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Fuzzy logic is an artificial intelligence technique that has applications in many areas, due

to its importance in handling uncertain inputs. Despite the great recent success of other

branches of AI, such as deep neural networks, fuzzy logic is still a very powerful machine

learning technique, based on expert reasoning, that can be of help in many areas of

musical creativity, such as composing music, synthesizing sounds, gestural mappings

in electronic instruments, parametric control of sound synthesis, audiovisual content

generation or sonification. We propose that fuzzy logic is a very suitable framework for

thinking and operating not only with sound and acoustic signals but also with symbolic

representations of music. In this article, we discuss the application of fuzzy logic ideas to

music, introduce the Fuzzy Logic Control Toolkit, a set of tools to use fuzzy logic inside

the MaxMSP real-time sound synthesis environment, and show how some fuzzy logic

concepts can be used and incorporated into fields, such as algorithmic composition,

sound synthesis and parametric control of computer music. Finally, we discuss the

composition of Incerta, an acousmatic multichannel composition as a concrete example

of the application of fuzzy concepts to musical creation.

Keywords: fuzzy logic, computer music, machine learning, sound synthesis, parametric control,

algorithmic composition

1. INTRODUCTION

Music, although considered a science by many, is not an exact science, but rather a collection of
qualities, ranging from the emotional to the intellectual in varying degrees (Suiter, 2010a). Several
concepts in music are not absolute but rather relative and its terminology is not entirely precise.
Many musical concepts do not possess an absolute meaning, and composers, with a few notable
exceptions, do not specify every detail about how their musical creations should be converted into
sound. For example, a slow tempo indication in a musical score can be interpreted very differently
by different analysts or performers. Indeed, many musical attributes are described by imprecise (or
fuzzy) concepts, such as presto, forte, piano, andante, or allegro. León and Liern (2012) provide the
music of J.S. Bach as an example of such a fuzzy approach to composing, as in his music features,
such as the instrumentation or the tempo are not explicitly stated in the scores.

Following the same line of argument, authors, such as Milicevic (1999) state that music, unlike
language, is fuzzy, while others, such as León and Liern (2012) consider a musical score to be a
truly fuzzy system, meaning that performers are required to execute very complex actions based
on uncertain concepts written in the score. If we accept this premise, some aspects of fuzzy logic
theory seem to be a natural way of predicting the aesthetic outcomes of music (Suiter, 2010a) and
its structure.

Fuzzy logic (Kosko, 1993; McNeill and Freiberger, 1993; Cox, 1994; Bandemer and Gottwald,
1995; Klir and Yuan, 1995; Yen and Langari, 1999) is a branch of artificial intelligence specifically
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designed to handle imprecise and vague concepts. Fuzzy logic
can be conceived as a logical system based on a more general
concept of truth, one that is not two-valued (true or false) and
very appropriate for reasoning under uncertainty, by allowing
different degrees of membership or several values of truth. In
general, the application of fuzzy logic inference to a problem
emulates some aspects of human reasoning, for example, the
quantification of imprecise information or making decisions
given unclear or partial data (Kosko, 1993).

Artificial intelligence aims to construct computational
algorithms that can perform some level of reasoning and exhibit
problem-solving skills similar to those of humans. Fuzzy logic
has an additional objective: “to explore an effective trade-off
between precision and the cost in developing an approximate
model of a complex system or function” (Yen, 1999). However,
perhaps one of the most important qualities of fuzzy logic
concerning music-making is its capacity for modeling non-linear
systems without the need of explicitly constructing a complex
mathematical model. Indeed, as Suiter (2010a) states: “A
significant feature of music is that the aesthetic outcome is
often more than the sum of its technical elements. Indeed,
what is the role of timber, attack, duration, decay, articulation,
spatialization, register, texture, voicing, entries and timing,
rhythm, tempo, or meter? What does musical form, structure, or
process contribute? In fact, it is often the means and details of the
interactions between the distinct elements which significantly
influence the effectiveness of the whole work. This means music
is, technically, a non-linear system.”

This article is structured as follows. First, we briefly introduce
the main ideas and concepts behind fuzzy logic and its
application, with an emphasis on the fuzzy approximation
theorem and fuzzy inputs as latent spaces. Second, we conduct
an updated survey of the utilization of fuzzy logic in musical
applications. Third, we present the Fuzzy Logic Control Toolkit
(FLCTK), a set of tools to generate musical content in the
MaxMSP real-time sound synthesis environment. Fourth, we
provide detailed examples of applications in sound synthesis,
algorithmic composition, and many-to-many musical mappings.
Fifth, we discuss some compositional aspects of Incerta, an
acousmatic multichannel composition done in MaxMSP with
the FLCTK. Finally, some conclusions and future lines of work
are presented.

2. FUZZY LOGIC

Zadeh (1965) introduced the concept of fuzzy sets, which are
different from standard sets in the sense that they operate
with multi-valued logic. Compared to other, perhaps more
popular, artificial intelligence techniques, fuzzy logic is simpler
and more flexible, making it a very appealing tool for musical
applications. Indeed, fuzzy logic systems have found applications
in a great multiplicity of fields, notably engineering and control
applications (Kosko, 1993; Klir and Yuan, 1995), but also in
areas apparently unconnected, such as data analysis (Bandemer
and Gottwald, 1995), economics, business, and finance (Von
Altrock, 1997), sociology (Dimitrov andHodge, 2002), or geology

(Demicco and Klir, 2004). Fuzzy logic algorithms can be easily
found in everyday popular objects, such as cameras, camcorders,
or washing machines, but also on unmanned vehicles, such
as trains.

2.1. The Fuzzy Principle
Kosko (1993) coined the phrase everything is a matter of degree
to emphasize a key element of fuzzy logic theory. In fuzzy logic,
inputs and outputs are fuzzified, meaning that their values belong
in varying degrees to several fuzzy sets. For example, if we
consider the sound intensity range of 30–120 dB, and we want
to determine whether a given intensity is low, medium, or high,
does a value of 90 dB correspond to a high intensity? As it is
closer to 120 than to 30 perhaps, but there are other values which
are higher in intensity. Therefore, instead of assigning only one
label to it, it is not a bad idea to consider a fuzzified version
of this concept, one in which this particular value belongs in
different degrees to both the medium and high intensity labels.
In consequence, fuzzy sets are not exclusive, they allow partial
membership of its elements. Unlike traditional crisp logic, where
elements belong or do not belong to a particular set, in fuzzy logic
an element of the set can be a member of it only partially. In
this way, fuzzy logic handles uncertain terms and partial values of
truth. Elements are not entirely black or white; they can acquire
any shade of gray. Mathematically, this implies membership
values between 1 and 0.

