuracy)

k FWE T x y z Region

68 0.0002 6.34 −38 −38 38 L Supramarginal Gyrus

44 0.09 5.1 12 −70 32 R Precuneus

240 0.01 5.04 −10 -60 −10 L Cerebellum

- 0.0136 4.93 16 −64 −12 –

- 0.0158 4.87 24 −58 −20 –

17 0.0288 4.68 −12 −72 28 L Precuneus

6 0.0386 4.56 −42 −14 12 L Central Operculum/Posterior Insula

1 0.0486 4.46 −44 −28 40 L Post CentralGyrus

Clusters with more than one significant peak in the same region are labeled with a dash.

suggests an agent was certain in the predictive phase of a
decision. Accuracy was reflected in the cuneus and cerebellum.
The cuneus has previously been implicated in learning rates
(Payzan-LeNestour et al., 2013) and belief updating (Kobayashi
and Hsu, 2017), in line with results in our study and has also
been implicated in perceptual evidence accumulation (Ploran
et al., 2011; FitzGerald et al., 2015), however this region also
correlated with stimulus-bound surprise in another fMRI study
(O’Reilly et al., 2013). The cerebellum on the other hand showed
the strongest response to information gain. While a role for
the cerebellum has been hypothesized in learning (Doya, 2000;
Friston and Buzsáki, 2016) and inferential processes (Blackwood

Frontiers in Artificial Intelligence | www.frontiersin.org 9 February 2020 | Volume 3 | Article 5

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Loued-Khenissi and Preuschoff Information Theoretic Characterization of Uncertainty in the Brain

et al., 2004; Friston and Buzsáki, 2016), it is not commonly
viewed as a decision-making hub. Of note is the lack of BOLD
response in the cingulate cortex, which contrasts with results
found by O’Reilly et al. in their study (2013). The absence of
a BOLD response in the cingulate cortex, a region commonly
linked to conflict (Botvinick, 2007) underlines the quality of
information gain, in that it need not stem from incongruence but
more fundamentally as an acquisition of knowledge, even while
being a “prediction error.” Our results underline the inherent
value information has (Friston et al., 2012), for the brain would
not expend energy on a response otherwise. The brain may
collect seemingly useless information, for a potential future. The
implication of information collection is not trivial: it supports
the notion that an agent may want to maximize her entropy
(Schwartenbeck et al., 2013) and in so doing “seek” surprise
(Clark, 2018), or a state of expecting the unexpected (Sun et al.,
2011. Indeed, those individuals with stronger signals relating
to information gain may be cast as more adventurous, or risk-
seeking (Kruschwitz et al., 2012).

4.4. Hypothesized Disruptions of the
Probabilistic Brain
Elucidation of uncertainty decision-variables can help identify
specific components of dysfunctional decision-making and
learning, particularly in patient populations (Parr et al., 2018).
Isolating a neural response to confidence alone, for instance, may
help shed light on aberrant decision-making. A compromised
ability to compute confidence may lie at the heart of pathologies
such as obsessive-compulsive disorder (OCD) (Hermans et al.,
2008; Vaghi et al., 2017) and anxiety (Grupe and Nitschke, 2013;
Carleton, 2016). Therefore, one could probe a patient’s response
to confidence in the hippocampus to determine if it deviates from
a healthy range. Both repetitive actions and negative outlooks
(expecting the worst) may increase confidence, and therefore
minimize (unpleasant) surprise in OCD and anxiety patients
(Hein et al., 2019), respectively; but increasing confidence
would also erroneously minimize information gain (Kwisthout
et al., 2017) and therefore accuracy. While these strategies are
maladaptive, they are not irrational; framing them in the context
of aberrant computations offers a way to identify the specific
sub-process causing distress (Parr et al., 2018). Probabilistic
computation may also be compromised in autism (Sinha et al.,
2014; Van de Cruys et al., 2014); and schizophrenia (Silverstein
et al., 2017). For instance, autistic individuals overestimate the
volatility of an uncertain environment (Lawson et al., 2017). A
disorder where stimulus-bound surprise is not computed may
result in apathy and flattened affect, a common symptom in
schizophrenic patients. On the other hand, an inflated stimulus-
bound surprise could overwhelm an agent, which may be a
feature of autism. Difficulty acquiring information specifically
by discounting the accuracy term above could impede an
agent’s change in belief. Similarly, too large an information
gain signal could indicate false belief formation (Schwartenbeck
et al., 2015). Therefore, the neural processing of each of the
quantities probed above may contribute to a specific dysfunction
in behavior. Simulations of agents with specific deficits can

be conducted to predict pathological symptoms of different
psychiatric disorders.

4.5. Uncertainty in Man and Machines
The findings above also impact questions in artificial intelligence
(Macedo and Cardoso, 2001; Lorini and Castelfranchi, 2006;
Lorini and Piunti, 2007). If artificial intelligence is modeled
after human behavior (Lake et al., 2017) then formalizing and
finding evidence of the processes deployed in human intelligence
offers a more precise template to reproduce. The utility in
endowing a an intelligent agent with uncertainty and model
update computation is clear. Less convincing is the need to
encode all forms of uncertainty-related variables. Humans need
stimulus-bound surprise, as it prompts a fight or flight response,
presumably in the face of death: updating a model may well
be irrelevant in such a case, or at the very least, secondary.
In machines however, a model update may be necessary and
sufficient, while stimulus-bound surprise may be surperfluous.
Another consideration with respect to artificial modeling of
surprise is the inclusion of its affective component. Hedonic
components of surprise, such as positive and negative valence,
can be accounted for in the sign of the reward prediction error.
However, human surprise is also tinged with a range of other
graded emotions: joy, disappointment, disgust, horror, anger, awe
and fear (Braem et al., 2015). One could engage in a thought
experiment to identify cases when an artificial agent may need
to “feel” different hues of surprise-specific emotion. There may
be no concrete purpose in endowing an artificial agent with the
capacity to encode awe, for instance.

4.6. Conclusions
Our aim was to employ information theory to model and
decompose uncertainty signals in the brain. Studies investigating
the probabilistic brain have primarily exploited Bayesian models
(Knill and Pouget, 2004; Friston, 2012) however as seen in
the study above, such models may not easily accommodate
certitude or one-shot decisions. While our work cannot identify
causal relationships between external stimuli and recorded
BOLD signals, we nonetheless find a relationship between
the two. Significant brain responses that correlate to specific
formal accounts suggest such calculations are being performed.
In finding distinct responses to confidence, surprise and
information gain, we highlight the importance of uncertainty
integration to the brain. In identifying a neural correlate of
information gain for a discrete decision in particular we: 1) offer
an alternative to the Bayesian Surprise model of the latter; 2)
show that the brain seeks to maximize evidence even when there
is no obvious reason to do so. The implications of our results may
help refine efforts to model intelligent agents and provide specific
measures to identify and quantify decision-making deficits in
clinical populations.
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