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Social networks play a role in language variation and change, and the social network

theory has offered a powerful tool in modeling innovation diffusion. Networks are

characterized by ties of varying strength which influence how novel information is

accessed. It is widely held that weak-ties promote change, whereas strong ties lead to

norm-enforcing communities that resist change. However, the model is primarily suited

to investigate small ego networks, and its predictive power remains to be tested in large

digital networks of mobile individuals. This article revisits the social network model in

sociolinguistics and investigates network size as a crucial component in the theory. We

specifically concentrate on whether the distinction between weak and strong ties levels

in large networks over 100 nodes. The article presents two computational methods that

can handle large and messy social media data and render them usable for analyzing

networks, thus expanding the empirical and methodological basis from small-scale

ethnographic observations. The first method aims to uncover broad quantitative patterns

in data and utilizes a cohort-based approach to network size. The second is an

algorithm-based approach that uses mutual interaction parameters on Twitter. Our

results gained from both methods suggest that network size plays a role, and that the

distinction between weak ties and slightly stronger ties levels out once the network

size grows beyond roughly 120 nodes. This finding is closely similar to the findings

in other fields of the study of social networks and calls for new research avenues in

computational sociolinguistics.

Keywords: social networks, Twitter, bot exclusion, data mining, weak ties, social network size

INTRODUCTION

This article focuses on social networks and explores network size as a key determinant in the
network theory used in sociolinguistics. Building on Granovetter (1973), the theory postulates that
individuals form personal communities that provide a meaningful framework for them in their
daily life (Milroy and Llamas, 2013). An individual’s social network is the sum of relationships
contracted with others, and a network may be characterized by ties of varying strength. If ties
are strong and multiplex, the network is dense, and individuals are linked through close ties
(such as friends). Conversely, ties can be weak in which case individuals are predominantly
linked through occasional and insignificant ties (such as acquaintances), and the network is
loosely knit. Most importantly, networks contribute to language maintenance and change. Ample
empirical evidence shows that loose-knit networks promote innovation diffusion, whereas dense
multiplex networks lead to communities that resist change (Milroy andMilroy, 1978, 1985; Milroy,
1987; Lippi-Green, 1989). The underlying reason for the weakness of strong ties in transmitting
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innovation is the fear of losing one’s social standing in a network.
Adopting new ideas is socially risky, and we do not want to “rock
the boat” in dense social structures.

Even though the social network theory is influential in
sociolinguistics, it is mostly based on small data. Most studies
have focused on what are usually referred to as ego networks
obtained using ethnographic observation. According to Milroy
and Milroy (1992, p. 5) this “effectively limits the field of
study, generally to something between 30 and 50 individuals.”
Moreover, it has been suggested that the quantitative variable
of a network “cannot be easily operationalized in situations
where the population is socially and/or geographically mobile”
(Milroy, 1992, p. 177). In this paper, we concentrate on networks
that are larger than small networks of only a few dozen
of individuals. This has been done because evidence from
social anthropology suggests that average human networks are
substantially larger, and individuals can maintain networks with
well over 200 nodes (McCarty et al., 2001). Prior empirical work
in sociolinguistics has therefore covered only a limited section of
possible network sizes.

We have two research foci. First, we test the extent to which
social media data from Twitter and computational methods
could be utilized to operationalize network ties of highly
mobile individuals in very large datasets. Second, we specifically
concentrate on the effect of network size on the validity of the
theory. We investigate if the fear of losing one’s social standing by
“rocking the boat” disappears in large strong-tie networks.

To respond to these questions, we discuss two computational
methods that can take up large and messy social media
data and render them usable for analyzing networks in
sociolinguistics, thus expanding the empirical basis from small-
scale ethnographic observations. The first method aims at
uncovering broad quantitative patterns in data and utilizes
what we call a cohort-based method of network size. The
second consists of an algorithm-based approach that uses mutual
interaction parameters in Twitter and aims to verify the patterns
obtained using the cohort-based approach.

By doing so, the article continues our pilot investigation,
which suggests that network size is a crucial component in the
theory. Our first results indicated that weak ties are meaningful
in small networks, but the distinction between truly weak ties
and slightly stronger ties levels out when network size increases
beyond a certain threshold level (Laitinen et al., 2017). This
pilot was based on social media data that had not yet been
cleaned of unwanted software robot data (i.e., bots). In the
present study, we attempt to replicate the study using a more
accurate dataset from which we have removed bots by means of
machine-learning techniques and by using novel computational
methods to test our first observations. Bot content can result in
inaccuracies, and previous computational sociolinguistic studies
rely on a range of methods when bots are handled. Their presence
may be recognized, but they are nevertheless included in the
results (Huang et al., 2016; Laitinen et al., 2017). Other methods,
such as excluding material by using metadata parameters, are
occasionally used (Coats, 2017), but as we demonstrate below
in section Material and Methods, more advanced solutions
are available.

As shown in the next section, the role of network size in
sociolinguistics is an understudied phenomenon, which not only
requires new tools but could also shed light on the contrast
between strong and weak ties in innovation diffusion. One
example is that while the weak-tie model is beneficial, it has
recently seen substantial theoretical elaboration, and recent
advances have broadened the understanding of networks ties
as a unidimensional concept (Aral and Van Alstyne, 2011).
What is clear is that weak-tie and close-knit networks are
different for small ego networks obtained through ethnographic
methods, but if network size is ignored, the social network
theory is not fully consistent with some of the major findings
in sociolinguistics. First, it is widely held that there is one
period when individuals maintain maximally close ties with their
peers, and that is adolescence (Chambers, 2003, p. 90–91). Yet,
the role of adolescents in language change is indisputable and
verified in both real-time and apparent-time studies of change
in progress (Labov, 2001, p. 76; Tagliamonte and D’Arcy, 2009).
There might, of course, be other reasons than interpersonal ties
during adolescence that lead teens to diverge from adult norms,
but network size deserves to be studied in more detail. Moreover,
ample macro-level evidence suggests that densely populated and
sufficiently large working-class urban areas have, throughout
history, been sites for innovations (e.g., the Jewish quarters all
over Europe, Harlem in New York City, or St. John’s Ward
in Toronto). Pan et al. (2013) suggest that it is the size and
density of the ties of a center that are crucial for information
diffusion. They investigate social-tie density and information
contagion in urban populations, and their quantitative model
shows how density, with both weak and strong ties, drives the
“super-linear” growth of interaction and information diffusion.
Close-knit urban centers may, of course, be sufficiently large to
sustain individuals with weak ties through whom innovations
spread to a community, but we simply do not yet know whether
the role of weak and strong ties levels out beyond a certain
threshold level.