2.2. Fuzzy Sets
As we previously stated, a fuzzy set contains members to some
degree (Kosko, 1993). Let F be a fuzzy set with an universe
of discourse X = {x}, defined as the mapping µF(x) :X →

[0,α]. The universe of discourse is the range of all possible real
scalar values of some measurement or items of information that
we want to fuzzify. This mapping assigns to each x a value
in the range [0,α]. When α = 1 the set is called normal. A
fuzzy set contains a distribution, also calledmembership function.
When a distribution is of zero width, the membership function
collapses to a singularity, which corresponds to the traditional
case of a crisp set. If these singularities can only have one of two
possibilities, they perform binary logic. µF is called the grade
of membership or degree of truth of x. Fuzzy sets, although
usually modeled after triangular or Gaussian distributions, can
adopt any form, and no shape has been proven to be the best
(Mitaim and Kosko, 2001).

2.2.1. Fuzzification and Defuzzification
Fuzzification and defuzzification are critical operations in fuzzy
theory, as both of these operations connect the fuzzy set
domain and the real value scalar domain (Roychowdhury
and Pedrycz, 2001). Methods and techniques for fuzzification
and defuzzification are an active line of research, and several
approaches are constantly proposed in the literature.Wewill now
illustrate one of the simplest strategies for fuzzification. Figure 1
shows the fuzzification of the physical variable “intensity” which
is often associated with loudness. Employing fuzzification, a
variable or concept can be classified into one or several fuzzy
sets. In this particular case, there are three fuzzy sets to which

Frontiers in Artificial Intelligence | www.frontiersin.org 2 October 2020 | Volume 3 | Article 59

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Cádiz Creating Music With Fuzzy Logic

FIGURE 1 | Fuzzification of the concept “intensity.” The intensity level in dB is fuzzified into three fuzzy sets, labeled LOW, MEDIUM, and HIGH. The crisp value of 90

dB belongs to both the HIGH and MEDIUM sets in different degrees.

“intensity” can be classified into, denoted “LOW,” “MEDIUM,”
and “HIGH.” The membership functions of these fuzzy sets are
Gaussians and the universe of discourse X contains intensities
between 30 and 120 dB. In this example, a 90 dB intensity level
belongs 70.69% to the fuzzy set “HIGH,” 24.97% to the fuzzy set
“MEDIUM” and 0% to the fuzzy set “LOW.”

2.2.2. Operations on Fuzzy Sets
Operations can be defined for fuzzy sets in the same way they
are defined in traditional set theory and also in several different
ways. The most important fuzzy operators and the way they are
typically defined are:

• Complement. µ̄(x) = 1 − µ(x), x ∈ X. The complement
groups all the elements that do not reside in the set µ(x).

• Scalar product. µ(x) = S · µ1(x), x ∈ X. A fuzzy set can be
multiplied by a scalar S.

• Power. µ(x) = [µ1(x)]
m, x ∈ X. The power operation elevates

a fuzzy set to a particular numberm. The casem = 2 is known
as the concentration of a fuzzy set.

• Union. µ∪(x) = µ1(x) ∨ µ2(x) ∨ . . . ∨ µn(x) =

max(µ1(x),µ2(x), . . . ,µn(x)), x ∈ X. The union of two or
more fuzzy sets joins all the elements of the universe of
discourse that belong in some degree to any of those sets. This
operation can be done with any triangular co-norm. In this
particular implementation, we unite fuzzy sets by selecting the
maximum values among them.

• Intersection µ∩(x) = µ1(x) ∧ µ2(x) ∧ . . . ∧ µn(x) =

min(µ1(x),µ2(x), . . . ,µn(x)), x ∈ X. The intersection of two
or more fuzzy sets extracts all the elements of the universe
of discourse that belong in some degree to all of those sets.
This operation can be done with any triangular norm. In this
particular implementation, we unite fuzzy sets by selecting the
minimum values among them.

In set theory, both the intersection and union operators produce
one set. This is also known as aggregation. In the case of crisp
logic, the only way to aggregate one or more sets is by these two
operations. However, in the case of fuzzy sets, aggregation can
be achieved by several averaging operations, some of which are
not necessarily symmetric. For example, it would be possible to
specify different weights for each fuzzy set involved (Belohlavek
and Klir, 2011). This type of aggregation seeks the averaging of
several fuzzy sets into one, and it is not to be confused with the
process of rule aggregation, which will be discussed shortly.

2.3. Fuzzy Systems
Fuzzy systems are model-free estimators, they estimate input-
output functions where the inputs are fuzzified and the outputs
defuzzified. They estimate a function, and can approximate one
with any degree of accuracy, without an underlyingmathematical
model relating inputs to outputs. Fuzzy systems learn from
experience codified into numerical or even linguistic data (Kosko,
1992). A general fuzzy system consists of a rule base, an inference
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engine, and fuzzification and defuzzification stages (Klir and
Yuan, 1995). It operates repeating a cycle of three steps:

1. Fuzzification. Input variables are converted into
fuzzy variables.

2. Fuzzy inference engine. The fuzzified measurements are
evaluated by the rule base, resulting in one or several fuzzy
rules describing the universe of possible actions.

3. Defuzzification. The fuzzy outputs are converted into a single
value or a vector.

2.3.1. Fuzzy Rules and Inference
One of the goals of fuzzy logic is to emulate the way humans
reason, which is typically just by some imprecise rules and
common sense. Most of the decisions humans take can be
modeled after computer-like if-then statements, based on expert
knowledge or common sense. However, fuzzy rules can also be
learned from data (Kosko, 1992). One example is the FUZZEX
algorithm which can learn rules from a corpus of data mapping
inputs to outputs, in the same fashion that a neural network does
(Finn, 1999).

Formally, a fuzzy rule is a conditional of the form IF X
is A THEN Y is B, where A and B are fuzzy sets (Kosko,
1993). Typically, fuzzy systems contain a large rule base and
the method by which the computation of the contribution
of each rule is achieved is known as aggregation. There are
two main aggregation strategies, one connecting the rules with
AND operators, and another where they are connected by OR
directives (Ross, 2010). In the first, the aggregated output is
obtained by the intersection of all the individual rules, while
in the latter the output is aggregated by the union of the
contribution of all rules.

