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Artificial Intelligence (AI) plays a fundamental role in the modern world, especially when

used as an autonomous decision maker. One common concern nowadays is “how

trustworthy the AIs are.” Human operators follow a strict educational curriculum and

performance assessment that could be exploited to quantify how much we entrust

them. To quantify the trust of AI decision makers, we must go beyond task accuracy

especially when facing limited, incomplete, misleading, controversial or noisy datasets.

Toward addressing these challenges, we describe DeepTrust, a Subjective Logic (SL)

inspired framework that constructs a probabilistic logic description of an AI algorithm and

takes into account the trustworthiness of both dataset and inner algorithmic workings.

DeepTrust identifies proper multi-layered neural network (NN) topologies that have high

projected trust probabilities, even when trained with untrusted data. We show that

uncertain opinion of data is not always malicious while evaluating NN’s opinion and

trustworthiness, whereas the disbelief opinion hurts trust the most. Also trust probability

does not necessarily correlate with accuracy. DeepTrust also provides a projected trust

probability of NN’s prediction, which is useful when the NN generates an over-confident

output under problematic datasets. These findings open new analytical avenues for

designing and improving the NN topology by optimizing opinion and trustworthiness,

along with accuracy, in a multi-objective optimization formulation, subject to space and

time constraints.

Keywords: artificial intelligence, deep neural networks, machine learning, trust in AI, subjective logic

1. INTRODUCTION

“AI is no longer the future–it’s now here in our living rooms and cars and, often, our pockets”
(IBM, 2015). Trust is a significant factor in subjective world, while becoming increasingly critical
in Artificial Intelligence (AI). When we behave according to AI’s calculated results, how much
trust should we put in it? Neural networks (NNs) have been deployed on numerous applications,
however, despite their success, such powerful technologies also raise concerns (Rossi, 2019). The
incidents, such as fatal accidents of self-driving cars, intensified the concerns on NNs’ safety and
trustworthiness. Research efforts focused on trustworthiness and safety of NNs include two major
aspects: certification and explanation. The former process is held before the arrangement of the
model or product to make sure it functions correctly, while the latter tries to explain the behavior
of the model or product during its lifetime (Huang et al., 2018). Verification and testing are the
two techniques frequently used in certification process, but the explainability of systems with
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machine learning components is still difficult to achieve for AI
developers (Huang et al., 2018). Neural network verification
determines whether a property, e.g., safety (Ivanov et al., 2019),
local robustness, holds for a neural network. A robust model
has the ability to maintain an “acceptable” behavior under
exceptional execution conditions (Fernandez et al., 2005), such as
adversarial samples (Szegedy et al., 2013). Robustness of NNs has
been well-studied in the literature (Huang et al., 2017; Gehr et al.,
2018). Trustworthiness of NNs, however, is a more complicated
and abstract concept that needs to be explored. In summary,
robustness contributes to trustworthiness, but robustness alone
is not sufficient for trustworthiness quantification since it only
partially covers the verification requirement.

Formal and empirical metrics are designed to model trust.
Subjective Logic (SL) is a type of probabilistic logic that
explicitly takes uncertainty and source trust into account
(Jøsang, 2016). It has been used to model and analyze trust
networks in social networks and Bayesian networks (Jøsang
et al., 2006), and to evaluate information from untrustworthy
sources (Koster et al., 2017). SL offers significantly greater
expressiveness than Boolean truth values and probabilities by
opinion representation, and gives an analyst the ability to
specify vague (and subjective) expressions, such as “I don’t
know” as input arguments (Jøsang, 2016). Arguments in SL are
subjective opinions that contain four parameters: belief, disbelief,
uncertainty, and base rate. For example, believing in a statement
100% is an opinion. In SL discipline, this case is expressed as
belief is one, disbelief and uncertainty are both zeros. Detailed SL
definitions and operators are introduced in section 3. Opinions
are also related to the belief representation in Dempster—
Shafer belief theory (DST) (Dempster, 2008). We provide a
discussion of typical trust modeling and propagation approaches
from other disciplines in section 2. Compared to monotonic
logics, SL provides multiple advantages while handling default
reasoning, abductive reasoning, and belief reasoning. The
detailed comparison is discussed in section 2. Uncertainty
quantification is closely related to trust evaluation. Various
works in the scientific literature have explored uncertainty in
deep learning and machine learning models. In comparison
to uncertainty propagation (Titensky et al., 2018), the term
uncertainty in this work refers to the uncertainty value in a
subjective opinion of human or machine observer. A detailed
prior uncertainty work review can be found in section 2.

In this work, we propose DeepTrust, an SL-inspired
framework to evaluate the opinion and trustworthiness of an AI
agent, such as a neural network, and its predictions, based on
input trust information, a hyper parameter of neural networks
(i.e., topology), and parameters of neural networks (such as
weight and bias). The questions about “howmuchwe should trust
AI and input data” and “Which topologies are more trustworthy”
can be answered by evaluating AI in the SL discipline offered by
DeepTrust. The trust quantification in this work is not limited by
the linearity and/or non-linearity of the neural network and the
size or topology of the neural network. By providing the projected
trust probability, DeepTrust promises the needed trustworthiness
in a wide range of applications involving problematic data. One
example is related to the 2016 presidential election prediction.

We show that differently from almost all the predictors back in
2016, DeepTrust calculates a very low projected trust probability
of 0.21 for “Clinton wins,” and a higher projected trust probability
of 0.5 for “Trump wins.” Hence, by quantifying the opinion
and trustworthiness, DeepTrust could relatively predict that it
would be more than twice as trustworthy to predict Trump as
the winner, or at least it could raise alarms on all those strong
pre-election results in favor of Clinton.

The contributions of this work are stated as follows:

• We define the trustworthiness and propose a framework to
quantify the trustworthiness of a multi-layered neural network
based on SL.

• We confirmed that the untrustworthy data causes a
decrease of neural network trustworthiness. Different neural
network topologies react very differently when facing with
untrustworthy data. A good topology leads to relatively high
trustworthiness, even when the training data is untrustworthy.
In addition, the accuracy and trustworthiness of a neural
network are not necessarily correlated.

• We verified that uncertainty is not always malicious when
evaluating the trustworthiness of a NN. In the case of
maximum data uncertainty, there is a hope of belief in the
neural network trained with such data. Compared to the
uncertainty, the disbelief in data hurts the trustworthiness
the most.

This paper is organized as follows. Section 2 introduces the prior
works in trust modeling from other disciplines and uncertainty
quantification in AI and deep learning, as well as a discussion
on monotonic logics. We provide an introduction of SL in
section 3, to offer the necessary background knowledge needed
for understanding the proposed DeepTrust along with intuitive
examples. The proposed methods of opinion and trustworthiness
quantification of NNs and NNs’ predictions are introduced in
section 4, where we also provide the definition of trustworthiness.
Note that the NNs in this work are multi-layered NNs with more
than one hidden layers between the input and output layer and
without convolutional and recurrent neurons. The two major
findings and minor remarks along with the experimental results
are presented in section 5. Discussion is given in section 6.
Finally, the related SL information and examples and additional
experimental results are provided in Supplementary Materials.

2. PRIOR WORKS

To measure the degree of trust, several formal metrics are
designed to model and reason about trust. SL is one of the
formal metrics that combines probability distribution with
uncertainty, and the opinion is a distribution of probability
distributions. An opinion in SL can be expressed as a quadruplet
{belief , disbelief , uncertainty, base rate}, which embeds the
uncertainty into a computation process explicitly. Belief,
disbelief, and uncertainty are dependent and have to add up to
1. The subjective opinions express uncertainty and vagueness of
crisp domains via belief, disbelief, and uncertainty. Use “height
of a person” as an example, the crisp domains in SL consist of
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terms, such as 180 cm, the opinion of this value could be 0.5
belief and 0.5 uncertainty. On a related note, fuzzy logic (Novák
et al., 2012) is another formal trust metric where the domains
for variables consist of terms with uncertainty and vagueness
(Jøsang, 2016). In the case of “height of a person,” the possible
values in fuzzy logic could be “short,” “average,” or “tall.” A
person measuring 180 cm could be considered 0.5 tall and 0.5
average. Therefore, SL and fuzzy logic handle different aspects
of uncertainty and vagueness. The combination of these two
reasoning frameworks needs to be explored in the future.