Section Social Networks in Variationist Sociolinguistics
Discusses not only the theoretical basis of social networks in
sociolinguistics but also reviews recent insight from complex
systems analysis and social network theory. Section Material and
Methods details the material and the two methodologies. Section
Results presents the results, and, finally, section Conclusions
discusses the implications of our findings.

SOCIAL NETWORKS IN VARIATIONIST
SOCIOLINGUISTICS

Social network analysis in the variationist paradigm transpires
from the idea that individuals establish interpersonal ties
of varying strengths to form communities. These personal
social networks are not independent from other socio-cultural
frameworks but are closely related to other variables, such as
gender and social layer (Milroy and Milroy, 1992). Interpersonal
ties influence the rate at which innovations are adopted and
how they diffuse into a community. Sociolinguists have shown
that strong networks tend to maintain and support local norms
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and provide resistance to the adoption of competing norms
from the outside. Conversely, conditions that are characterized
by weak and uniplex ties are important channels for outside
influence as people in such situations tend to accommodate
to each other linguistically. Contact situations with weak ties
therefore contribute positively to the spread of innovations.

This finding builds on Granovetter’s (1973, p. 1365)
observation that “only weak ties may be local bridges.” More
people can be reached through weak ties, but not all weak
ties serve this function, “only those acting as bridges between
network segments” (1983, p. 229). To explain this somewhat
counterintuitive observation, Granovetter (1973, 1983) argues
that close-knit networks encourage local cohesion and norm-
enforcing communities where the adoption of innovations is
risky. Loose-knit networks with individuals already on the social
fringes are more susceptible to external innovations. In addition,
weak ties may be expected to be more numerous among mobile
individuals and are thus more likely to contribute to the diffusion
of an innovation.

In variationist sociolinguistics, network ties have been
operationalized in various ways (Milroy and Llamas, 2013). In
the Belfast study, they were measured using five indicators to
establish how complex and dense a particular tie was. The
indicators consisted of (a) having membership in a locally-
based group, (b) having ties with at least two households in
the neighborhood, (c) sharing a workplace with two or more
individuals from the neighborhood, (d) sharing a workplace
with same-sex individuals from the neighborhood, and (e) being
involved in voluntary activities with individuals from the same
workplace. The responses resulted in a network strength scale,
which formed an independent variable, and these values were
compared to the dependent (phonological) variables. The results
show that the individuals with strong network ties with the local
community also exhibited the highest share of local, vernacular
speech, and “that a close-knit network has an intrinsic capacity to
function as a norm-enforcement mechanism, to the extent that it
operates in opposition to larger scale institutional standardizing
pressures” (Milroy and Milroy, 1985, p. 359).

A large body of variationist sociolinguistic literature exists in
which the network-based approach has been applied to small
contemporary communities (Milroy and Llamas, 2013). Milroy
and Milroy (1978) use 46 speakers from three urban, blue-
collar Belfast communities, and the network ties were established
through a participant observation process in which a researcher
was introduced to a community by means of a friend-of-a-friend
technique. Of these, 12 had network scores qualifying them as
weak tie individuals. The same also applies to Granovetter’s
(1973, p. 1368–1371) study as his empirical data came from
a random sample of 100 personal interviews taken from the
total sample of 282. Carefully constructed personal networks are
obviously important, but the availability of social media data also
forces us to ask if the model holds when tested with considerably
larger networks.

Network size has not been considered as a separate
independent variable in variationist sociolinguistics (Milroy and
Llamas, 2013). The model has been applied to large communities
in macro-level approaches (Milroy and Milroy, 1985; contrasting

Icelandic and English; Raumolin-Brunberg, 1996; investigating
mobility as a result of the Civil War in the seventeenth-century
England, and Nevalainen, 2000; examining patterns of mobility
in Early Modern London). However, while all of these studies
are rich in linguistic evidence, they nevertheless contain no direct
quantitative evidence of how much weak ties actually increase in
the settings that are examined. They rely on indirect evidence of
migration patterns, population growth and birth/death rates for
instance, but information of average network size per community
is not detailed.

Recent findings in social anthropology have shown that an
average network size is larger than a few dozen individuals.
Dunbar (1992, p. 469) has suggested that the neocortex size and
the number of neocortical neurons impose a cognitive upper
limit on an individual’s information-processing capacity. These
limit “the number of relationships that an individual can monitor
simultaneously” to around 150 nodes. Additionally, McCarty
et al. (2001) use two methods to estimate the size of average
networks. They use what they term the scale-up and summation
methods, and the results show “a remarkable similarity between
the average network size[s] generated by both methods (∼291)”
(2001, p. 28). They estimate, however, that network sizes for
various subpopulations can be substantially larger. These include
clergy, politicians, labor organizers, and diplomats.

Sociolinguistic research has covered a part of the feasible
network sizes. Figure 1 visualizes this with the aid of dummy
data. The x-axis indicates the size of networks and the y-axis the
rate of innovation adoption for network types. The left-hand part
shows the size of the networks covered, while the right shows how
these fare with cognitively possible human network sizes.

We added a regression line to the visualizations but given
the absence of empirical evidence it is impossible to know
whether the line continues if we have evidence exclusively from
small networks.