The process of aggregating all the rules in parallel is called
fuzzy inference. Different inference methods can be employed
depending on the task in question. One of the most popular
is the Mamdani method, proposed in 1975 by Mamdani and
Assilian (Ross, 2010). Several variants of this method exist, for
example the min-max method where a fuzzy rule would have
the form:

IF x1 isA
k
1 AND x2 isA

k
2 THEN yk is Bk for k = 1, 2, . . .

where Ak
1 and Ak

2 are fuzzy inputs and Bk is the desired output.
For r disjunctive fuzzy IF-THEN rules, the aggregated fuzzy
output will be:

µBk(y) = max
k

[min[µAk
1(input(1)),µA

k
2(input(2)), . . . ]]

for k = 1, 2, . . . , r

After inference, there comes defuzzification, a process to
which several approaches exist (Ross, 2010). One of the
most used ones is the centroid method, where the center
of mass of the aggregated fuzzy output is computed as a
scalar value.

Another widely used inference method is the TSK or Sugeno
method proposed by Takagi, Sugeno, and Kang. In this method,

two inputs x, y and one output z are associated by a rule of
the form:

IF x is A AND y is B THEN z is z = f (x, y)

where z = f (x, y) is a non-fuzzy function of the inputs x and
y (Ross, 2010). This inference function can be any function
that describes the output of the system within the fuzzy region
that the particular fuzzy rule encompasses. One advantage of
the TSK method over the Mamdani strategy is that it requires
less computation time by avoiding the defuzzification stage,
which can be computationally challenging if the rule base is
large enough.

2.4. Fuzzy Logic vs. Deep Learning
Both neural networks and fuzzy systems are numerical
frameworks used to estimate input-output functions without an
underlying mathematical model of how inputs relate to outputs.
In this sense, they are model-free estimators (Kosko, 1993). Both
approaches have been proven to be universal approximators for
any non-linear function to any degree of accuracy (Kosko, 1994;
Ying, 1998).

Neural networks excel at learning and adapting under
uncertainty scenarios. It is no surprise then that deep learning
has emerged as perhaps the most important branch of AI
due to its unprecedented capacity of learning data in an
unsupervised manner and superb results in tasks of classification
and estimation. However, due to the high complexity of some
network architectures and the large amount of data that is needed
for training, it is very hard to understand what is being learned or
even why some systems work. Indeed, a large amount of current
research in deep learning seeks to understand what are networks
learning. In short, neural networks can do amazing jobs at the
cost of inaccessible knowledge.

Fuzzy logic, on the contrary, is all about knowledge
representation. It is very clear what is being learned and
represented as all knowledge is encoded in the rules of the fuzzy
system. There is no major mystery as to why fuzzy systems work.
And these systems can also operate under uncertainty and require
almost no data, besides a couple of examples or common sense to
derive the rules from.

In the case where the number of inputs to a fuzzy logic system
is significantly less than the number of outputs, then the system
mimics the behavior of a latent space, in the sense that its rules,
which depend only on a few inputs, are a compact representation
of the dynamics of the many output parameters. However, the
main difference with the typical latent spaces that can be found
in auto-encoders and other types of neural networks is that this
fuzzy latent space is constructed based on simple rules and it
is not inferred or learned from data. In other words, this is a
well-understood and totally determined latent space.

Fuzzy systems offer nice opportunities for creative
applications, as they are able to mimic some characteristics of
human reasoning. The parallel calculation of fuzzy rules generally
reduces the calculation time compared to traditional deep
learning techniques or mathematical approaches. Knowledge
is encoded employing fuzzy rules that can easily be specified
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as IF-THEN statements, with simple linguistic terms, using
common sense, and they can be easily adjusted.

3. FUZZY LOGIC FOR MUSICAL
APPLICATIONS: A SURVEY

Back in 2001, Landy (2001) signaled fuzzy logic as one of the
important potential domains of development for the future’s
music world. We believe that fuzzy logic has not yet reached its
full potential in the service of musical purposes, due perhaps to
the exponential growth and development of deep learning and
other AI techniques. However, fuzzy logic has found its way
into several domains related to audio applications and musical
creative activities, as we report now.

3.1. Acoustics, Psychoacoustics, and
Digital Audio Processing
Demichelis et al. (1983) proposed an automatic recognition
method of plosive consonants, by using a fuzzy model of the
human speech perception and integration mechanisms. The
rules of the system were designed taking into consideration
prior research done by psychologists and phoneticians in the
generation and perception of these types of consonants by the
human brain, which can be characterized by several acoustic
cues. The authors found out that the performance of the system
drastically improved when more significant cues were added to
the rule base.

Civanlar and Trussel (1986) designed an audio signal
restoration method based on a fuzzy system that models a priori
information. The authors combined exact knowledge about the
signal to be restored with partial and incomplete information.
The original signal and all reasonable solutions belong to a
high degree to the feasibility set of possible solutions, while
rejected solutions have lower membership degrees. The measure
of this set gives an approximation for the quality of the solution.
This method was shown to be successful in many restoration
situations where other conventional techniques to that date
had failed.

Kostek (1999) designed a fuzzy controller of a pipe organ.
The system links the opening procedures of the pipe valves to
the manner of depressing the keyboard. The proposed solution
utilizes a velocity-sensitive MIDI keyboard, connected to a
computer with a special fuzzy microprocessor card and a buffer
to control an array of electromagnets. These, in turn, control
the pipes. Inputs to the fuzzy controller were key number and
velocity. The output can belong to the following membership
functions: low current, medium current, and high current. The
system produced one fuzzy output, associated with the current
applied to the electromagnet coils, based on eleven rules.

Breining (2001) developed a fuzzy step-gain control procedure
for adaptive filters to be used in acoustic echo cancellation
situations. Many step-gain estimators become unreliable under
adverse environments. This fuzzy logic-based controller used
a step-gain estimator combined with a double-talk detector,
resulting in a highly convenient and relatively simple method
compared with traditional alternatives.

Meng et al. (2002) designed an analytic method to extend
the sound impulse response of a room, using knowledge
from extrapolation theory for band-limited sound signals. The
evaluation of the method was conducted using a fuzzy clustering
algorithm. The authors use similarity perceptual judgment tasks
to compare the similarity between the extrapolated real impulse
responses. Typically these kinds of perceptual measurements
estimate a similarity matrix with methods, such as Kruskal’s
multidimensional scaling. However, considering that the terms
similar or dissimilar are not entirely crisp concepts, fuzzy logic
was added to transform the similarity matrix into a fuzzy
clustering matrix.

Malcangi (2008) constructed a fuzzy audio-pattern
recognition algorithm targeted for usage in very low-cost
embedded systems, to automate human-machine interaction.
This system was built on top of feature extraction algorithms
and a rule base constructed by a self-learning process. The fuzzy
logic recognition engine used membership functions according
to the spectrum of a particular audio frame to be recognized.
In consequence, if the audio pattern was, for example, a vocal
utterance, then the membership function would be modeled
according to the spectrum envelope of the stationary components
of the speech. In such a manner, a set of membership functions
covering all the stationary speech sounds to be recognized must
be generated. By using a different dictionary of membership
functions, other kinds of acoustic signals can be recognized by
such a system.