Reasoning with uncertainty based on evidence has been
developed since 1960s. The theory of belief functions, DST,
also referred to as evidence theory, is developed for modeling
epistemic uncertainty-a mathematical theory of evidence (Shafer,
1976; Dempster, 2008). Many authors have later proposed
different rules for combining evidence, often with a view of
better handling conflict evidence (Sentz and Ferson, 2002), such
as SL. DST is highly expressive by including uncertainty about
the probabilities. It has advantages over probabilities because
the use of beliefs enables DST to express “I don’t know” as an
input to a reasoning model. The belief mass distribution in DST
is called a basic belief assignment, which is equivalent to the
belief/uncertainty representation of SL (Jøsang, 2016). However,
there has been considerable confusion and controversy around
the adequacy of belief fusion operators in DST (Smarandache,
2004). SL contains the corresponding operator in DST (the
belief constraint fusion operator) and has more fusion operators
that are appropriate for different situations [e.g., cumulative
belief fusion operator is used when the amount of independent
evidence increases by including more source. Also average belief
fusion operator is used when dependence between sources is
assumed (Jøsang, 2016)]. The fusion operator we utilize in
DeepTrust is the averaging fusion in SL, which is introduced
in section 3.4. On a related note, trust measuring is closely
related to reputation systems that allow users to build trust
through reputation. Trust propagation models in such social
network systems or online reputation systems are well-studied
in the literature (Guha et al., 2004; Su et al., 2014; Urena
et al., 2019). However, these trust propagation approaches haven’t
been applied and utilized in AI disciplines. Spreading activation
models (Quillan, 1966) have played important roles in trust
propagation and reputation systems (Kovacs and Ueno, 2006;
Wang et al., 2007; Troussov et al., 2009). They were proposed
initially to simulate human comprehension in semantic networks
(Ziegler and Lausen, 2004). Spreading factor is a crucial variable
in spreading activation model-based trust propagation networks.
It is a real number ranging from zero to one. Intuitively,
spreading factor is the ratio between direct trust in a node
x in some trust network and trust in the ability of x to
recommend others as trustworthy peers (Ziegler and Lausen,
2005). The concepts in spreading activation models have a lot of
similarities with SL, such as trust networks and trust propagation.
However, spreading activation models are less comprehensive
and expressive, and haven’t been applied to trust quantification
in neural networks.

Compared to monotonic logics which indicate that learning a
new piece of knowledge cannot reduce the set of what is known,
non-monotonic logics (NMLs) whose consequence relations

are not monotonic and are devised to capture and represent
defeasible inference (Strasser and Antonelli, 2019). Among many
NMLs research results in the literature we recall the McCarthy’s
circumscription (McCarthy, 1980), the defeasible reasoning
(Strasser and Antonelli, 2019), the default reasoning (Reiter,
1980; Antoniou, 1999; Friedman et al., 2000), the autoepistemic
logic (Moore, 1984; Konolige, 1987), the stable model semantics
(Gelfond and Lifschitz, 1988) that closely related to autoepistemic
logic and default logic, the abductive reasoning (Josephson and
Josephson, 1996; Aliseda, 2017), the causal reasoning (Falcon,
2019), and the belief revision (Goldszmidt and Pearl, 1992;
Williams, 1994). SL embeds factors that can help handling default
reasoning, abductive reasoning, belief revision, and intercausal
reasoning. Default logic is a NML that can express facts like
“by default, something is true”; by contrast, standard logic can
only express that something is true or false. In SL, the concept
of base rates represents exactly “by default, something is true,”
which is central in the theory of probability. For example, base
rates are needed for default reasoning, for Bayes’ theorem, for
abductive reasoning and for Bayesian updating. Similarly to
defeasible inference, abductive reasoning allows for a retraction
of inference (Strasser and Antonelli, 2019). Abductive reasoning
is a form of logical inference which starts with an observation
or set of observations and then tries to find the simplest and
most likely explanation for the observations. In SL, conditional
reasoning is proposed to reason from belief about consequent
propositions to infer belief about antecedent propositions, which
commonly is called abductive reasoning. In addition, subjective
abduction (Jøsang, 2016) states how SL can be used for reasoning
in the opposite directions to that of the conditionals, which
typically involves the subjective version of Bayes’ theorem. Belief
revision is the process of changing beliefs to take into account
a new piece of information. In SL, a corresponding method
is called trust revision, which is needed for dealing with the
conflict opinions. A simplistic strategy is to fuse the conflicting
opinions. Causal reasoning is the process of identifying causality
(Falcon, 2019). SL supports subjective intercausal reasoning,
which takes place in two steps: abduction and division. Therefore,
compared to monotonic logic, SL is able to handle many cases
that cannot be solved in monotonic logics and the advantages
of the afore-mentioned NML properties therefore motivate the
utilization of SL.

Nowadays, the need for uncertainty quantification in
machine-assisted decision-making is rising, especially when
human’s security and safety are at stake (Begoli et al., 2019).
When applying feedforward neural networks to reinforcement
learning or supervised learning, uncertainty in the training data
usually cannot be assessed, hence overly confident decisions
or predictions are typically made based on the fully trusted
data (Blundell et al., 2015). Motivated by overfitting, Geifman
et al. (2019) estimate uncertainty of highly confident points
by utilizing earlier snapshots of the trained model, i.e., before
the estimation shakes. Uncertainty in Geifman’s work is
defined as negative confidence, which is totally different than
what we quantify in DeepTrust via SL. Negative confidence
fundamentally measures a similar quantity as confidence, and
confidence is the output provided along with the accuracy. Gal
and Ghahramani (2016) build a probabilistic interpretation of

Frontiers in Artificial Intelligence | www.frontiersin.org 3 July 2020 | Volume 3 | Article 54

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Cheng et al. Quantifying Trustworthiness of Neural Networks

dropout to obtain model uncertainty, i.e., epistemic uncertainty,
out of existing deep learning models. Oh et al. (2019) propose
a model to measure input uncertainty (aleatoric uncertainty)
by “hedging” the location of each input in the embedding
space. In these approaches, uncertainty is defined differently,
such as negative of confidence and first-order uncertainty,
while uncertainty in DeepTrust is second-order, as defined in
SL. Traditional probability represents first-order uncertainty
(Sundgren and Karlsson, 2013). Second-order uncertainty is
represented in terms of a probability density function over first-
order probabilities. In uncertainty propagation, a pre-trained
neural network accepts an input and generates output, and
uncertainty from input propagates through the NN resulting
in uncertainty of the output (Titensky et al., 2018). Research
efforts concentrating on uncertainty measure in NNs conduct
uncertainty propagation through the entire neural network, such
as Monte Carlo sampling, unscented transform, or layer by
layer, such as piece-wise exponential approximation (Astudillo
and Neto, 2011). Sensoy et al. (2018) interpret the behavior of
predictor differently from an evidential reasoning perspective
and build the link from predictions to the belief and uncertainty
of SL. In contrast, DeepTrust considers the topologies of multi-
layered NNs and utilizes evidential reasoning in a different way
as described in section 4.

The first order uncertainties defined in afore-mentioned
works are suitable for their defined circumstances. An important
uncertainty quantification direction in the scientific literature
is the distinction between aleatory and epistemic uncertainty,
both of which are first order uncertainties. Aleatory uncertainty
is the same as statistical uncertainty, as it expresses that for a
repeated realization of an experiment, we only know the long-
term relative frequency of the outcomes, but we do not know
the outcome of each run of the experiment. A simple example is
flipping a coin. Epistemic uncertainty is the same as systematic
uncertainty with focusing attention on a single experiment. It
expresses that we could in principle know the outcome of a
specific event, but we do not have enough evidence to know it
exactly. For example, the assassination of President Kennedy is
believed to have been committed by Lee Harvey Oswald, but
there is considerable uncertainty around it (Jøsang, 2016). This
event only happened once, so the long-term relative frequency
does not make sense. Aleatory and epistemic uncertainties of a
binary variable are greatest when the probability of this variable
is 50%. However, when an opinion has projected trust probability
(which is introduced in section 3.2) of 50%, it says nothing about
the exact value of the uncertainty mass. The uncertainty mass
could range from a minimum value of zero to a maximum value
of one. In this case, the explicit value of second order uncertainty
provides some information which makes it richer than the
first order uncertainties. Similarly, second-order uncertainty is
preferred in some neuroscience works, such as in Bach et al.
(2011) since factors other than second-order uncertainty may
confound experimental manipulations of ambiguity. An opinion
in SL can contain uncertainty mass in the sense of uncertainty
about probabilities. Interpreting uncertainty mass as vacuity of
evidence reflects the property that “the fewer observations the
more the uncertainty mass.” The mapping between binomial

opinion and Beta PDF (introduced in section 3.2) provides the
definition of uncertainty mass, which is based on the evidence.

3. BACKGROUND KNOWLEDGE OF
SUBJECTIVE LOGIC

This section briefly introduces the related background knowledge
of SL. Differently from binary logic and operators which are
based on true/false logic values and seem more familiar, SL
defines its own set of logic and operators, not only based
on logic truth, but also based on probabilistic uncertainty. In
the following we introduce the basic definitions and operators
that are used in DeepTrust, specifically, binomial opinions and
their quantification from evidence, the binomial multiplication
operator, and averaging fusion operator.

3.1. Binomial Opinions
We start with an example to explain what opinions mean in
the real world. Imagine you would like to purchase a product
from a website, and you have an opinion about this product, i.e.,
belief in support of the product being good, belief in support
of the product not being good (or disbelief in support of the
product being good), uncertainty about the product, and prior
probability of the product being good. A binomial opinion
about the truth of x, e.g., a product, is the ordered quadruplet
{belief , disbelief , uncertainty, base rate}, which is denoted by
Wx = {bx, dx, ux, ax}, with an additional requirement: bx + dx +
ux = 1, where bx, dx, ux ∈ [0, 1]. The respective parameters
are: belief mass bx, disbelief mass dx, uncertainty mass ux, that
represents the vacuity of evidence, and base rate ax, the prior
probability of x without any evidence. In what follows we will use
the binomial opinion and opinion interchangeably.