Recent findings from fields outside sociolinguistics suggest
that network sizes play a more substantial role than previously
thought. Ma et al. (2019) focus on trust in public and private
social media groups, surveying 6,383 Facebook Groups users.
Their observations show that people trust private groups more
than they do public groups, which is to be expected. However,
the differences between group types disappear once the group
size exceeds circa 150 members. When networks become larger,
individuals are no longer be able to perform themental reasoning
of who actually is in the group and who is not. Therefore, the
difference between network types levels in large networks.

Moreover, increasing empirical evidence has recently led
social network scholars to question the unidimensionality of
the weak-tie model. Brashears and Quintane (2018) for instance
elaborate on the idea of bandwidth in social contacts as an
additional dimension. This concept refers to the total flow
of information and accounts for capacity, frequency, and
redundancy of network ties. Their model shows that even though
humans acquire a smaller proportion of new ideas through
strong contacts, the greater bandwidth of these contacts means
that more total content is transmitted through these contacts.
Strong contacts could therefore be more likely to transmit a
greater share of novel information than weak ties, which could
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FIGURE 1 | A schematic representation of the network sizes covered (Left) and also the cognitively possible networks (Right).

explain the role of large urban working-class centers as places
for innovation.

We investigate networks in Twitter and operationalize them
using metadata available for each account. These are related to
network size and mutual interaction patterns. Previous studies
in computational sociolinguistics have used such information
more to extract social network structures (Nguyen et al.,
2016), but less to deepen understanding of the social network
theory, which is the locus of this article. Eleta and Golbeck
(2014) apply machine learning to study how social network
characteristics and linguistic profiles influence language choice
and how multilingual users of Twitter mediate between language
groups in their social networks Their data consist of 92 ego
networks, and the observations show that the proportion of
English users in the network is the most significant predictor
of language choice. Moreover, if a network consists of L2
users, this will increase the likelihood of L2 use. Kim et al.
(2014) investigate how virtual networks impact multilingual
practices, and they quantify “the degree to which users are the
‘bridge-builders’ between monolingual language groups.” Hale
(2014) studies networks utilizing mentions and retweets, and
his results confirm the central role of multilingual users, and
those who use English in particular, as the bridging forces in
the network.

MATERIALS AND METHODS

To test the computational methods, we use two sets of Twitter
data. Section A Cohort-Based Approach to Network Size uses
evidence from the Nordic Tweet Stream corpus (NTS), which is a
real-timemonitor corpus of geolocated tweets and their metadata
from the five Nordic nations (Laitinen et al., 2018). Section An
Algorithmic Approach to Networks in Sociolinguistics utilizes an
algorithm-based method, which makes use of mutual interaction
data from a set of accounts from the Nordic region.

The NTS is being collected using the free Twitter Streaming
API and the HBC (https://github.com/twitter/hbc) as the
downloading mechanism. We apply a double filtering with the
geolocation information and the Nordic country codes to ensure
that thematerial originates from the region (Laitinen et al., 2018).
While tweet data offer an efficient way of capturing big societal
data, there are limitations. As an illustration, users who do not
want to share their geolocation are not included. Depending on
privacy settings and the geolocation method used, tweets either
have (a) an exact location specified as a pair of latitude and
longitude coordinates or (b) an approximate location specified
as a rectangular bounding box. These geolocation data are
available in the metadata attached to the message. Alternatively,
no location at all is specified. For location, the data are derived
either from the user’s device itself (using the GPS) or by detecting
the location of the user’s Internet Protocol (IP) address (GeoIP).
Exact coordinates are almost certainly from devices with built-in
GPS receivers (e.g., phones and tablets). The GeoIP-based device
location can be tricked by using proxy gateways. Attempting to
hide one’s location is probably most common amongst users with
a malicious intent, such as bots.

To exclude bots and to increase data accuracy, we use a
machine-learning algorithm developed by Lundberg et al. (2019).
The version recognizes automatically generated tweets (AGTs)
written in English and in Swedish. We define an AGT as a tweet
in which all or parts of the natural language content are generated
automatically by a bot or other type of program. The algorithm
makes use of nine numerical and nominal properties that can be
computed directly from the tweet metadata. The accuracy rate of
the algorithm is over 97%. The results in section A Cohort-Based
Approach to Network Size exclude possible bot accounts, whose
share of AGTs is>50%, and section An Algorithmic Approach to
Networks in Sociolinguistics focuses on genuine human accounts
that have been selected manually.

The first method (based on cohorts) does not assume a pre-
existing social network as the starting point but rather aims at
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TABLE 1 | Raw statistics for the data used in section An Algorithmic Approach to Networks in Sociolinguistics.

Account Friends Net size Loss rate (%) Tweets Retrieval (in mins) Text collection (in mins)

account_01 409 221 46 312,350 230 38

account_02 335 166 51 253,758 181 33

account_03 309 195 37 286,945 201 33

account_04 332 175 47 150,774 184 25

account_05 201 105 48 100,915 105 14

account_06 418 132 68 192,944 140 23

account_07 468 281 40 316,944 291 41

account_08 448 286 36 322,566 303 40

account_09 418 216 48 189,628 229 26

account_10 496 297 40 516,686 282 67

uncovering quantitative patterns in the data. Tomeasure network
sizes and to correlate size with the rate of innovation, we use
two metadata attributes available for each tweet. They measure
the number of one’s online friends and followers, and networks
are operationalized as follows: The number of followers indexes
truly weak ties (i.e., requires no action from a user), and the
number of friends is an indication of slightly stronger links
(i.e., requires user effort). We suggested previously that these
metadata offer a way of measuring social networks and are ideal
for research purposes, because they are automatically generated
and hence they reduce the observer bias (Laitinen et al., 2017).
They are also freely available to researchers with intermediate
computing skills.