Gonzalez-Inostroza et al. (2015) proposed a fuzzy-logic based
equalizer for musical genres, by incorporating significant audio
descriptors that allow for the recognition and description of
diverse musical genres. These descriptors feed a fuzzy logic
inference system, whose outputs are the required equalization
levels for each frequency band. The rules of the system were
derived from the analysis of a well-known music database
encompassing ten different musical genres. Their approach
works for songs that exhibit multiple genre characteristics, that
are difficult to classify into one category, or that mix genres.

3.2. Music Listening, Emotion, and Analysis
Milicevic (1999) aimed to aid composers to create more
appealing music for a wider public. Assuming that composers
usually seek a positive cultural response to their music, the
authors built a fuzzy adaptive and emotion-based music system
that can reduce the internal fuzzy entropy of the compositions,
making them more appealing to people and able to produce
positive emotional responses while listening to it. They tried their
system in the special case of computer music.

Friberg (2005) was able to use a fuzzy system for the analysis
of the emotional expression and body movements in musical
performances in real-time. Parameters, such as articulation,
tempo, intensity, and motion descriptors were used as inputs
to a fuzzy mapper able to translate these variables into one of
three possible outputs: happiness, sadness, and anger, all related
to emotion. The rule base was constructed considering qualitative
data from former studies.

Yang et al. (2006) also developed a music emotion
classification system based on fuzzy logic. They declare that
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“due to the subjective nature of human perception, classification
of the emotion of music is a challenging problem,” as feeling and
emotion states provoked by music could be unequal to different
people. Their approach estimates the likelihood that a given
segment extracted from a song belongs to a particular category of
emotion. Their system can measure emotional strength to track
the variation of different musical emotions provoked by a song.

Maristany et al. (2016) have done soundscape quality analysis
by means of fuzzy logic. They conducted a comparative analysis,
based on surveys and psycho-acoustic estimations, in open
locations around the city of Córdoba in Argentina. They
found out that there is a non-linear relationship between
these indicators and the audible qualities of the spaces.
Fuzzy logic emerged then as a suitable tool to model this
non-linearity, confirmed by the model performance and the
perceptual outcomes from the users. The authors found that
this approach can be applied not only to soundscapes, but
in other studies where perception must be confronted with
objective measurements.

Hasanzadeh et al. (2019) constructed a fuzzy cascade model
designed to predict the emotional content of pieces of music
using electroencephalographic (EEG) signals. Users listened to
musical excerpts while their emotional appraisal response was
estimated as a value along two emotional axes (valence and
arousal). The proposed fuzzy model consists of parallel cascades
with each cascade containing a single multi-input/single-output
fuzzy logic-based system. The authors compared this approach
to several alternative methods, including recurrent neural
networks, and concluded that the fuzzy approach exhibited the
best performance.

Kasinathan et al. (2019) developed a music recommendation
system based on a fuzzy inference engine that considers
user activities and emotion as part of the recommendation
parameters. The authors describe that their fuzzy inference
system can decide on music recommendations based on the
user’s music listening habits as well as expert knowledge
about music genres and their effects on humans. The user’s
preference data is fed into the fuzzy system to obtain a
decision that returns a score corresponding to the recommended
music track. The top ten music tracks with the highest
recommendation score are provided as recommendations for
the user.

3.3. Music Information Retrieval and
Performance
Orio and Pirro (1998) coded gestures made during interactive
musical performances in real-time by a neuro-fuzzy system.
One of the basic contributions of their work is using only two
different levels for the codification of human gestures. These
levels usually carry a significant amount of information about
the performer’s intentions. But additional information is carried
by nuances of the gesture, and these can also be analyzed,
capturing the detailed performance of each gesture. This two-
level approach was applied in a system for interactive piano
performances. Nuances were analyzed in terms of linguistic
labels. This is where fuzzy logic plays an important role, given

its suitability to handle semantic expressions. Depending on the
kind of desired performative nuances, fuzzy controllers were
developed. Loudness and tempo are used as inputs, and the
system then calculates the level of, for example, “urgency” of
the musician. This information is later used by the system to
musically respond in real-time to the human performer.

Usa andMochida (1998) used a fuzzy system in the simulation
of the gestures of an orchestra conductor. The system is
capable of recognizing some of the most common conducting
elements of conductors. In particular, the beat recognition
system was built on top of a fuzzy model of actual orchestra
musicians’ recognition.

Liu and Huang (1998) implemented a system that
discriminates news reports from broadcast ads or music in
news programs based on the information contained in the audio
signals. Four features were extracted from the audio data. Both
a simple threshold and a fuzzy classifier were implemented
to classify the audio data. In the case of the fuzzy classifier,
descriptors were associated with fuzzy sets and the influence
of each feature was combined to obtain the final classification
decision. Results reported an improvement using the fuzzy
classifier compared to the threshold-based system.

Weyde and Dalinghaus (2001) recognized rhythmic patterns
with a neuro-fuzzy system, which determined grouping and
group relations between two sequences (comparison) or within
one sequence (analysis). The systemmakes use of knowledge and
learning from data and it is open for the integration of different
features and rules. The system defined by the rules can be trained
to prefer certain interpretations over others by example.

Liu et al. (2002) propose a fuzzy system designed to classify
and retrieve audio clips, inspired by the fuzzy nature of human
perception. Various extracted features were used as input to a
fuzzy system, whose outputs belonged to two types of classes. The
rule base was constructed from characteristics extracted from the
clips. The results show that the system can discriminate between
speech andmusic and that it can be extended for the classification
of more types of audio clips.

Monti and Sandler (2002) developed a system able to translate
audio directly into MIDI data. The system contains a fuzzy
inference system that achieves polyphonic note recognition
as a part of the overall process. First, spectral peaks from a
spectrogram are selected by the algorithm. Harmonically related
peaks are grouped into note candidates. If a note candidate
receives a good rating, it is transformed into a note hypothesis.
Finally, the hypotheses that survived an activation time threshold
become active notes. The fuzzy inference system takes the
spectral peaks that were not selected into the note continuation
process and creates new candidates. The new candidates are then
evaluated by the inference system to become note hypotheses.
The membership functions used in this system classify notes
into low, middle, and high and take into consideration pitch,
harmonic rate, and relative energy.