3.2. Binomial Opinion Quantification From
Evidence
Let Wx = {bx, dx, ux, ax} be a binomial opinion of a random
variable X, e.g., a product. To formulate our opinion about this
product, we need to rely on the evidences about the quality of this
product. To calculate the binomial opinion of random variable X
from directly observed evidence, we use the following mapping
rule (Jøsang, 2016; Cho and Adali, 2018):











bx =
rx

rx+sx+W ,

dx =
sx

rx+sx+W ,

ux =
W

rx+sx+W .

rx and sx represent the positive evidence and negative evidence
of X taking value x, respectively. W is a non-informative prior
weight, which has a default value of 2 to ensure that the prior
probability distribution function (PDF) is the uniform PDFwhen
rx = sx = 0 and ax = 0.5 (Jøsang, 2016). In our online shopping
example, a customer can form his/her opinion by looking at the
product report. For example, 10 reports show that the product
is good and 10 show that it is bad. Then positive evidence
rx = 10 and negative evidence sx = 10, and the opinion can
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be calculated based on these evidence (and say a W of 2) as
Wx = { 1022 ,

10
22 ,

2
22 ,

1
2 }.

To further understand the binomial opinion, we introduce the
projected probability px = bx + ux ∗ ax. A binomial opinion is
equivalent to a Beta probability density function (PDF). Assume
a random variable X is drawn from a binary domain {x, x̄}. Let
p denote a continuous probability function p :X → [0, 1] where
p(x)+p(x̄) = 1.With p(x) as variable, the Beta probability density
function Beta(p(x),α,β) reads:

Beta(p(x),α,β) =
Ŵ(α + β)

Ŵ(α)Ŵ(β)
(p(x))α−1(1− p(x))β−1,

α > 0,β > 0,

where α, β represent evidence/observations of X = x and X = x̄,
respectively. Let rx and sx denote the number of observations of
x and x̄, then α, β can be expressed as follows:

{

α = rx + axW,

β = sx + (1− ax)W.

The bijective mapping between a binomial opinion and a Beta
PDF emerges from the intuitive requirement that the projected
probability of a binomial opinion must be equal to the expected
probability of a Beta PDF, i.e., px = bx+ux ∗ax = E[x] = α

α+β
=

rx+axW
rx+sx+W .

3.3. Binomial Multiplication
Binomial multiplication operator is used to derive the opinion
of the conjunction of two opinions. Multiplication in SL
corresponds to AND in binary logic. Let Wx = {bx, dx, ux, ax}
and Wy = {by, dy, uy, ay} be binomial opinions about x and y,
respectively. We can get the opinion of the conjunction x ∧ y
(Jøsang, 2016):

Wx·y = Wx ·Wy :























bx∧y = bxby +
(1−ax)aybxuy+ax(1−ay)byux

1−axay
,

dx∧y = dx + dy − dxdy,

ux∧y = uxuy +
(1−ay)bxuy+(1−ax)byux

1−axay
,

ax∧y = axay.

In our online shopping example, assume a customer holds
opinions of two different products x and y. Then he/she can
derive the opinion about the conjunction x ∧ y using this
multiplication operator.

3.4. Averaging Fusion
To combine different people’s opinions about the same domain,
we use fusion operators. The fusion operator used in this
work is the averaging fusion operator (Wang and Zhang,
2017), which is appropriate for circumstances when agent A
and agent B observe the same process over that same time
period (Jøsang, 2016). In what follows we will use fusion and

averaging fusion interchangeably. Let W
A
X = {bAX , d

A
X , u

A
X , a

A
X}

and W
B
X = {bBX , d

B
X , u

B
X , a

B
X} be source agent A and B’s binomial

opinions about X, respectively. For example, customer A and

B’s opinions about a product. The binomial opinion W
(A⋄B)
X =

fusion(W
A
X ,W

B
X) is called the averaged opinion of W

A
X and

W
B
X , which represents the combined opinion of product X

from customer A and B. The averaging fusion operator works
as follows:
Case I: uAX 6= 0 or uBX 6= 0.

W
(A⋄B)
X :



















b
(A⋄B)
X =

bAXu
B
X+bBXu

A
X

uAX+uBX
,

u
(A⋄B)
X =

2uAXu
B
X

uAX+uBX
,

a
(A⋄B)
X =

aAX+aBX
2 .

Case II: uAX = 0 and uBX = 0:

W
(A⋄B)
X :











b
(A⋄B)
X = γ A

X b
A
X + γ B

X b
B
X ,

u
(A⋄B)
X = 0,

a
(A⋄B)
X = γ A

X a
A
X + γ B

X a
B
X ,

where






γ A
X = limuAX→0,uBX→0

uBX
uAX+uBX

,

γ B
X = limuAX→0,uBX→0

uAX
uAX+uBX

.

4. METHODS

We define trustworthiness and introduce DeepTrust, our neural
network opinion and trustworthiness quantification framework
in this section. We evaluate the opinion in a simple one neuron
case, then further generalize to multi-layered typologies.

4.1. Trustworthiness
It is crucial in any stochastic decision-making problems
to know whether the information about the probabilistic
description is trustworthy and if so, the degree of trustworthiness.
This is even more important when quantifying trust in
an artificial intelligence-based decision-making problem. In
scenarios without trust quantification, a neural network can
only present the decision based on output labels without
any clear measure of trust in those decisions. However, if
the environment is corrupted and the network is trained
with damaged data, the decisions generated by this network
could be highly untrustworthy, e.g., YES but with 10% belief.
Lack of quantification of trust, results in lack of information,
and consequently fatal errors. This shows the need for trust
quantification. In what follows, we describe DeepTrust for
quantifying the opinion and trustworthiness of a multi-layered
NN as a function of its topology and the opinion about the
training datasets. DeepTrust applies to both classification and
regression problems since the value of input does not affect the
calculation of the opinion. As long as we have true labels, i.e., the
problem is in the realm of supervised learning, DeepTrust can
calculate the trustworthiness.

Definition 4.1. In our DeepTrust, we define the trustworthiness
of x as the projected trust probability of x, i.e., trustworthiness
px = bx + ux ∗ ax, where bx, ux, ax are belief, uncertainty, and
base rate of x, respectively.
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The intuition for our definition of trustworthiness is as
follows. The higher the belief mass and the base rate are, the
higher the projected trust probability and hence the higher the
trustworthiness is. If a neural network results in high projected
trust probability, then it is considered to be trustworthy. Belief
mass, product of uncertainty mass and base rate can both
contribute to projected trust probability. High belief mass comes
from a large volume of positive evidence supporting x and
high base rate represents high prior probability of x without
any evidence. For example, when a large volume of evidence is
collected, if bx = 0, i.e., belief is zero, then it can be concluded
that all collected evidence are not supporting x, hence dx = 1, i.e.,
disbelief is one. Now the trustworthiness of x should be extremely
low since no evidence is supporting it, and px = 0. An opposite
case is when no evidence supports or opposes x, the background
information about x, i.e., ax, defines the trustworthiness of x
due to the lack of evidence. In this case, bx = dx = 0, i.e.,
belief and disbelief both equal to zero, uncertainty ux = 1,
and px = ax, i.e., projected probability equals to base rate.
It is noteworthy that our measure of trust based on projected
trust probability is in agreement with the main SL reference
(Jøsang, 2016). More precisely Josang presents the special case of
projected trust probability as 1 (0), as a case with complete trust
(distrust) in the source.

4.2. DeepTrust Formulation
Because we cannot apply SL directly to trust quantification of
NNs, we will need to formulate this as a SL problem. For that
we formulate the trust relationships in NN trust quantification
as a subjective trust network as shown in Figure 1A, where
NN is the target object. A subjective trust network represents
trust and belief relationships from agents, via other agents or
sources to target entities/variables, where each trust and belief
relationship is expressed as an opinion (Jøsang, 2016). For
example, a customer wants to purchase a product from a website,
so he/she will make a purchase decision by browsing other buyers’
reviews of this product. He/she may or may not trust each
and every review. In this case, the customer as an agent forms
his/her opinion of the product via other agents’ (i.e., buyers’)
opinions.More details about subjective trust network is described
in Supplementary Material Section 2.

In DeepTrust, a human observer A as an analyst wants
to formulate an opinion about a given neural network,

W
A
NeuralNetwork. However, this analyst A doesn’t have the direct

trust relationship with the whole neural network and hence
needs to gather sources’ opinions of the neural network,

W
Source
NeuralNetwork’s. In the case of neural networks, the sources

are the neurons in the output layer. Therefore, the human
observer can only interpret the trustworthiness of a neural
network by referring to the neurons in the output layer. We
will later prove in Theorem 4.1 that taking neurons in all
layers into consideration causes an opinion duplication. In the
trust network in Figure 1A, analyst A discounts the information
provided by the source (neuron) and derives an opinion about

the neural network, W
[A;Source]
NeuralNetwork, i.e., A’s opinion of the neural

network through a source. An intuitive underlying relationship

is that A trusts the source, and the source trusts the neural
network. Analyst A discounts the information given by the
source since A may not fully trust the source. If there are
more than one sources, i.e., more than one neurons in output
layer, analyst A will gather advice from all sources and fuse
the discounted opinions by fusion operator we introduced

in section 3.4. A’s opinion to source W
A
source is set to be

maximum belief based on the assumption that analyst A trusts
the source completely, so A doesn’t discount the source’s

information and the derived opinion W
[A;Source]
NeuralNetwork simply

becomes W
Source
NeuralNetwork. Therefore, A’s opinion of a given neural

network with multiple sources reads:

W
A
NeuralNetwork = fusion(W

[A;Source]
NeuralNetwork) = fusion(W

Source
NeuralNetwork).