Similar to Milroy (1987), we operate under the assumption
that social networks are abstractions, but we also propose that
information from digital social network applications can be used
to distinguish between ties of varying strengths. Friend and
follower counts are useful indicators of social networks because
of their differing qualities. Our definition of truly weak ties and
slightly stronger ties is similar to Granovetter’s (1973, p. 1361)
assumption that the “strength of a tie is a (probably linear)
combination of the amount of time, the emotional intensity, the
intimacy (mutual confiding), and the reciprocal services which
characterize the tie.” His methodology assumed stronger ties to
be “friends,” while weak ties consisted of “acquaintances,” very
similar to what we do below. By the same token, while we do
not claim that friend count would indicate stronger ties in the
sense in Milroy (1987), we assume that our operationalization of
digital social networks is closely similar to the underlying idea
of networks. Indeed, Milroy (1992, p. 178) argues that “a tie is
‘weak’ if it is less strong than the other ties against which it is
measured,” which also holds true for the follower counts when
compared with friends.

The second method, the algorithm-based approach, zooms
in on a set of real networks extracted by accessing account
information through the Twitter API. We employ data such as
friends and follower patterns, re-tweets, mentions, and directed
messages. The accounts are anonymized, and we work with two
types of network.

• Large (100–300 nodes) weak-tie networks

• Large (100–300 nodes) close-tie networks

We identified a set of accounts similar user profiles and extracted
all interaction data available. The policy limitation of the
API allows accessing up to 3,200 of the latest messages for
each unprotected account. The account holders are from the
metropolitan areas of Helsinki and Stockholm, are not working
in academia, identify as males, have >10 messages primarily in
English, and have more than 300 friends and followers. The last
figure comes from a study that estimates median network sizes
for multilingual individuals (Laitinen and Lundberg, 2020).

We narrowed the candidate accounts to ten and extracted
their networks, including recent tweets and mutual interaction
profiles. We excluded verified accounts (i.e., subpopulations with
anomalous networks of politicians/celebrities/businesses) and
accounts with more than 1,500 contacts (friends + followers).
This was done to ease the time required for extracting mutual
interaction data from large social networks. It is important
to note that, while the number of accounts is small, the
data extraction through the API takes circa 3–6 h per account
(Table 1).

Even though the algorithm-based approach is tested with ten
accounts, the size of our data is large. For instance, the mean
network size is over 200 individuals (207), and the size of the
textual data is over 2.6 million messages. In Table 1, the net
size represents the number of collected accounts for the network
(number of nodes in the graph). The loss ratio indicates the
percentage of accounts lost after filtering.

The mutual interaction patterns are subjected to algorithms in
order to assign labels of weak or strong networks to the accounts.
The algorithms are explained in detail below, but they are mainly
from the graph theory and the set theory, and some of them
have been developed by us. For instance, we use betweenness
centrality, which is a measure based on finding the shortest path
between nodes (Freeman, 1977; Brandes, 2001) and closeness
centrality (Perez and Germon, 2016). Kuikka (2018) argues that
betweenness measures identify nodes that act as brokers between
communities and are used to detect the density of how people
are connected to each other in a network. We also use Jaccard
Similarity Coefficient (JSC), which is a symmetric measure that
calculates the similarity between two sets, and it is used to
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measure the similarity between accounts in terms of the number
of common followers/friends. The assumption is that the share
of common friends/followers is higher in a strong-tie network
than in weak-tie settings. In addition, we assign weights to each
account in the network and employ a method which we call
disjointness. This last method enables us to estimate how well
the nodes in a network are connected if the ego node were to be
removed. The network labels are therefore multidimensional.

As for the dependent variables, we employ items that are
frequent enough to be used in the testing phase. First, the cohort-
based method uses the dominant language for each account.
This information is available in the NTS metadata, and the
share of English messages per account is correlated with network
sizes. As our data come from the Nordic region, it ought to
be noted that while English has no de jure position in the
region, it is increasingly used as a lingua franca. Space does not
permit us to discuss the sociolinguistic diversity of the region,
but see country overviews in Modiano (2003), Preisler (2003),
Leppänen et al. (2011), and Graedler (2014). Previous studies
that use Twitter data have suggested that a great majority of
messages in one location, a region for instance, are from residents
of that location (Gonçalves et al., 2018; Lamanna et al., 2018)
and not from visitors and tourists. The cohort-based method
uses information from tens of thousands of accounts, and we
assume that our dataset is reliable, given the general limitations
of Twitter data. We use automatically-assigned language labels,
and although automated language identification methods are
not entire accurate, the agreement between human coders and
Twitter’s language recognition system is fairly high for languages
written in the Latin alphabet (Graham et al., 2013).

Second, the algorithmic approach uses a mixture of linguistic
features available in the tweet text. These features consist of
contracted forms (won’t, ‘ll, I’m etc.), and NEED to used as a
semi-modal auxiliary. These features are qualitatively different
as the contracted forms index colloquial, spoken-like use (Biber
et al., 1999, p. 1128–1132), while NEED to is currently undergoing
change in English (Leech, 2013) and is highly pervasive in ELF
use in the Nordic region (Laitinen, 2016).

RESULTS

A Cohort-Based Approach to Network Size
We illustrate the cohort-based method first using data from
199,832 accounts from the NTS, from which we removed
subpopulations with anomalous network profiles, as defined in
section Social Networks in Variationist Sociolinguistics. After the
initial results, we test the findings with data from which software
bots are removed. These bot-free data consist of 90,887 accounts,
obtained from the NTS but limited to Sweden only (labeled
as NTS-Human-Swe).

The null hypothesis is that increasing the number of network
ties does not lead to increases in the share of English per account.
The cohort-based approach for both categories is specified in (1)–
(6) (it refers to followers in the NTS, but the same procedure
applies to friends and to both datasets):

(1) We sort out all the accounts based on their followers’ counts.

FIGURE 2 | Friends and followers visualized (199,832 accounts).