Leon and Liern (2010) modeled musical notes and tuning
systems as fuzzy entities to integrate tuning theory and musical
practice. The authors were able to combine different tuning
systems into a simpler fuzzy model that reflects both the
idea of proximity between different notes and whether their
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configuration, in terms of a specific tuning system, is sufficiently
similar for practical musical purposes.

Knudsen et al. (2019) propose that “to collaborate and
co-create with humans, an AI system must be capable of
both reactive and anticipatory behavior.” With this objective
in mind, the authors considered a mixed human-robot duo,
more precisely a piano and a virtual robotic drummer, and
they designed a fuzzy logic-based system to determine the
performance features of the drummer as a function of what the
human pianist performs. While the system exhibited only limited
anticipatory capabilities, the behavior of the drummer was judged
to be satisfactory by musicians in initial evaluation experiments.

3.4. Musical Composition and Generation
Lee and Wessel (1993, 1995) were among the first researchers
to incorporate a fuzzy reasoning system into the MAX real-time
music programming language. They labeled their system
MaxFUZ, and it implemented fuzzy variables, sets (limited to
trapezoidal shapes), and both Mamdani and Sugeno rules. This
was the first interactive fuzzy system that worked in real-time
inside MAX to our knowledge.

Almost at the same time, Elsea (1995) utilized fuzzy logic
features to tackle problems in the analysis and composition
of music. In his work, pitches and dynamics were represented
as fuzzy sets and fuzzy reasoning is used to produce
chord inversions and sequence of chords. These ideas were
implemented in software as external objects for Max/MSP, called
L-objects, which provide fuzzy operations and manipulation
of fuzzy sets.

Kiseliova et al. (2005) developed an interpretation fuzzy
algorithm, based on top of a rule base designed by an experienced
pianist. Their approach relies on both conventional and more
advanced information decision strategies. This system, given a
known piece of music, creates a MIDI-based interpretation of
the piece. Their general objective is to transform a mechanical
performance of a piece of music into a much more human-like
interpretation by applying the knowledge of an expert performer
in the form of a fuzzy rule base.

Cádiz (2004, 2006a) proposed a fuzzy logic system to convert
visual information into sonic information and vice-versa. This
model is useful to generate audiovisual content, given either the
visual or sonic content in advance. Parameters in one domain
are fuzzified and fed into a fuzzy inference engine that generates
parameters in the other domain. This fuzzy mapping is inspired
by the ideas of isomorphism and synaesthesia. Isomorphism
determines whether two different modalities can be mapped
onto each other based on the fact that perturbations into one of
them consistently cause changes in the other, while synaesthesia
occurs when a stimulation in one sensory modality automatically
provokes a perceptual outcome in a secondary sensory modality
when there is no direct stimulation to it.

Yilmaz and Telatar (2009) identified key areas where fuzzy
logic can be used for the composition and generation of music:
harmonization, orchestration, improvization, and composition.
They propose to focus on the harmonization with constraints
as a way of tackling these three areas. In particular, they
proposed a fuzzy feedback decision system designed to perform

accompanying tone generation dynamically. They applied this
system to the particular problem of note-against-note two-voice
counterpoint (Yilmaz and Telatar, 2010). Their method considers
membership functions and rules that mimic some known rules
of music theory, and their implementations provide feasible
procedures when compared to those of established music theory.

Suiter (2010b) devised a conceptual framework for composing
expressive music based on fuzzy logic, aimed toward reducing
the number of musical decisions that a composer must make
at the micro-level and focusing on those that contribute to
expressiveness the most. A fuzzy system is used to trace the
trajectory of all musical details of a composition, encompassing
each element and their combinations.

López-Ortega and López-Popa (2012) developed a two-
dimensional recursive fuzzy method assisting composition for
MIDI-based musical works based on fractal structures. In their
approach, notes evolve according to a particular fractal trajectory.
Tempos and duration can remain fixed or they also can follow
the fractal structure. Additionally, the set of produced pitches
are translated into tones belonging to a previously determined
musical scale.

Kuo et al. (2015) created a real-time emotion-based music
accompaniment system through a fuzzy logic tempo controller,
and an additional genetic evolutionary melody generation
system. Harmonic chord progressions were generated using
known music theory rules. For the fuzzy tempo controller, they
used a range of 60 to 180 beats per measure, and the fuzzy output
is used to adjust the current tempo compared to a target one.

Lucas et al. (2017) developed a method for representing
human emotions in the context of human-machine musical
composition based on fuzzy logic. A knowledge base of human-
produced melodies and human-labeled emotions associated with
them, in the form of a Markov chain process, is used to generate
new melody patterns, which are later classified into emotions
by a fuzzy classifier. These new melodies can be of later use to
compose music with specific emotional targets in mind.

Guliyev and Memmedova (2019) modeled some
compositional decisions as the requirement to construct
relationships between controllable elements in music, in
particular pitch, duration or amplitude, and a consequent
evaluation. They established these relationships as sets of
IF. . . THEN fuzzy rules with antecedents, the input parameters,
and a consequent, the evaluation of the generatedmusical output.
This method can be thought of as a “preference ordering” of the
attributes of a particular piece of music.

3.5. Sound Synthesis
Miranda and Junior (2005) introduced a novel Markov fuzzy
model for granular synthesis. While Markov chains control the
temporal evolution of the sound, their fuzzy system defines
the granular structure of the sound. In this sense, this method
extends the idea of a grain into the concept of a fuzzy grain.
A fuzzy grain contains several fuzzy parameters: frequency,
amplitude, and membership values of each Fourier partial of the
grain, or in other words, its weighted harmonic content.

Schatter et al. (2005) proposed a graphical user interface
for the generation of electronic sounds with a synthesizer.
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FIGURE 2 | Help screen of the Fuzzy Logic Control Toolkit (FLCTK) in the MaxMSP environment. Inputs, outputs and rules can be added and removed on-the-fly.

Twenty-three aural parameters were reduced to five parameters
controlling the visual metaphor utilizing a fuzzy logic controller.
The system allows knowledge-based mappings that are adaptable
to each user. There are two modes of operation: in the manual
operationmode, the system is used to record the parameter-input
of the user, followed by the generation of fuzzy controllers. In the
automatic mode, the system has to find parameter combinations,
employing genetic algorithms.

Cádiz (2006b) has proposed an approach for the
compositional control of computer music based on fuzzy
logic. In this case, the control of the compositional process
derives from the fuzzification of the synthesis parameters of
interest, while the rule base can be specified at will by the
composer, according to his objectives. The author provides
five different applications of this type of synthesis control in
the context of spectral synthesis, physical modeling, granular
synthesis, particle-based synthesis, and audiovisual composition,
exemplifying a significant number of situations in which such an
approach gives suitable results.