(1)
Since neurons in output layer are analyst’s sources, we use
notation Wneuron in Figure 1B to represent a neuron’s opinion

W
Source
NeuralNetwork in output layer for simplicity, and use notation

W
H
neuron to represent neurons in hidden layers. Derivations of

Wneuron and W
H
neuron are introduced in section 4.3 and 4.4. We

will omit notation A and denote opinion of neural network
as WNN from now on. As shown in Figure 1B, DeepTrust
quantifies NN’s opinion based on opinion of dataset, network
topology, and training loss. Opinion of dataset is assumed given
in this work since it should be quantified and provided by the
data collector before the delivery of data (and dataset’s opinion
and trustworthiness quantification will be explored in future
work). We consider multilayer neural networks in this work,
and more complicated neural networks, such as convolutional
neural networks and recurrent neural networks are left out to be
discussed in a future work.

4.3. Opinion Evaluation for One Neuron
To better understand the opinion and trustworthiness evaluation
for a multi-layered NN, we will first introduce opinion
quantification for one neuron with one input and one output.
This is later utilized as a foundation of multi-layered NN opinion
and trustworthiness quantification by DeepTrust. To calculate
the trustworthiness of a NN, we first need the opinions of the
data. WX , the opinion of input X and WY , the opinion of true
label Y are given along with the dataset and used to evaluate the
opinion of one neuron N. In this work, without losing generality,
we assume opinions of all data pointsWEx’s andWy’s are the same.
The reason is that for realistic datasets, if a data point is damaged
or noisy, we may not be able to determine which feature(s) or
label is problematic. We would like to note that the size of Ex is
greater and equal than 1 in general, and we take it as 1 here since
here we are considering a neuron with only one input.

We first take a look at how the neuron works in an ordinary
neural network. When training a neural network, the forward
pass takes input, weight, and bias to calculate the total net input
net as weight · input + bias for hidden neuron N. Activation
function, such as ReLU is applied to net to calculate output out
of neuron N, which is denoted by y′ in one neuron case. In
backpropagation, the back pass takes error and back propagate
it all the way back to the input layer as shown in Figure 2.
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FIGURE 1 | DeepTrust: subjective trust network formulation for multi-layered NNs and NN opinion evaluation. (A) Subjective trust network formulation for a

multi-layered NN. To quantify the opinion of network WNN, i.e., human observer’s opinion of a particular neural network W
A

NeuralNetwork , human observer as an analyst

relies on sources, in this case neurons in network, which hold direct opinions of neuron network. W
A

source and W
source

NeuralNetwork are analyst A’s opinion of source and

source’s opinion of neural network. Then the derived opinion of neural network is calculated as fusion(W
[A;source]

NeuralNetwork ). (B) NN opinion evaluation. Dataset in DeepTrust

contains Data, i.e., features and labels the same way as a normal dataset, in addition to the Opinion on each data point. If a data point doesn’t convey the information

as other data points do, for example, one of the features is noisy or the label is vague, we consider this data as uncertain, and hence introduce uncertainty into

dataset. Rather than assigning different opinions to each feature and label, we assign a single opinion to the whole data point. The reason is described in section 4.3.

Given NN topology, opinion of data, and training loss, DeepTrust can calculate the trust of NN. Note that, the trust of hidden neurons and trust of output neurons are

quantified differently as shown in this figure. Each neuron in output layer is a source which provides advice to analyst, so that the analyst can derive its own opinion of

the NN. W
Y

neuron|y is represented by Wy′ |y for simplicity. Detailed computation and explanation are summarized in Section 4. After trust of all output neurons are

evaluated, SL fusion operator described in Section 3.4 is used to generate final opinion of neural network WNN.

Inspired by this flow, the opinion of neuron, WN , is calculated
based on the forward pass and backward pass operations using

two opinions: forward opinion of neuron W
X
N from X point of

view, and backward opinion of neuron W
Y
N from Y point of

view. We can viewW
X
N andW

Y
N as advice from sources X and Y ,

respectively. To combine these two opinions, the fusion operator
is then used to get the final opinion of neuronWN :

WN = fusion(W
X
N ,W

Y
N). (2)

Here in the one neuron case, N is the only neuron in hidden and

output layer, hence afore-mentioned Wneuron and W
H
neuron are

the same and calculated as WN , since this neuron is in hidden/
output layer.

To calculate W
X
N in Equation (2), we first look at the original

neural network and the calculation of net input: net = Ew · Ex + b,
where weight Ew and bias b are initialized randomly. Inspired by

this, the forward opinion of N,W
X
N , is calculated as follows:

W
X
N = fusion(W Ew·Ex,Wb), (3)

where the fusion operator takes addition’s place in the net
calculation. The opinion of product of Ew and Ex,W Ew·Ex, is:

W Ew·Ex = W Ew ·WEx. (4)
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FIGURE 2 | Backpropagation in one neuron and opinion update of weight and output. The backpropagation process in neural network training first compares the true

label and output given by the neuron, then back propagates the difference to net, and adjusts the weight accordingly to minimize the error. The weight opinion update

process mimics the backpropagation: (i) At current episode, the opinion of neuron is the combined opinion of forward opinion and backward opinion, which are based

on current Wweight, and current Woutput|label , respectively. (ii) Then in the next episode, the opinion of neuron will be recalculated by taking updated Wweight and

Woutput|label into consideration.

W
X
N is calculated regardless of the activation functions since it

doesn’t make sense to apply activation functions on opinions. In
this sense, our framework is not limited by the linearity or non-
linearity of the neural network. During the training process, the
weight and bias are updated during the backward propagation
based on loss. Therefore, as shown in Figure 2, opinions of
weight and bias should be updated simultaneously during the
training as well. At the beginning, W Ew and Wb are initialized to
have maximum uncertainty due to lack of evidence, and later on
updated according to the neuron’s output based on the same rule
introduced in Equation (5).

Backward opinion of neuron W
Y
N in Equation (2) is an

opinion from Y point of view hence it is calculated based on
opinion of true label Wy. In backpropagation, error is the key
factor. Similarly, we use the error |y′ − y| in computation of

W
Y
N|y, the conditioned backward opinion of neuron, which is

equivalent to Wy′|y, the opinion of neuron’s output y′ given the
true label y. During the training process, based on the opinion
quantification from evidence rules introduced in section 3.2, if
output of the neuron, y′, is in some tolerance region of true label
y, i.e., there exists a small ǫ, s.t. |y′ − y| < ǫ, we count this
as a positive evidence r to formulate the opinion of y′ given y:
Wy′|y. Otherwise, it is a negative evidence s. Since the positive
and negative evidences are calculated along with the training
process, it will not cause extra computation expense. Intuitively,
r and s represent the numbers of outputs that NN predicts
correctly and wrongly, respectively, and they are updated during
the training. After each update, Wy′|y = (by′|y, dy′|y, uy′|y, ay′|y)
is then formulated from these evidences according to the
opinion quantification from evidence rules. After deriving the
conditioned opinion, the backward marginal opinion of N, i.e.,

W
Y
N , is calculated as follows (similar to the calculation of a

marginal probability given a conditional probability):

W
Y
N = Wy′ = Wy′|y ·Wy. (5)

4.4. Opinion Propagation in a General
Topology
For a neural network (denoted as NN) with multiple inputs,
multiple outputs, and multiple hidden layers, final opinion
WNN consists of opinions of all neurons in the final layer, i.e.,
all Wneuron’s in output layer, each contains forward part and
backward part, similarly to those of one neuron case. As shown

in Figure 1B, for a neuron in a hidden layer,W
H
neuron is calculated

as fusion(Wb,Wω1 · Wx1 , ...). If it is the first hidden layer, then
Winput = [Wx1 ,Wx2 , ...]

T represents the opinions of data input.

If it is the second or latter hidden layer, Winput represents the

output opinionsWneuron from the previous layer. For a neuron in
the output layer, the opinion is calculated as in Equation (2). The

forward opinionW
X
neuron takes opinions of input (i.e., the output

of previous hidden layer), opinions of weight, and opinions of

bias into account. Similarly,W
Y
neuron’s are the backward opinions

of neurons in output layer, each of which is a function of opinions
of true labels and opinions of neuron’s output. After evaluating
the opinions of all output neurons,WNN is then calculated as the
averaging opinion of allWneuron’s in output layer.

Theorem 4.1. Considering all neurons’ opinions instead of only
the neurons in the output layer causes opinion duplication.

Proof: Let us consider a simple neural network with one hidden
neuron and one output neuron. According to the calculation
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strategy, the opinion of output neuron is calculated as:

Wneuron = fusion(W
X
neuron,W

Y
neuron)

= fusion(fusion(Wb,Wω ·Wx),W
Y
neuron),

where Wx is the output opinion of the previous hidden neuron,

i.e., Wx = W
H
neuron. Therefore, the final opinion formula of the

neuron in output layer reads:

Wneuron = fusion(fusion(Wb,Wω ·W
H
neuron),W

Y
neuron).