(2) The accounts are divided into N equally-sized cohorts where
cohort 1 is the 199,832/N, and it has the lowest follower
count, and cohort N has the highest. N can of course
be adjusted.

(3) We compute the percentage of tweets written in English per
each account.

(4) The language identifier used is Twitter’s own language
identification tool, the accuracy of which is discussed in
section Material and Methods.

(5) We can adjust the proportions of English in the tweet stream
(EngMajor) for each cohort and associate the cohorts with
the EngMajor percentage. The results here use >50% share
of messages in English (for other proportions, see Laitinen
et al., 2017).

(6) We correlate the cohorts against the percentages and
visualize them.

An average account profile in the NTS is such that the median
size of networks is 235 friends and 195 followers. Figure 2

shows how the friend and follower counts are distributed in
the data. There is a relatively straightforward (x = y) spread
of the values. The only exception is the friends category,
in which Twitter imposes an upper limit of 5,000 friends
that each individual account can follow (https://support.twitter.
com/articles/66885#). The only way to increase one’s friends
count is to gain new followers, and therefore there is an
even more direct correlation of friends/followers after the
5,000 mark.

Figure 3 (left) illustrates a 10-cohort division visualizing how
cohorts differ in terms of the >50% percent threshold. The
result shows that more Twitter followers means more messages
in English, with the non-parametric Kendall tau correlation
coefficient (0.956) indicating a strong positive correlation
between the two vectors at statistically significant levels (p <

0.0001). Note that cohorts 1–4 are accounts with fewer than the
median number of followers (i.e., 195).
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FIGURE 3 | The correlation between followers (Left) and friends (Right) and the share of accounts in which English dominates.

FIGURE 4 | The correlation between 20-cohort friend category and

the EngMajor.

The quantitative pattern with these truly weak ties is clear. The
correlation between the follower counts and the use of English
is linear, and the correlation is strong. Of the accounts in which
the number of followers is lower than the median, roughly 40%
have the majority of their messages in English. The higher that
we move in the cohorts, the higher is the share of such accounts.
At the other extreme, in the cohorts with the highest number of
followers over half of the accounts fulfill the criterion.

The quantitative pattern for the slightly stronger ties (friends)
is shown on the right. The correlation between the number
of friends and the increase in the use of English is strongly
positive, with the Kendall tau correlation coefficient at 0.867
(p < 0.0001), i.e., for all of the 199,832 accounts in the
dataset, more online friends means a larger share of messages
in English.

However, contrary to what is observed with truly weak ties, the
stronger network index behaves differently. For small networks,
the increase in network size has no impact on the response

variable. It is only from cohort 4 onwards that the share of
EngMajor increases when we increase the number of friends in
the network.

These results suggest that there is a straightforward
correlation in the truly weak tie networks, but the friend
data indicates that the distinction between weak ties and stronger
ties levels out when the network size is large enough. If we had
restricted our analysis only to traditional small networks of 30–50
nodes in ethnographic attempts, our data would have confirmed
the customary finding related to the diffusion of innovations
and network strength. That is, weak ties promote change, and
stronger ties prevent it. However, the results obtained using this
approach suggest that this is not necessarily the case. Once the
network size grows to become large, the traditional distinction
between weak and stronger ties disappears. Note that we are not
referring to the percentages of the accounts, but to correlational
patterns of the variable. Large networks here mean that the
network sizes are still within the cognitive limits (see section
Material and Methods).

To explain this finding, we must balance between the
limitations and the advantages of our data. The most obvious
limitation is that wemight observe a random quantitative pattern
that emerges from messy data. Moreover, we do not know
anything about the density or the multiplexity of the network
ties but can only assume that the friends category represents
a slightly stronger network index, since it involves an active
decision to follow someone. The friends network index might
also include a greater share of interactive networks. To tackle
the limitations, the next section applies a different method and
approaches ego networks.

The obvious advantage is the size of our data. Each cohort
in Figure 3 consists of nearly 20,000 accounts, and we are not
restricted to small ethnographic records. The network size for the
first three cohorts is 0–122. As pointed out earlier, the median
number of friends is 235. The results support rejecting the null
hypothesis, but the threshold level of 122 stems from an arbitrary
value of ten cohorts.
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Figure 4 tests the observations using 20 cohorts. As the
interest is on slightly stronger ties, we only use the friends
data. The figure confirms the observation and indicates a leveled
proportion of EngMajor for the first five cohorts. After that,
the network size correlates positively with the increasing use
of English in the tweet stream. The Kendall tau correlation
coefficient is 0.905 at a statistically highly significant level
(p < 0.0001).

Cohorts 1–5 consist of networks of <100 individuals, and
a marked increase takes place only after cohort 5 (100–122
individuals). The share of accounts with a >50%+ share of
tweets in English increases systematically for each cohort so
that for cohort 6 it is 41.2%, and for cohort 19 it is 51.9%.
Cohort 20 has its friends count at over 1700, and according
to our present understanding, these represent “evangelists” in
the Krishnamurthy et al. (2008) sense, i.e., they are more
or less automated bots aiming at increasing their friends
basis automatically.

Figure 4 suggests that the threshold network size after which
the distinction between weak ties and slightly stronger ties levels
is of around 122 nodes. Next, we zoom into the bot-free data, and
the main question is whether we can replicate the findings using
the bot-free data. Overall, the number of bots in the Swedish
subset is low (1,149 accounts = 1.0%), but they generate a high
number of tweets (404,804= 7.6%). The majority language in the
bots is English, since nearly 20% of all of the English tweets were
identified as AGTs, but the corresponding share for Swedish was
<2% (see Laitinen and Lundberg, 2020). The visualizations also
exclude the smallest networks of fewer than five nodes.