Lucas and Pelaez (2019) implemented a granular synthesis
method based on harmonic rules and fuzzy logic. In this method,
each grain is positioned in a two-dimensional space arranged in
the same fashion as the circle of fifths. A fuzzy logic prioritization
algorithm is used to order the grains in the vicinity of a
particular performing area inside this two-dimensional space.
The algorithm takes frequency and energy levels of each grain

in the vicinity as inputs and produces a prioritization index as
a result.

4. THE FUZZY LOGIC CONTROL TOOLKIT

The Fuzzy Logic Control Toolkit (FLCTK) (Cádiz and Kendall,
2006; Cádiz and Gonzalez-Inostroza, 2018) is a collection of
software tools implemented in MaxMSP1, a sound synthesis
environment that allows for the design and usage of a generic
fuzzy inference system in real-time. An important feature of this
software is its capability to import and export fuzzy systems
in the fis file format, a popular fuzzy logic specification used
by MATLAB’s Fuzzy Logic Toolbox2. This common shared file
format allows a user to design and troubleshoot a complete fuzzy
system in MATLAB, export it as a fis file, and then import the
same system into the FLCTK or vice-versa.

Figure 2 displays a screen-shot of the MaxMSP help patch of
the FLCTK’s external flctk.Fuzzy with all its options. This
external object can load a fuzzy system or create one on-the-fly
by sending messages to it. In this example, details of the fuzzy
system in use are displayed in the Max window. Some messages
can select specifics for implication, aggregation, fuzzification and
defuzzification, number of rules, their weights, and whether AND

1http://cycling74.com
2https://www.mathworks.com/help/fuzzy/index.html
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FIGURE 3 | Algorithmic melody generator example 1. The 2D coordinates [−0.433,−0.559] of the latent space generate a 12-note melody with a large range of

pitch variations.

or OR operators should be used. All fuzzy inputs and outputs
can be defined with either triangular or Gaussian membership
functions, and labels can be created for each of them.

This toolkit is very simple to use inside MaxMSP and
a complete fuzzy system can be designed by sending the
appropriate messages to the flctk.Fuzzy object. This object
can be created based on an existing fis file designed off-
line in MATLAB. In this case, the path to the fis file
should be specified. Another option would be to initialize
the object with several inputs and outputs, in which case the
external will create all necessary fuzzy variables with a standard
configuration using Gaussian membership functions and inputs
and outputs consisting of five fuzzy sets each. This configuration
can be altered after the system was created by sending modifier
messages. Once inputs and outputs are created, rules can be
added one by one by sending a message specifying the inputs
and outputs involved in each rule, the aggregation method, and
specific weight for each rule. Rules can be deleted and tested on
the fly, to customize the system’s behavior.

The FLCTK can be downloaded from its github website
at https://flctk.github.io/. The package contains the source Java
code, compiled code, help files and video examples, some of
which are detailed below. Also, a standalone version, written
from scratch in C++ and based on the Open Sound Control
protocol (Wright et al., 2003) is in the works at the time this
article was published.

5. EXAMPLES

We now provide four examples, developed by the author using

the FLCTK, that illustrate the power of fuzzy logic for audio and

music generation, in the specific domains of computer music

and algorithmic composition, sound synthesis, and parametric
control. These examples are purposely very simple, as they were

designed to clearly show the effect of fuzzy logic when applied to

very basic ideas. Illustrating videos of each of the examples can be

found in the Supplementary Material.
For the algorithmic composition and parametric control

examples, we utilize a bi-dimensional controller (shown in
Figures 3, 4, 8) as a very simple control interface. The bi-
dimensional controller has a square shape and a pointer (small
circle) that tracks the coordinates of the mouse as the user
moves it. Both axes have a range of 2.0 (from −1.0 to
+1.0). The origin (0,0) is located at the center of the square.
The controller also accepts pointer coordinates via internal
messaging. In this way, the controller can in turn be controlled
not only by the mouse but by any kind of two-dimensional
process. In the following examples, the coordinates of the
controller are fed into custom fuzzy systems designed for each
particular case. As these fuzzy systems contain more than
two outputs, this controller behaves as a latent space, which
is a compact representation of the high-dimensional output
parameter space.
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FIGURE 4 | Algorithmic melody generator example 2. The 2D coordinates [0.543,−0.071] of the latent space generate a six-note melody with a rather small range of

pitch variation in the lower register.

TABLE 1 | Input and output variables for algorithmic composition example.

Input variables Output variables

X Number of notes

Y Regularity

Duration deviation

Pitch

Pitch deviation

Each one of these variables can belong to three fuzzy sets: LOW, MEDIUM, or HIGH. As

the number of inputs is lower than the number of outputs, the input space is a latent space

of the output space.

5.1. Algorithmic Composition
Algorithmic composition is simply the use of algorithms to
compose music. This is a very common practice in the history of
music, as “for centuries musicians have been proposing methods
that can be considered as algorithmic in some sense, even if
human creativity plays a key role” (Fernández and Vico, 2013).
There is a great variety of algorithms that have been proposed for
music composition, including simple recursive equations, chaotic
systems, re-writing systems, and many others (Nierhaus, 2009;
Edwards, 2011).

Algorithmic composition using fuzzy logic is proposed here as
another alternative. Fuzzy logic, as we have previously discussed,

is flexible enough to be applied to many different composition-
related contexts and situations. This particular example consists
of the generation of a very simple melody, where the number of
notes, their pitch range, and their duration are determined by
a fuzzy inference system. The inputs to the system are the two
outputs of the aforementioned bi-dimensional controller. The
outputs are the number of notes, a regularity factor, a duration
deviation factor, pitch, and a pitch deviation factor, as specified
by Table 1. Each one of these variables can belong to three fuzzy
sets: LOW, MEDIUM, or HIGH. As there are fewer inputs than
outputs, the input space is a latent space of the output space.

This system contains nine fuzzy rules, detailed in Table 2.
All rules have the same weight and are connected by AND
operators. A “–” indicates that the value of the fuzzy variable
can be anything. As shown in Figure 3, given the coordinates
[−0.433,−0.559] of the latent space, the system generates a
twelve-note melody with a large range of pitch variations.
Another point in the latent space will produce a different output,
as is displayed in Figure 4, where the coordinates [0.543,−0.071]
of the latent space output a six-note melody with a rather small
range of pitch variation in the lower register.

5.2. Sound Synthesis
An audio synthesis technique, based on fuzzy logic and the
idea of sound particles, is presented as a second example of the
application of fuzzy logic for music generation. This technique
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TABLE 2 | Fuzzy rules for the algorithmic composition example.