If we take opinion of the hidden neuron W
H
neuron again into

consideration when calculating the final opinion of this simple
neural network, the final opinion equation of the neural
network becomes:

WNeuronNetwork = fusion(Wneuron,W
H
neuron)

= fusion(f (W
H
neuron),W

H
neuron),

where f (W
H
neuron) represents that Wneuron is a function of

W
H
neuron. Hence, we can see the above equation counts the

opinion of the hidden neuron twice and causes an opinion
duplication. Since all the previous layers opinions are propagated
to the final output layer, the opinion of the output neuron
already takes the opinions of hidden neuron and input neurons
into account. Which means we do not need to double
count them again in the calculation of final opinion of the
neural network.

Here we describe a concrete example of multi-layer neural
network opinion evaluation by using DeepTrust. Let us derive
an opinion of a neural network with two inputs, two hidden
neurons, and two outputs, as shown in Figure 3. The final
opinion of the neural network, WNN , is the fused opinion of all
output neurons (N2

1 and N2
2 ):

WNN = fusion(WN2
1
,WN2

2
). (6)

WNi
j
is the opinion of jth neuron in ith layer. Opinion WNi

j

is calculated by Equation (2): WNi
j

= fusion(W
X
Ni
j
,W

Y
Ni
j
),

more specifically:

{

WN2
1
= fusion(W

X
N2
1
,W

Y
N2
1
),

WN2
2
= fusion(W

X
N2
2
,W

Y
N2
2
),

(7)

where the opinion of each neuron in output layer takes two
parts into consideration: forward part from X point of view,
and backward part form Y point of view. Since the forward part

comes from the previous layers, the calculation formula of W
X
Ni
j

is similar to Equation (3), with the multi-source fusion operator
(Wang and Zhang, 2017):

FIGURE 3 | General topology example. The first hidden layer contains hidden

neurons N1
1 and N1

2, and the second hidden layer contains hidden neurons N2
1

and N2
2.























W
X
N2
1
= fusion(Wb2 ,Ww2

11N
1
1
,Ww2

21N
1
2
),

W
X
N2
2
= fusion(Wb2 ,Ww2

12N
1
1
,Ww2

22N
1
2
),

W
X
N1
1
= fusion(Wb1 ,Ww1

11x1
,Ww1

21x2
),

W
X
N1
2
= fusion(Wb1 ,Ww1

12x1
,Ww1

22x2
).

(8)

We can clearly see that W
X
N2
1
combines trust information of

bias b2, weights w2
11 and w2

21, and neurons N1
1 and N1

2 in
the previous layer. Backward opinion of each neuron in NN’s
output layer in Equation (7) is calculated similarly to what
Equation (5) states:

{

W
Y
N2
1
= WN2

1 |y1
·Wy1

W
Y
N2
2
= WN2

2 |y2
·Wy1 .

(9)

4.5. Opinion Quantification of NN’s Output
DeepTrust not only has the ability to quantify the opinion of a
NN in training phase under the assumption that the training data
and the training process are accessible, but it can also be deployed
in trust quantification of NN’s decision or output when given a
pre-trained neural network. This enables DeepTrust with wider
usefulness and deeper impact in real world implementations.
For most of the real-world situations, we only have access to
a pre-trained NN, such as online machine learning models
provided by cloud service providers, and we need to evaluate
the trust of a given pre-trained NN and/or its output. To
this end, in addition to the training phase, DeepTrust includes
opinion and trustworthiness quantification in validation and test
phases, under the assumption that the NN’s topology is known.
In validation phase, given a pre-trained NN (along with its
topology) and validation data, DeepTrust can quantify opinion
and trustworthiness of the pre-trained NN similarly as in section
4.4 in training phase. After calculating the opinion of the NN, the
opinion of its output can be calculated similarly as the forward
opinion of the NN, which is similar to generating a prediction
in ordinary NN testing phase. Opinion and trustworthiness
quantification of NN’s prediction provides an evaluation of input
data and NN inner working’s trustworthiness, and is often useful
when NN generates overconfident predictions. Beside accuracy,
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confidence value, this third dimension not only covers the
objective data itself, but also consists NN and data’s subjective
trust information. Together with accuracy, a multi-objective
optimization can be formed in future work.

5. RESULTS AND FINDINGS

This section delivers two major experimental findings along
with several minor remarks, and an application to show the
usefulness of DeepTrust. Section 5.1 shows that different NN
topologies have different opinions and trustworthiness, and
DeepTrust has the ability to identify good topologies in terms
of trustworthiness. We design a case study I that contains three
parts and experiments on more than 25 NN topologies. In
case study I we also find that accuracy and trustworthiness
are not necessarily correlated. In section 5.2 we present that
uncertainty u in opinion is not always malicious when it comes
to trust quantification, whereas disbelief d hurts the trust the
most. We design a case study II to experiment on six different
cases to explore the impact of opinion data. In addition, we
apply DeepTrust to 2016 presidential election predictors and
show the usefulness of our work in section 5.3. We validate
the network on MNIST and election dataset as they are well-
studied and will help better understand the implications of
DeepTrust. Finally, we apply DeepTrust to structures that form
the building blocks of deep belief nets proposed by Hinton (Nair
and Hinton, 2010) and show the batch-training trustworthiness
evaluation process. Besides the architectures we experimented in
this section, experiments indicate that DeepTrust is applicable
to any other more complicated datasets and deeper neural
network architectures.

5.1. A Good NN Topology Leads to High
Projected Trust Probabilities, Even When
Trained With Untrustworthy Data
Opinion and trustworthiness quantification of a multi-layered
NN depends on the opinions about the dataset content, the
training loss, and the network topology. Since the training loss
is highly correlated with the network topology, in this work,
we mainly focus on the effect of the opinion about the datasets
content and the network topology. Given that the topology is
more under the control of the designer, we first start with the
impact analysis of the network topology.

5.1.1. Case Study I: Experiment Setup
To investigate the relation among network topologies (i.e., we
only vary the number of hidden layers and number of hidden
units in each layer, other hyper parameters, such as the learning
rate, activation functions are the same in all experiments),
uncertainty degree of data, and opinion of a NN, we conduct a
case study with three parts:

• Evaluate opinion of NN1 with topology 784-1000-10 and NN2

with topology 784-500-500-10, under original MNIST data
with max belief opinion and damaged MNIST data with max
uncertainty opinion assigned to the damaged data points. Data
damage percentage ranges from 10 to 100%.

• Evaluate opinion of network with topology 784-x-10, where
the number of hidden neurons x ranges from 100 to 2, 000,
under original MNIST data and damaged MNIST data with
10–20% data damage. We evaluate in total 20 different
topologies in this step.

• Evaluate opinion of NN with topology 784-{1000}-10, which
represents the neural network with 784 neurons in input layer,
10 neurons in output layer, 1, 000 hidden neurons in total and
distributed in 1 to 5 layers (more specifically, the topologies
used are 784-1000-10, 784-500-500-10, 784-300-400-300-10,
784-250-250-250-250-10, and 784-200-200-200-200-200-10).
The NNs are trained under original MNIST data and damaged
MNIST data with 10–20% data damage.

The first part of case study I addresses the relation between
opinion about a NN and uncertainty degree of data by comparing
the opinion of different topologies under different data damage
degree. A network topology regarded as among the best for the
MNIST database (denoted by NN1), has a topology of 784-1000-
10 (Simard et al., 2003) (where 784 neurons in the first layer are
used for the input handwritten digit images, each with 28 × 28
pixels, the 1, 000 neurons in the second layer are used as hidden
neurons, and the 10 neurons in the third layer are used for the 10
output classes, digit 0–9). To contrast the opinion quantification
for NN1, we also consider NN2 with a topology of 784-500-
500-10 (for which the neurons of the middle layer of NN1 are
distributed equally to two hidden layers each of which with 500
neurons). To evaluate the opinion of NN1 and NN2, we first
train them by feeding the training dataset once, one data point
at a time, and then evaluate the opinion of trained networks
based on their topologies and the training loss. To better realize
the impact of topology, the NNs are trained with datasets with
full confidence on the trustworthiness of data, i.e., the opinion
about the dataset has the maximum belief to reflect minimum
uncertainty of 0 regarding the dataset. We denote this maximum
belief and zero uncertainty by {1, 0, 0, 0.5}, which represents
belief = 1, disbelief = 0, uncertainty = 0, and base rate = 0.5.
This helps our analysis to concentrate on the impact of topology
only. In addition to evaluating the opinion of NN1 and NN2

with the highly trustworthy dataset, we also randomly take a
subset of training data and flaw the labels by randomly altering
them, and then feed the damaged training dataset to NND

1 and
NND

2 , which have the same corresponding topologies as those
of NN1 and NN2, but with different parameters values (i.e., bias
and weights) as the training data are different. Since the training
set is damaged by altering some labels, the opinion of training
set should be redefined accordingly to account for the damaged
data. The opinion of damaged data point is set to be maximum
uncertainty. More precisely, the opinion {0, 0, 1, 0.5} represents
belief = 0, disbelief = 0, uncertainty = 1, and base rate = 0.5.
The level of data damage is varied from 0 to 100%.