The bot-free quantitative patterns are shown in Figure 5,
and they are similar to those observed earlier. As for followers
(left), they show a linear increase in the share of messages in
the English per cohort as we move to the right on the x-axis.
The correlation between network size and the share of English
is not only straightforward but also statistically significant, as
the Kendal tau correlation coefficient is one (p < 0.0001). For

smaller networks, the share of English is around 40%, and it
increases for every increase in the network size, so that the share
for the largest networks is well over 50%. The increases are slight,
but the shares of the English use nevertheless increase for each
cohort. Once the network size grows larger, we observe more
noteworthy increases.

The right-hand side visualizes the slightly stronger ties
(friends) and verifies the initial observations. These results
confirm the findings presented above. The observations show
that the correlation with slightly stronger ties is equally linear,
and this is also supported by the Kendal tau value (0.944,
p < 0.0001). However, the share of English actually decreases for
the small stronger-tie networks. That is, the empirical evidence
presented here suggests that truly weak ties and slightly stronger
ties behave slightly differently for small networks, but the
distinction disappears once the network size grows larger. The
share of English remains flat for cohorts 1–3 of the truly weak ties
(left), while the share actually decreases for the slightly stronger
ties for the smallest networks (right). Cohort 4 consists of those
whose network size exceeds 120 nodes.

The present section has presented our cohort-based approach
to measuring networks in social media. While we acknowledge
that the method is straightforward, it has obvious benefits for
this type of big and rich data approaches to language variability
and social networks. The method is light in terms of computing
power, as the values can be easily obtained from the data stream.
In addition, we can use data in their entirety since each account
makes the values directly available with minimal or no data loss.

The obvious difference between this approach and the
ethnographically-oriented data-collection in Milroy (1987) is
that our method does not deal with ego networks but rather takes
a top-down approach, correlating network size and a linguistic
feature. As for the innovation, previous studies have shown that
English in the Nordic region is closely associated with age; this
means that the younger generations clearly use English as an
additional tool more often than do the older groups (Leppänen

FIGURE 5 | Bot-free correlations of truly weak ties (Left) and slightly stronger ties (Right).
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et al., 2011). Unfortunately, age is not included in the metadata
parameters in the raw data, and its role cannot be controlled.

The main finding here is that we can confirm our pilot results
in Laitinen et al. (2017). The new cohort-based findings using
bot-free data suggest that network size plays a role in leveling the
differences beyond a certain threshold. The following section will
turn its attention to ego networks.

An Algorithmic Approach to Networks in
Sociolinguistics
This section digs deeper into digital networks and uses an
algorithmic method that complements the results above and
provides tools for analyzing networks of mobile individuals. We
operate with the 1-step neighborhood, which consists of a focal
node, ego, and nodes directly connected to it. We also include
the connections between nodes (degree 1.5). Twitter is a directed-
graph network, and we are interested in what accounts “see”
instead of how they are “seen,” and consider friends rather than
followers in the analysis. Consequently, we deal with a graph-
based structure in which nodes represent accounts and directed
edges are considered as a friend relationship, as in Figure 6,
which visualizes two nodes in which A is either following B, or
B is a friend of A.

The method assumes that account activities and mutual
interaction between accounts have an impact on the relationship.
To subject activities to the algorithms, we collected up to 3,200
recent tweets in JSON files for each account in the network and
then extracted the values for how many times accounts in the
entire network retweet or quote another account in the same

FIGURE 6 | A simplified example of a directed graph.

network, and counted the number of times that accountsmention
each other.

In order to extract ego-networks and to assess network values
(either weak-tie and close-knit), we applied multiple criteria
to the edges and nodes. While many of them are used in
data mining, they measure network activities rather like the
ethnographic methods in Milroy (1987) but applied to the
parameters available in digital social networks.

First, we use a linear combination in (1), in which we assign
weights to the links in the network.

Edge weight = (w1 ∗ retweetcount) +
(

w2 ∗ quotecount
)

+ (w1 ∗mentioncount) (1)

Wherew_1, w_2, andw_3 are weights that can be assigned based
on the application of interest so that

∑3
i=1 wi = 1. Weights

regulate the importance of each feature in the analysis. For
instance, if we want to focus on the number of retweets, we assign
w_1 = 1 while w_2, w_3 = 0. Moreover, we assume that those
accounts that have a higher rate of publishing tweets have more
impact on the information flow in a network, which should be
considered as a factor. The point is to separate active accounts
from those that use Twitter passively while rarely creating any
content. To assign weights, we extracted the age (in days) of each
account and the total number of tweets. Then, calculating the
average number of tweets per day for each account and using (2),
we can assign weights to the individual nodes as well.

Node weight (A) =
average tweets per day for account A

W
, (2)

where : W =
∑N

i=1
average tweets per day for account Ai. (3)

Figure 7 visualizes an ego network with 30 nodes and 142 edges,
(a) without assigning weights to the nodes and edges, and (b) by
assigning weights using the formulae in (1)–(3). The larger the
node, the higher the value for tweets per day, and the thicker the
link, the stronger the connection between the nodes.

Second, we use betweenness centrality (BC) to detect the
density and to interpret how people in a network are connected

FIGURE 7 | An ego network, without assigning weights (Left), and with weights (Right).
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to each other. The BC values represent the ratio with which an
account establishes the shortest path between any pair in the
network (Freeman, 1977). In other words, the BC of node v is
the sum of the fraction of all of the shortest paths for any pair of
nodes in the network that pass through v:

CB (v) =
∑

s,t ∈ V

σ (s, t|v)

σ (s, t)
(4)

Where V is the set of nodes in the network, σ (s, t) is the number
of shortest paths between nodes s and t, and σ (s, t|v) is the
number of shortest paths between s and t that pass through
V . Hence, the lower the BC value, the fewer the shortest paths
passing through that account, and vice versa. The assumption
is that the lower the spread (i.e., the difference between the
higher and the lower values) of BC values in a network, the
more connected the accounts are to each other, and the network
consists of strong ties.

Consider Figure 8, in which the spread of the BC values is
zero. The network is complete as all the nodes are connected to
each other and the shortest path between each pair of the nodes
is the direct path between those two nodes, and the path does not
pass through any other nodes.