Inputs Outputs

Rule X Y Num. of notes Regularity Duration dev. Pitch Pitch dev.

1 LOW – HIGH MEDIUM LOW HIGH MEDIUM

2 MEDIUM – HIGH MEDIUM – LOW LOW

3 HIGH – LOW LOW LOW HIGH LOW

4 – LOW MEDIUM HIGH HIGH – HIGH

5 – MEDIUM LOW LOW LOW LOW LOW

6 – HIGH LOW LOW HIGH MEDIUM HIGH

7 LOW HIGH LOW MEDIUM LOW HIGH MEDIUM

8 MEDIUM HIGH HIGH MEDIUM MEDIUM LOW HIGH

9 HIGH HIGH HIGH HIGH HIGH HIGH HIGH

All rules have the same weight and are connected by AND operators. A “–” indicates that the value of the fuzzy variable can be anything.

TABLE 3 | Input and output variables for the single particle sound synthesis

example.

Input variables Output variables

Time 1 Frequency

Frequency 1 Intensity

Intensity

has been shown to generate complex synthesis parametric
trajectories by very simple means (Cádiz and Kendall, 2005). This
example consist of a single sound particle (a sinusoidal oscillator)
that possesses several fuzzy properties, labeled as time, frequency
and intensity. These properties are fed into a fuzzy system that
determines the temporal evolution of the particle. Each one of
the fuzzy properties consists on several fuzzy sets or membership
functions. Table 3 displays all the inputs and outputs used in
the example. Note that as time is included as an input, complex
time-dependent behaviors or trajectories can be generated.

The time input variable can belong to seven fuzzy sets,
labeled VERY SHORT, SHORT, MEDIUM SHORT, MEDIUM,
MEDIUM LONG, LONG, and VERY LONG fuzzy sets. The
frequency and intensity variables can belong to five sets: VERY
LOW, LOW, MEDIUM, HIGH, or VERY HIGH. The outputs
of the system are a change in both frequency and intensity. This
means that, in this case, the fuzzy system is a closed-loop system,
a very common design for automatic control applications. The
outputs at each time step are used to recalculate the current
frequency and intensity of the particle. The fifteen rules of this
system are shown in Table 4. All rules have the same weight
and are connected by AND operators. A “–” indicates that the
value of the fuzzy variable can be anything. It is important to
recall that in this example the fuzzy system is dependent on
time. As time progresses linearly, the output variables frequency
and intensity exhibit a highly non-linear behavior, as it can be
observed in Figure 5.

This single particle model has been extended to many
particles, as described in Cádiz and Kendall (2005). In the

many particle case, two additional fuzzy properties were added:
spatial position and charge. Figures 6, 7 show the frequency and
intensity trajectories for a ten-particle system. In the figures,
all particles shared the same initial conditions, except for
random charges. The trajectories displayed in the figures are
quite complex, with very different behaviors as time progresses.
Sometimes they behave very chaotically and some other times,
in this example most notably in the first 6 s, they follow smooth
and apparently non-chaotic but rather well-defined trajectories.
Some clustered groups can also be noticed. This kind of behavior
is a consequence of the easiness of fuzzy logic to approximate
non-linear dynamical systems.

5.3. Parametric Control
Granular synthesis (Dodge and Jerse, 1997) is inspired by the
idea of sound particles or grains, similar in spirit to photons
or particles of light. Iannis Xenakis in 1971 and Curtis Roads
in 1978 were among the first to suggest granular synthesis as a
viable computer music technique for producing complex sounds.
This technique generates a high density of very short acoustic
events or grains, resembling clouds, with a duration between
10 and 50 ms (Roads, 2004). These grain clouds typically range
from several hundred to several thousand events per second. If
sinusoidal functions or any pure synthesis methods are used to
produce the grains, the technique is called granular synthesis,
while if pre-recorded sounds constitute the grain material, people
often call that granular processing. This technique often requires
the user to control multiple parameters without any clear relation
to what they are hearing (Wolek, 2005). This is a situation where
a fuzzy logic-based control strategy could be useful.

This example consists on the control of a granulator, whose
parameters are determined by a fuzzy inference system. In
this specific case, granular synthesis is achieved using the
nw.grainpulse object, written for Max/MSP by Wolek
(2002). This object has five parameters to be controlled. The
inputs to the system are the two outputs of the bi-dimensional
controller used for the algorithmic composition example. The
outputs are the pulse interval, buffer offset, duration, sample
increment, and gain multiplier, as specified by Table 5. Each one
of these variables can belong to three fuzzy sets: LOW,MEDIUM,
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TABLE 4 | Fuzzy rules for the single particle sound synthesis example.

Inputs Outputs

Rule Time Frequency Intensity 1 frequency 1 intensity

1 VERY SHORT – – VERY LOW VERY LOW

2 VERY LONG – – VERY HIGH VERY HIGH

3 – MEDIUM MEDIUM MEDIUM MEDIUM

4 – LOW – HIGH MEDIUM

5 – HIGH – LOW MEDIUM

6 – – LOW MEDIUM HIGH

7 – – HIGH MEDIUM LOW

8 – MEDIUM – VERY LOW VERY HIGH

9 – – MEDIUM VERY HIGH VERY LOW

10 SHORT – – LOW LOW

11 MEDIUM SHORT – – HIGH LOW

12 MEDIUM – – LOW HIGH

13 MEDIUM LONG – – MEDIUM MEDIUM

14 LONG – – VERY HIGH VERY HIGH

15 VERY LONG VERY LOW – LOW –

All rules have the same weight and are connected by AND operators. A “–” indicates that the value of the fuzzy variable can be anything.

FIGURE 5 | Particle sound synthesis example. In this case the fuzzy system is dependent on time. As time progresses in a linear fashion, the output variables

frequency and intensity exhibit a highly non-linear behavior.
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FIGURE 6 | Frequency trajectories in time for a 10-particle system. As it can be seen, highly complex behavior can be generated with a few simple if-then rules.

FIGURE 7 | Intensity trajectories in time for a 10-particle system. As it can be seen, highly complex behavior can be generated with a few simple if-then rules.
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or HIGH. As there are more outputs than inputs, the input
space is a latent space of the output space, as in the algorithmic
composition example.

This system contains nine fuzzy rules, detailed in Table 6.
All rules have the same weight and are connected by AND
operators. A “–” indicates that the value of the fuzzy variable can
be anything. Inputs and outputs of the fuzzy system are displayed
on the right of Figure 8. As the latent space is explored in both
the X and Y directions, the output variables exhibit different
non-linear behavior. This allows the parametric control of five
synthesis parameters with only two abstract parameters. The
proposed fuzzy system effectively acts as a latent space generative
model, one that can translate points from a two-dimensional
parameter space into a five-dimensional space that acts directly
on the sonic output, according to the nine rules of the system.