The second and third part of this case study investigate
the relation between projected trust probability of NN and its
topology. By varying the number of hidden neurons in one
hidden layer and the number of hidden layers under same
amount of hidden neurons as described above, we further explore
the impact of topology on opinion and trustworthiness. Opinion
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setup for damaged data follows the same principle as that stated
in the first part of this case study.

5.1.2. Case Study I: Experimental Results
Remark 5.1. Higher percentage of damage in the input dataset
results in higher levels of trust degradation, however the
exact level is highly topology dependent. A good network
topology leads to high trustworthiness even when trained with
untrustworthy data.

Our experiments confirm this observation as shown in
Figure 4. Figures 4A–C summarize the opinion and projected
trust probability comparison between NN1 and NN2. The
trust probability of NN1 and NN2 converge to 0.78 and 0.68,
respectively. Figures 4D–M shows the opinion ofNND

1 . Training
NND

1 with 10% data damage results in a belief value of 0.6. When
damaged data percentage varies from 20 to 100%, the belief of
NN1 converges to 0.5, with the disbelief increasing its portion
as shown in Figures 4E–M. The opinion results of NND

2 are
summarized in Supplementary Material Section 1, Figure S1.
Training NND

2 with 10–100% data damage results in relatively
lower belief value compared to NND

1 . When damaged data
percentage varies from 30 to 100%, the belief ofNND

2 converges to
0.25. This confirms that for a robust topology on MNIST dataset,
such as NN1, the impact of damage in the dataset is less severe as
that in a NNwith a frail topology (e.g.,NN2) in terms of the belief
and projected trust probability.

Remark 5.2. When choosing between two NN architectures, if
the accuracy comparison doesn’t provide good results, adding
trustworthiness comparison into the performance measures
helps with the decision making.

Accuracy comparison ofNN1 (NN
D
1 ) andNN2 (NN

D
2 ) appears

in Table 1. NN2 and most cases of NND
2 slightly outperform their

corresponding NN1 (NN
D
1 ) cases in terms of accuracy. However,

we believe this slight difference is not very convincing when
choosing between these two different topologies. On the other
hand, trust comparison acts as a more reliable tool, e.g., the
impacted projected trust probability is almost 50% (49.99 vs.
25.1% for NND

1 and NND
2 , respectively). We therefore propose

quantifying opinions for NNs and using the opinion comparison
among various NNs along with accuracy evaluation as a tool to
determine the robustness of the NN topologies in both cases of
trustworthy and untrustworthy data. Note that both topologies
were trained by feeding all training data once, with one data point
at a time. To increase the accuracy, a better training strategy is to
feed the entire dataset to the NN multiple times, with a mini-
batch of data at a time. DeepTrust works with batch-training
as well.

Remark 5.3. Accuracy and trustworthiness are not
necessarily correlated.

Figure 5 shows the projected trust probability and accuracy
comparison of 784-x-10 and 784-{1000}-10 trained under
original MNIST data with maximum belief opinion {1, 0, 0, 0.5},
and under 10 and 20% data damage (maximum uncertainty
opinion, i.e., {0, 0, 1, 0.5}). We take low data damage percentage

here because in real life severely damaged data will not be used
to train the models at all. The results confirm that data damage
impacts both trustworthiness and accuracy, however accuracy
and trustworthiness are not necessarily correlated, i.e., topologies
that result in highest accuracy, may not reach the highest
trustworthiness levels. Under original and slightly damaged
MNIST data, adding more hidden neurons results in higher
projected trust probabilities when the number of layers is fixed,
however the trust probability increasing rate tends to slow down
as more neurons are added. When the data damage is higher,
e.g., 20%, adding more neurons in one layer doesn’t lead to a
significant increase in the trust outcome. On the contrary, while
keeping the total number of hidden neurons as fixed, changing
the number of hidden layers strongly impacts the projected trust
probability. Therefore, when the dataset is damaged and the
training resource is limited, varying the number of hidden layers
rather than number of hidden neurons is a more efficient strategy
to obtain higher levels of projected trust probability outcome.

5.2. Uncertainty Is Not Always Malicious
When Evaluating the Opinion and
Trustworthiness of A Neural Network
In SL, the lack of confidence in probabilities is expressed as
uncertaintymass. Uncertaintymass represents lack of evidence to
support any specific value (Jøsang, 2016). An important aspect of
uncertainty quantification in the scientific literature is statistical
uncertainty. This is to express that the outcome is not known for
each time we run the same experiment, but we only know the
long-term relative frequency of outcomes. Note that statistical
uncertainty represents first-order uncertainty, and therefore is
not the same type of uncertainty as the uncertainty mass in
opinions, which represents second-order uncertainty (Jøsang,
2016). The impact of the topology to opinion quantification of
a NN is discussed in the previous section, and the impact of
opinion of data is explored as follows.

5.2.1. Case Study II: Experiment Setup
To address the impact of opinion of data to opinion and
trustworthiness of a neural network, a case study is designed
as follows:

• Construct a simple neutral network NNS
1 with topology 3-1-1.

Set opinion of training dataset to be six cases: max belief, max
disbelief, max uncertainty, neutral, equal belief & disbelief, and
more belief than disbelief. Detailed opinion setup is described
in Case I to Case VI.

• Construct another simple neutral network NNS
2 with same

setup and same training data as NNS
1 , but NN

S
2 has 10 hidden

neurons. NNS
2 uses a more complicated topology, i.e., 3-10-1,

to realize same function as NNS
1 .

Both neural networks are trained under same process and the
opinions of both are evaluated after training. This case study
focuses on the impact of opinion of data, hence simple topologies
are chosen without loss of generality. Starting with zero bias
may at times generate better outcomes than cases with neutral
information. To present the true meaning of this statement,
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FIGURE 4 | Opinion comparison between NN1 and NN2 under undamaged MNIST data and opinion of NND
1 under damaged MNIST data. (A) Opinion of NN1 with

topology 784-1000-10. Belief reaches 0.78 when training data’s uncertainty and disbelief are zero, i.e., belief is maximized. (B) Opinion of NN2 with topology

784-500-500-10. Belief reaches 0.68 when training data’s belief is maximized. Base rate is calculated using computational strategy presented in section 4. (C)

Projected trust probability comparison between NN1 and NN2. Topology impacts projected trust probability. More precisely, NN1 outperforms NN2 while both NN1

and NN2 are trained with same dataset (same opinion assigned to dataset: {1, 0, 0, 0.5}, and same training process). (D–M) NND
1 with the same topology as NN1, i.e.,

784-1000-10, is trained with damaged data. Randomly take 10–100% training data, alter labels to introduce uncertainty and noise into dataset. Set opinion of

damaged data point to have maximum uncertainty: {0, 0, 1, 0.5}. Belief is sparser while disbelief becomes denser in (D–M), but there is still belief even the dataset is

100% damaged. (N,O) normalized cumulative belief and disbelief of NND
1 under 10% to largest data damage, averaged over 10 runs. Note that the cumulative belief

is not zero and increases during training even for a completely damaged data. Also note that both disbelief and belief increase as a function of number of episodes.
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TABLE 1 | Comparison of accuracy and projected trust probability between NN1

(NND
1 ) and NN2 (NND

2 ).

Data damage

percentage

(%)

Accuracy (%) Projected trust probability (%)

784-1000-10 784-500-500-10 784-1000-10 784-500-500-10

0 90.29 91.03 78.46 67.54

10 81.18 80.74 60.74 44.71

20 71.77 73.53 50.00 30.34

30 67.90 65.22 50.00 25.09

40 61.31 60.51 50.00 25.09

50 52.60 53.15 49.99 25.10

60 50.46 52.15 49.99 25.09

70 46.33 44.40 49.99 25.09

80 40.08 40.40 49.99 25.09

90 35.02 38.94 49.99 25.09

100 36.10 37.19 49.99 25.10

we evaluate the impact of the degree of opinion confidence
in the training dataset on the opinion and trustworthiness of
NN. We consider the following six cases of opinion for the
training dataset:

• Case I—Max belief: set the opinion of training dataset
OpinionData to be maximum belief, i.e., {1, 0, 0, a}. This means
the training of NN is performed with the highest level of
data trustworthiness.

• Case II—Max disbelief: OpinionData is set to be maximum
disbelief, i.e., {0, 1, 0, a}, which means that the dataset
is untrustworthy.

• Case III—Max uncertainty: OpinionData is set to be maximum
uncertainty, i.e., {0, 0, 1, a}. This setting is used when we
do not know whether we can trust the dataset due to lack
of information.

• Case IV—Neutral: OpinionData is set to be neutral:
{1/3, 1/3, 1/3, a}. This is similar to Case III in the sense
that we lack information on the dataset, however it presents
scenarios where the levels of uncertainty and trustworthiness
of data are in the same level.

• Case V—Equal belief & disbelief: OpinionData is set to be
{0.5, 0.5, 0, a}. This opinion represents that the belief mass and
disbelief mass are both equal to 0.5 with minimum uncertainty
of 0, which is the scenario that an agent cannot generate a
certain opinion, but there is no uncertainty formulation.