Figure 9 visualizes two real Twitter networks. The yellow
nodes represent the ego, while the black links represent Two-way
connections and blue links show One-way connections. Using

FIGURE 8 | A complete graph with 6 nodes and BC mean and spread.

visual cues, we can see that the left side is a weak-tie network,
while the one on the right represents a stronger-tie network, and
this is also supported by quantitative evidence. The spread value
for the weak-tie network is 0.5455 and the corresponding value
for the strong ties is 0.3014. We use normalized BC values to
address the effect of network sizes on the calculations.

The third measure is closeness centrality (CC), a concept that
measures the distance between nodes (Perez and Germon, 2016).
In the graph theory, the distance between two nodes is defined
as the length of the shortest path between two nodes. CC is the
reciprocal of the sum of the distances from a node to all the
other nodes in the network. As in the case of the BC analysis,
to eliminate the effect of network size we applied the normalized
CC values in the analysis. The normalized CC value is calculated
using the formula in (5):

CC (v) =
N − 1

∑N−1
i=1 d (u, v)

. (5)

Here, d(u, v) is the shortest-path distance between u and v, and
N is the number of nodes in the network. The CC values are
between 0 and 1 for each node, and higher values of closeness on
average could be interpreted as higher connection rates between
nodes. In a directed graph in Twitter, there are two CC values for
each node (i.e., incoming and outward). If the difference between
the two CC values on average is low, it indicates that the majority
of the connections in a network are Two-way links. Therefore,
the network is a stronger-tie network.

The next two measures have been purpose-built by us and can
be illustrated by inspecting the two networks in Figure 9, above.
In the weak-tie network (left), the majority of the accounts are
connected to each other through the ego node, while the accounts
in the right-hand network are not only connected to the ego node
but to the other accounts in the network as well, which means
that the network consists of stronger ties. If we remove the ego
node and its incoming/outgoing links from the data, we can then
calculate the ratio of disjoint nodes in the network. We assume
that the higher the value of the disjointness ratio, the weaker the
network will be. Furthermore, as mentioned before concerning
the edge weights, we can calculate the mean values of the edge

FIGURE 9 | A weak-tie ego network (Left) and a strong-tie network (Right).
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FIGURE 10 | Ten candidate accounts and their corresponding values for indices.

weights for each network. We would argue that, for a stronger-
tie network, the mean value of the edge weights should be higher
than the corresponding value for a weaker-tie network because
individuals in a strong-tie network might be expected to have
more interaction and activities than in a weaker-tie network.

The last algorithm strengthens the method by bringing in a
tool that enables us to measure the similarity between two sets. It
builds on the idea that individuals in a strong-tie network might
be expected to be more similar to each other than individuals in
a network characterized by weak ties. If we use Milroy’s (1987)
ethnographic work as our point of comparison, men in the Belfast
neighborhoods were localized and spent more time with those
who were similar to themselves in their dense strong-tie networks
than women.

To measure similarity between sets, we use the Jaccard
Similarity Coefficient (JSC). It is a symmetric measure that can be
used to calculate the similarity between sets A and B as follows:

JSC =
|A ∩ B|

|A ∪ B|
(6)

The assumption is that if two accounts have a high number of
shared friends (i.e., a high JCS value), they are more similar
to each other than two other accounts with a lower JCS value.
Consequently, if the average JCS values for all the nodes in ego
network A are higher than the averages for another network B,
it means that the accounts in the A network are more similar to
each other and that we are dealing with a stronger-tie network,
and vice versa.

Consider the two networks presented in Figure 9, above.
Using the formula presented in (6), we can calculate themean JSC
value for the weak-tie network to be 0.12 and the corresponding

value for the stronger-tie to be 0.9. The average similarity for the
network on the right is almost 8 times higher than the average
similarity for the network on the left.

To measure the network qualities, we extracted the values for
each network and, with the aid ofMin-Max normalization, placed
them on an interval [0,1]. We subtracted the calculated values for
the BC mean, BC spread, disjointness ratio, and CC difference
from 1 in order tomake them comparable with the other features.
The values are shown in Figure 10. The higher values for each
feature (i.e., the darker the cell) indicate stronger-tie networks,
and vice versa.

To assign labels (weak-tie or strong-tie) to the candidate
networks, we calculated the mean values (strength coefficient
alpha) for each cell in Figure 10. We then labeled the accounts
with lower alpha values as weak-tie networks (W1–5) and the rest
as strong-tie networks (S6–10), as shown in Figure 11.

The strength values (top) and the visualizations of all of the
ten networks suggest that the algorithms are able to distinguish
between networks with differing qualities. The visualization
shows that the candidate networks as a whole can be roughly
divided into weak-tie networks and networks with stronger ties.
The method is robust and is not affected by smaller clusters that
might appear, for instance, inside a weak-tie network. As a whole,
therefore, we are able to suggest that the differences between
the network types are supported by complex multidimensional
quantitative data and visual cues. The next step is, then, to test
to see whether differing network structures are reflected in the
linguistic behavior.

In the last part of this study we investigate how the dependent
variables, listed in section Materials and Methods above, are
distributed among the network types. The accounts, their sizes,
and the normalized frequencies (per 100,000 messages) of the
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FIGURE 11 | Visualizing all the candidate networks.

dependent variables are shown in Table 2, below. The three
columns on the right show the number of English messages in
the network, the number of contractions in the text, and the
frequency of NEED to + V constructions. It is important to note
that, while the observations are based on a limited number of
accounts, the data have been retrieved from the entire network
connected to the ego node. These data consist of a total of 2,074
network nodes with over 2.6 million messages and nearly 30
million tokens of text. The network sizes vary, with the smallest
possessing 105 nodes and the largest nearly 300. The number of
messages varies between 100,915 and over half a million. The
mean is 264,351 messages.

Figure 12 shows three boxplots that visualize the relationships
between the weak- and strong-tie networks and the three

TABLE 2 | Statistics related to the dependent variables (normalized per 100,000).

Account Network N msg. EngShare Contr. NEED to + V

W1 221 312,350 63,220 3,860 630

W2 175 150,774 40,910 940 310

W3 105 100,915 81,195 3,580 770

W4 132 192,944 45,237 3,230 560

W5 216 189,628 68,688 3,800 610

S6 166 253,758 79,534 2,590 840

S7 195 286,945 61,039 2,930 660

S8 281 316,944 85,387 5,790 890

S9 286 322,566 62,170 2,610 450

S10 297 516,686 81,261 6,290 1,070

Frontiers in Artificial Intelligence | www.frontiersin.org 12 July 2020 | Volume 3 | Article 46

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Laitinen et al. Digital Social Networks

FIGURE 12 | The relationships between the network types and the dependent variables.

dependent variables. The data show no consistent pattern in
which large networks would be quantitatively different from
each other, but large weak and strong-tie networks behave
similarly in terms of these variables. For the count of English
messages (left), the mean value for the strong-tie networks
is higher, but when tested with the Welch Two Sample t-
test for independent samples, the differences between the
networks are not statistically significant (t = −1.55, p >

0.05). The mean value for the contracted forms is slightly
higher for the weak-tie networks, but the differences are not
statistically significant (t = −0.97, p > 0.05). As for the lexico-
grammatical variable, the mean is higher for the strong-tie
networks, but the differences are not statistically significant
(t =−1.55, p > 0.05).

The quantitative patterns observed are clear. When we
investigate the large networks whose sizes are above the
threshold level suggested in section A Cohort-Based Approach
to Network Size, we can observe identical patterns. The results
show no distinction between large weak-tie and strong-tie
networks, which suggests that the differences observed in
small ethnographic studies level out when the network size
becomes sufficiently large. These observations support the
cohort-based findings in section A Cohort-Based Approach
to Network Size, above, and they also introduce ways of
measuring the digital networks of mobile individuals in the
social media.

We have attempted to demonstrate our algorithmic method
which utilizes data-mining of the social media and uses a
range of quantitative measures to establish network indices. The
method enables us to establish networks of varying strengths
and to determine that these varying qualities can not only be
visually confirmed (Figure 11) but also supported by quantitative
information. The method requires some computational power
but still involves a qualitative element, since we have endeavored
to ensure that the candidate networks represent similar content
profiles. As we point out above, previous studies have suggested
that various subpopulations have anomalously high network
profiles (McCarty et al., 2001), and, at this stage, the objective
has been to ensure that the candidate networks are similar. Our

future objective is to test the algorithmic method with a far larger
set of networks.

CONCLUSIONS

This article has investigated digital social networks of highly
mobile individuals, and we have attempted to contribute to
the study of social networks in sociolinguistics by providing
tools for accessing large networks. The research objective
has focused on the role played by network size as a key
determinant in social networks. We have shown that network
size has not been used in variationist sociolinguistics. Recent
network studies in other fields have, however, suggested that
network size could play an important role and that the
distinction between network types might level out beyond a
given threshold size of networks (Ma et al., 2019). Another
of our motivations has been to observe real networks whose
size is close to the average (at least in Western societies). The
mean size of the ego networks (207 nodes) used in section
An Algorithmic Approach to Networks in Sociolinguistics far
exceeds the size of networks that have been covered in previous
sociolinguistic studies, but they still fall within the limits of
viable networks, as discussed in section Social Networks in
Variationist Sociolinguistics.

As for the research questions, the first question focused
on improving the methods used in sociolinguistics so
that the quantitative variable of a network could be better
operationalized in situations where the population consists of
both socially and geographically highly mobile individuals. We
have introduced two methods for accessing the networks of
mobile individuals, thus expanding the empirical basis from
small-scale ethnographic observations. Section A Cohort-Based
Approach to Network Size introduced cohort-based methods,
while in section An Algorithmic Approach to Networks in
Sociolinguistics we detailed an algorithmic approach. The
methods have a strong empirical basis, and they offer new
tools for variationist sociolinguistics. They reveal fundamental
differences in comparison with ethnographic approaches. For
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instance, one of the advantages of ethnographic social network
studies is that the methods build on the idea that networks are
intrinsically a participant-related concept rather than something
than an outsider analyst could construct (Milroy and Llamas,
2013). Our cohort-based method adopts an alternative approach,
a clearly analyst-driven approach aimed at uncovering broad
quantitative patterns in data rather than looking at existing
networks. However, the algorithmic approach is very similar to
the original idea, since the starting point is an existing network.
As in Milroy and Milroy (1978) and Milroy (1987), the second
method assumes the unit of study to be essentially a pre-existing
category. Moreover, our method assumes network ties to be
multidimensional, as the algorithms account for not only
frequency of communication, but also a range of other factors.
This means modernizing the network concept in sociolinguistics
and bringing it closer to the contemporary idea that networks
are not based on a simple dichotomy but consist of a range of
attributes (Brashears and Quintane, 2018).

The second research question concentrates on the effect
of network size on the validity of the theory by combining
methods from sociolinguistics with computer science. Our
results gained from both methods suggest that network size
plays a role, and that the distinction between weak ties and
stronger ties levels out once the network size grows beyond
roughly 120 nodes. This finding is similar to the finding related
to trust in networks (see section Social Networks in Variationist
Sociolinguistics, above). We would, therefore, suggest that
further studies be made of the digital networks of mobile
individuals. Our raw data and the code are publicly available to
other researchers.

Our future plans include continuing to work using the
two methods. We plan to expand the cohort-based method
and to test it with other dependent variables than simply
language choice. Moreover, the metadata available in the
tweet stream contain a number of possible predictors other
than network size, and they need to be tested using linear
regression. As for the algorithmic approach, our objective is to

collect data from (tens of) thousands of accounts to scale up
the method.
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