• Case VI—More belief than disbelief: OpinionData is set
to be {0.75, 0.25, 0, a} to compare with Case III and
further investigate the importance of uncertainty in opinion
quantification. This setting contains three times more belief
mass than disbelief and zero uncertainty.

All base rates are set to be 0.5 to represent an unbiased
background. Note that cases III and IV aremore realistic, whereas
cases I and II are more on the extreme sides.

5.2.2. Case Study II: Experimental Results
Remark 5.4. Disbelief hurts the trust the most while uncertainty
is not always malicious.

Our experimental results in Figure 6 confirm that for the same
topology and training loss, the afore-mentioned cases generate
different levels of projected trust probability in the outcome of the
trained NN. According to our experiments, NN in Case III results
in much higher projected trust probability than in Case IV, V, and
VI, which leads to the conclusion that disbelief of training dataset
hurts the final trust probability of NN more than uncertainty.
In addition, lack of uncertainty measurement in Case V and VI
leads to low projected trust probability, however, this dilemma
occurs frequently in real world. It is therefore recommended
to set the opinion of dataset to maximum uncertainty in cases
where belief, disbelief, and uncertainty are at similar levels, due
to lack of information. Furthermore, if an AI decision maker
cannot provide a result with full confidence, uncertainty mass is
recommended to be generated along with the decision.

We use two simple neural networks, NNS
1 and NNS

2 , both of
which implement a function that do binary OR on the first two
inputs and ignore the third input, using the 3-1-1 and 3-10-1
topologies, respectively. The simplicity of the function helps us
focus on the impact of the opinion of dataset, as both NNS

1 and
NNS

2 would very well implement it, given sufficient number of
training episodes. The projected trust probability comparison is
illustrated in Figure 6. The projected trust probabilities of trained
NNS

1 and NNS
2 are different in six cases as expected:

• Case I: Both NNS
1 and NNS

2 are highly trustworthy for such
a scenario. The reasons are 2-fold: First of all, the simple
topologies of NNS

1 and NNS
2 are sufficient to realize the

simple two-input OR functionality. This is confirmed by
the fact that belief sharply saturates to maximum and the
training loss drops to minimum. Secondly, training is done
with a trustworthy dataset, which contains no noise, glitch
or uncertainty.

• Case II: Both NNS
1 and NNS

2 are untrustworthy because
of the highly untrustworthy dataset. Therefore, the
trust in the outcome of the network shows maximum
disbelief establishment.

Remark 5.5. Use data with maximum uncertainty opinion to
train a NN, then belief mass of this pre-trained NN can be
non-zero.

• Case III: The results for this case are depicted in Figures 6A,B

and in Supplementary Material Section 1, Figure S2. They
confirm that after all, there is hope for belief, even in the case
of maximum uncertainty. Detailed opinion results in terms of
belief, disbelief, uncertainty, and base rate appear in Figure S2.
Belief can be extracted from total uncertainty as illustrated
in Figures S2C,I. The opinions of NNS

1 and NNS
2 have non-

zero belief values, even when the opinion of dataset is set
to have maximum uncertainty. This result is helpful in data
pre-processing: uncertain data should not be filtered out since
uncertainty has its own meaning. Even if the data is fully
uncertain, there is still hope after all for belief.

• Case IV: The opinion of training dataset is neutral
{1/3, 1/3, 1/3, 0.5}, which means belief, disbelief, and
uncertainty of the dataset are set to be equal. This neutrality
in terms of similar levels of belief, disbelief, and uncertainty
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FIGURE 5 | Projected trust probability and accuracy comparison of 784-x-10 and 784-{1000}-10 under original and damaged MNIST data. Training process in (A,B),

(C,D), and (E,F) are under original MNIST data (with maximum belief and therefore zero uncertainty), also 10% and 20% data damage, respectively. (A) Projected

trust probability of 784-x-10 reaches 0.8 when increasing the number of hidden neurons from 100 to 2, 000. Topology highly impacts the projected trust probability,

especially when rearranging a certain number of hidden neurons, in various number of hidden layers. Accuracy hits the highest value with topology 784-2000-10, and

the second best accuracy is given by 784-1400-10. (B) Compared to other topologies, projected trust probability of 784-1000-10 is the highest with value 0.78, while

topology 784-500-500-10 outperforms others in terms of accuracy. (C) Under 10% data damage, projected trust probability of 784-x-10 reaches 0.64 when

increasing the number of hidden neurons from 100 to 2, 000. (D) Topology 784-1000-10 outperforms others in both accuracy and trust. (E) Under 20% data damage,

projected trust probability of 784-x-10 settles at 0.5 when increasing the number of hidden neurons from 100 to 1, 900, while 784-2000-10 provides highest trust

probability. (F) Topology 784-1000-10 results in highest trust probability, while topology 784-500-500-10 reaches highest accuracy.

in dataset can damage the projected trust probability in the
outcome. The results shown in Figure 6 confirm lower levels
of projected trust probability when compared to Case III,
which leads to the conclusion that if no information about
dataset is given, starting with total uncertainty is actually
better than with biased opinion, and even a neutral one.

• Case V: In such scenarios, the dilemma of belief and disbelief
is brought to maximum when belief = disbelief = 0.5 with
zero uncertainty. The results in this case settle in much lower
belief and projected trust probability values compared to those

of Case III and IV. This reveals that the neutral case with
uncertainty as in Case IV is much better than this neutral case
without uncertainty measurement.

• Case VI: The results in this case are comparable to those in
Case III in terms of trust since the belief mass of training data
is three times more than disbelief, and the belief contributes
the most to the results. However, lack of uncertainty measure
in this uncertain case (there exists both belief and disbelief, and
none of them plays the major role) leads to low projected trust
probability in the end. Although similar to those of NNS

1 , the
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results of NNS
2 show lower projected trust probability levels

upon convergence for cases I, III, IV and VI, while showing
the same level of convergence, but slower rate for the rest of
the cases.

5.3. Did You Trust Those Who Predicted
Trump to Lose in 2016 Election?
A significant amount of machine learning related projects
or research activities involve utilization of pre-trained NNs.
Training process is time consuming, expensive, or even
inaccessible. In any case, one crucial question to answer is
how much we should trust in the predictions offered by
those pre-trained NNs. DeepTrust may shed light on this by
providing opinion and trustworthiness quantification of NN’s
prediction. To further show the usefulness of DeepTrust, we
apply DeepTrust on 2016 election prediction and quantify
opinion (and projected trust probability) of the two major
predictions back in 2016: “Trump wins” and “Clinton wins.”

2016 presidential election prediction has been called “the
worst political prediction” and the erroneous predictions hand
us an opportunity to rethink AI political prediction. In this
case study we use 2016 presidential pre-election poll data

(FiveThirtyEight, 2016), which contains more than 7000 state-
wise pre-election polls conducted by CNN, ABC News, Fox
News, etc. We train a NN with structure of 1-32-32-1 to predict
the winner between Hillary Clinton and Donald Trump. Input
of the NN is state and the output is Clinton vs. Trump. The
training accuracy saturates to 63.96% and the trainedNNpredicts
Clinton as president by winning 38 states and 426 votes, which
is consistent with most of the presidential election predictors
back in 2016. To quantify the opinion and trustworthiness of
this trained NN, we use the 2016 presidential election results in
the validation phase based on the assumptions that (i) we are
given a trainedNNwhich predicts Clinton to win the election, (ii)
the election data has the maximum belief opinion of {1, 0, 0, 0.5}
because the true election result is a trustworthy fact. The opinion
of the NN 1-32-32-1 is shown in Figure 7A. In validation phase,

the projected trust probability of this NN is 0.38 with low belief
value of 0.38. After calculating the opinion in validation phase,
opinion of this NN’s output is quantified in test phase. Input of
the NN in test phase has maximum belief value because of the
maximum trustworthiness of voters in real election. The opinion
of NN’s output is {0.21, 0.77, 0.02, 0.03}, which results in 0.21
projected trust probability. By utilizing DeepTrust, the opinion
and trustworthiness of this NN presidential election predictor is

FIGURE 6 | Projected trust probability and loss comparison of NNS
1 and NNS

2 . (A,B) Projected trust probability comparison of NNS
1 and NNS

2 in afore-mentioned

cases. Both NNS
1 and NNS

2 are trained under same process with same dataset. Training loss comparison is shown in (C). The results of NNS
1 and NNS

2 are similar. NNS
1

and NNS
2 reach a certain trust probability level with different speeds, more precisely, NNS

1 reaches a desired projected trust probability level faster.

FIGURE 7 | NN opinion results of 2016 election prediction. (A,B) Opinion comparison of presidential election predictors NN 1-32-32-1 and NN 9-32-64-32-1. (A) NN

1-32-32-1 is trained under original pre-election poll data. The projected trust probability of this NN in validation phase reaches 0.38, and its opinion reaches

{0.38, 0.60, 0.02, 0.13}. (B) NN 9-32-64-32-1 is trained under enriched pre-election poll data. The opinion of this NN is {0.71, 0.26, 0.03, 0.13}, which has higher

belief value and results in more trustworthy predictions.
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quantified andwe show that its output, “Clintonwins presidential
election,” is untrustworthy.

To further show the usefulness and effectiveness of DeepTrust,
we quantify the opinion and trustworthiness of a NN which
predicts Trump as winner in presidential election, and verify
that this result is more trustworthy. The 1-32-32-1 NN predictor
results in wrong prediction because of the untrustworthy pre-
election poll data. Multiple factors related to pre-election poll
data, such as “shy Trumpers,” lack of voters’ detailed information,
such as race, sex, education, income, etc. might have resulted
in untrustworthiness and uncertainty in the whole prediction
process. To present that this could have been avoided, had
DeepTrust been used, we enrich the dataset by adding afore-
mentioned detailed information of voters, and construct a dataset
with 9 features: state, poll sample size, percentage of black,
white, Latino, male, female, percentage of bachelor degree, and
average household income. The NN predictor we use for this
enriched dataset has the structure of 9-32-64-32-1, and its
training accuracy reached 67.66% and predicts Trump as winner
by wining 36 states and 336 votes. This result is more accurate
than the previous one and closer to the true 2016 election result.
This 9-32-64-32-1 NN should be more trustworthy, and we
show that DeepTrust verifies this claim. The opinion of NN
9-32-64-32-1 is quantified in validation phase, and the results
are shown in Figure 7B. The projected trust probability of this
NN reaches 0.71 with 0.70 belief value. In testing phase, the
opinion of this NN’s output, “Trump wins presidential election,”
is {0.50, 0.46, 0.04, 0.01} with 0.5 projected trust probability,
which verifies that this result is relatively more trustworthy than
previous “Clinton wins” result given by the 1-32-32-1 NN.

5.4. Trustworthiness Quantification With
Batch Training
In previous sections, we apply our framework to a number
of neural network architectures and evaluate trustworthiness
during the training process. We train networks and evaluate
trustworthiness sample by sample to make clear observation of
trustworthiness evolution during training. In this section, we
quantify trustworthiness of a neural network training with mini-
batches of data. We follow Hinton and Bengio (Nair and Hinton,

2010; Glorot et al., 2011) and use the neural network architecture
proposed for the NORB dataset (LeCun et al., 2004). The neural
network providing the best results on NORB has 4, 000 units in
the first hidden layer and 2, 000 in the second. The activation
function applied to all hidden units is ReLU. We follow Hinton’s
data pre-processing strategy to down sample the images to 32×32
and train with batch size 128. We compare the trustworthiness
of the neural network under three training strategies: (i) one
epoch of sample by sample training, (ii) one epoch of mini-
batch training, (iii) multiple epochs of mini-batch training until
stable. The results are shown in Figure 8. Compared to sample
by sample training, batch training shows advantages in both
accuracy and trustworthiness. The trustworthiness of the neural
network in (i) and (ii) are clearly lower than in (iii) because the
performance is not saturated with only one epoch of training.
For the same neural network architecture, the trustworthiness
and accuracy are positively correlated. In addition to evaluating
trustworthiness along with the training process as in previous
layers (to see how the trustworthiness evolves through the
training process), we also pre-train the neural network, and
then use pre-trained neural network to make predictions on
all training samples. We use the prediction results to calculate
the error terms |y − y′| and calculate the trustworthiness of
the network. We refer these two trustworthiness quantification
versions as “evolution” and “pre-train” and compare them in
Figure 8 as well. These two versions get close to each other when
evaluating onmore data samples. These results prove the stability
of our calculated trustworthiness and inform that if we have a
pre-trained neural network, we can approximately quantify the
trustworthiness by feeding in a large amount of data samples
to the pre-trained neural network without the need of knowing
the training process. This conclusion provides justification of our
framework design in section 4.5.

6. DISCUSSION

The increasing application of AI raises concerns regarding the
security and morality of AI. Questions, such as “Why should I
trust AI,” “How much should I trust AI,” “What are the chances
my trust in AI, may result in tragic consequences” become daily

FIGURE 8 | Trustworthiness comparison among three training strategies. (A) After one epoch of sample by sample training, the accuracy is 20.11%. The neural

network is underfitting and stable, i.e., the loss is not decreasing in the first epoch of sample by sample training. The trustworthiness results from “pre-train” and

“evolution” versions are the same. (B) After one epoch of mini-batch training, the accuracy is 47.23%. The neural network is underfitting and very unstable. Evaluating

the trustworthiness on more data samples minimizes the gap between “pre-train” and “evolution” versions. (C) After multiple epochs of mini-batch training the

accuracy achieves 59.49%. The neural network is semi-stable and the trustworthiness evaluation results between the two versions get closer if more data samples

are used for trustworthiness evaluation.
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concerns. Quantification of uncertainty and trust has become a
popular research topic due to the growing applications of AI.
However, the lack of theory and data becomes the major obstacle
of trust quantification. In this work, we address the trust issues
of neural networks by proposing DeepTrust, a framework to
quantify opinion and trustworthiness of multi-layered NNs based
on subjective logic, a formalism for representing and reasoning
under probabilistic information.

A recent survey defines trustworthiness as certification
and explanation (Huang et al., 2018). Certification techniques
improve the human users’ confidence on the correctness of
the NNs, and the explanation techniques increase human users’
understanding about the NNs and thus improve the trust (Huang
et al., 2018). Research efforts either focus on certification or
explanation. DeepTrust provides a novel angle of quantifying
trust of the NNs by utilizing a formal trust metric, SL. DeepTrust
is a combination of certification and explanation. The opinion
quantification of NNs in training process is related to the
correctness of NNs’ output and the quality of the topology and
training data. For pre-trained NNs, the opinion quantification
is evidence-based, where the correct output votes for positive
evidence and wrong output votes for negative evidence.

DeepTrust imports SL to AI and to the best of our knowledge,
DeepTrust is the first work to quantify the opinion and
trustworthiness of multi-layered NNs based on opinion about
data and topology of the neural network.We find that the opinion
and trustworthiness of NN is affected by both the topology
and trustworthiness of the training data, and some topologies
are more robust than others. More precisely, a robust topology
results in higher projected trust probability values, not only
when trained with trustworthy data, but also when fed with
untrustworthy data. In extreme cases where only uncertain data
is available, belief can still be extracted out of pure uncertainty.
Designing NNs is generally a challenging task. We propose to
adjust the topology, i.e., number of hidden layers, number of
hidden neurons in hidden layers, etc., according to opinion
and trustworthiness, and along with accuracy, subject to various
costs, such as training time, and memory space limits. Whenever
there is a trade-off between accuracy and trustworthiness,
we recommend considering both in most cases and weight
trustworthiness more in safety and security related applications.
Based on our observations, accuracy and trustworthiness of the
outcome do not necessarily correlate. DeepTrust may therefore
shed light to the design of NNs with focus not only on
accuracy but also the trust, while dealing with untrustworthy
datasets. Further, DeepTrust can be used to quantify opinion
and trustworthiness of pre-trained NNs and their output in
various applications.

One limitation of our work is that DeepTrust quantifies
trustworthiness of neural networks based on the opinions of
data. However, the trust information about data is not always
available mostly because the data collectors may not take the
responsibility to provide such information. We plan to solve
the trustworthiness of neural networks in two steps, namely
model trustworthiness and data trustworthiness. In this work,
we propose to solve the model trustworthiness by DeepTrust
based on the availability assumption of data trustworthiness.

Therefore, we would like to reveal the significance of the data
trustworthiness and we believe that machine learning and AI
researchers need to take one step forward when collecting
the data. Not only the data value itself is important, the
trustworthiness of the data is also a significant factor. However,
the existing data collection process misses that. To solve this
contradiction, as part of our follow-up work we will develop
a quantifier for data trustworthiness to further enhance the
whole trustworthiness quantification of neural networks. One
way to relax the data trustworthiness availability assumption is to
assume a maximum uncertainty of data, which provides a neutral
evaluation as discussed in section 5.2.

In this work, we applied DeepTrust to quantify
trustworthiness of neural network architectures with multiple
hidden layers and non-linear activation functions. DeepTrust is
applicable to deeper NNs and our future work will incorporate
neural networks with convolutional layers and pooling layers
such that we can test on more popular deep neural network
architectures. DeepTrust applies to both classification and
regression problems since the value of input and output does not
affect the calculation of the opinions. As long as we have true
labels, i.e., in the realm of supervised learning, DeepTrust can
calculate the trustworthiness of the model and the output. The
major assumption in SL is that collecting the evidence (positive
or negative) reduces the uncertainty since the second-order
uncertainty in SL represents the vacuity of evidence. A case
we would like to discuss is that, intuitively, it looks like when
we collect some evidences, the uncertainty mass should be
decreasing. However, the evidence could be useless and should
not contribute to either belief or disbelief mass. This is one of
the shortages of monotonic logics, i.e., learning a new piece of
information cannot reduce what is known. SL is not monotonic
logic and it can handle belief revision. This case of “useless
evidence” can be handled by the trust revision method in
SL, which are designed to handle cases where the sources are
unreliable. To apply the mapping from evidence to opinion,
we assume that the sources are reliable, and every evidence
contributes to either belief or disbelief. Another potential and
intuitive way to solve this “useless evidence situation” is to
modify SL by adding in a new type of evidence to contribute
to uncertainty mass. However, this approach needs a strict and
careful mathematical proof to make sure it is consistent with the
existing syntax of SL, we will explore this path in the future as an
additional contribution to SL.
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