5.4. Many-to-Many Parametric Control
In computer music, sometimes the act of composing cannot
be separated from the control of the synthesis process (Cádiz,
2006b). As a consequence, the compositional process can be
strongly shaped by the nature of the synthesis technique that
is being used. Gerhard and Hepting (2004) propose to think of
composition as an exploration of a multidimensional parameter

TABLE 5 | Input and output variables for parametric control of granular synthesis

example.

Input variables Output variables

X Pulse interval

Y Buffer offset

Duration

Sample increment

Gain multiplier

Each one of these variables can belong to three fuzzy sets: LOW, MEDIUM, or HIGH. As

the number of inputs is lower than the number of outputs, the input space is a latent space

of the output space.

space, where a particular configuration of parameters can be
represented as a point in that space. The parameters are initially
de-contextualized, meaning that they only offer a possible set
of future musical ideas, and compositions often means to map
or re-map these parameters until targets or musical constraints
are satisfied. This parameter-based approach to composition
allows the composer to explore a high dimensional space of
musical possibilities and essentially pick trajectories in that space
that are aesthetically relevant. Dahlstedt (2001) and Gerhard
and Hepting (2004) have proposed several options for this
composition strategy.

As these parameter spaces become larger, more specialized
tools are needed. In particular, supervised neural network
methods have been often used to generate a model of the
mapping from controller inputs to synthesis outputs, using
training datasets consisting of examples of input/output
pairs (Fiebrink et al., 2009). These kinds of networks can
learn a continuous function mapping, no matter how
many dimensions are involved. For these reasons, Fiebrink
and Cook (2010) developed the Wekinator, a free and
cross-platform open-source software application that supports
interactive design and application of real-time supervised
learning systems for many-to-many parametric gestural control
of music.

Since version 2.0 of the FLCTK this kind of many-to-
many control can also be achieved with fuzzy logic in real-
time. As inputs, outputs and rules can be added on-the-fly,
high dimensional parametric gestural control can be achieved
with a regular fuzzy system. Please see the example video in
the Supplementary Material for a better understanding of this
on-the-fly mode. In the video, rules are added in real-time to
map five inputs into four outputs controlling a sound synthesis
algorithm. This is a straightforward way of learning directly from
data. As can be observed in the video, desired inputs can be
specified along with their desired corresponding outputs and
these data pairs can be encoded on a specific rule. Instead of
specifying these data points in real-time moving faders, it would
be straightforward to add a functionality to the FLCTK to learn
them directly from a file on disk.

TABLE 6 | Fuzzy rules used in the granular synthesis example.

Inputs Outputs

Rule X Y Pulse interval Buffer offset Duration Sample inc. Gain mult.

1 LOW – HIGH MEDIUM LOW HIGH MEDIUM

2 MEDIUM – HIGH MEDIUM – LOW LOW

3 HIGH – LOW LOW LOW HIGH LOW

4 – LOW MEDIUM HIGH HIGH – HIGH

5 – MEDIUM LOW LOW LOW LOW LOW

6 – HIGH LOW LOW HIGH MEDIUM HIGH

7 LOW HIGH LOW MEDIUM LOW HIGH MEDIUM

8 MEDIUM HIGH HIGH MEDIUM MEDIUM LOW HIGH

9 HIGH HIGH HIGH HIGH HIGH HIGH HIGH

All rules have the same weight and are connected by AND operators. A “–” indicates that the value of the fuzzy variable can be anything.
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FIGURE 8 | Latent space granulator example. Inputs and outputs of the fuzzy system are displayed on the right. As the latent space is explored in both the X and Y

directions, the output variables exhibit different non-linear behavior. This allows the parametric control of five synthesis parameters with only two abstract parameters.

FIGURE 9 | Screenshot of the main interface of Incerta at time 0:52. The six Gaussian curves for the control of the sound material selection and spatialization can be

seen at the bottom left. Circles on the right displays the rotation angle that is used to specify the mean value of each Gaussian curve.
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FIGURE 10 | Screenshot of the main interface of Incerta at time 3:00. The six Gaussian curves for the control of the sound material selection and spatialization can be

seen at the bottom left. Circles on the right displays the rotation angle that is used to specify the mean value of each Gaussian curve.

TABLE 7 | Input and output variables for Incerta, an acousmatic composition for

eight channels.

Input variables Output variables

Low pitch selection angle (2) Change in low pitch selection angle (1)

Middle pitch selection angle (3) Change in middle pitch selection angle (2)

High pitch selection angle (4) Change in high pitch selection angle (3)

Low spatial selection angle (5) Change in low pitch spatial angle (4)

Middle spatial selection angle (6) Change in middle pitch spatial angle (5)

High spatial selection angle (7) Change in high pitch spatial angle (6)

Time (1) Selection curve standard deviation (7)

Spatial curve standard deviation (8)

Each of the variable numbers have been assigned a number in parenthesis, as shown in

Table 8. There are seven inputs and eight outputs in totals.

6. INCERTA: AN ACOUSMATIC
MULTI-CHANNEL FUZZY COMPOSITION

Incerta is an 8-min acousmatic multi-channel composition
created in MaxMSP with the FLCTK. Incerta is a latin word
that could be translated into English as vague, in direct
relation to the ability of fuzzy logic to handle uncertain data
using vague concepts. The gist of the composition is very
simple: twenty-one separate tracks of audio are presented in
both temporal and spatial order according to a fuzzy logic
inference engine.

The fuzzy system handles both the temporal and spatial
presentation of the material across time. The twenty-one audio
tracks are separated into three different groups, according to
their pitch content, ranging from low-frequency textures to high
pitches ones. Each group is presented at a given time on a specific
spatial location.

Both the selection of individual sound files and spatial position
in an eight-speaker system are determined by the selection of a
specific Gaussian curve that specifies the amplitudes of a group
of faders, as shown in Figures 9, 10. There are three curves for
each pitch content (low, medium, and high) and three additional
curves for the circular spatial position of each group. Themean of
each curve is controlled by an angle variable in such a way that the
faders overlap circularly. The Gaussian curves can also be made
wider or thinner, and thus affecting a different number of faders,
by controlling their standard deviation.

The fuzzy system takes the rotation angle of each of the six
Gaussian curves as inputs and also a time variable that allows for
time-based behavior as time progresses. In total, there are seven
inputs to the system. The outputs of the system are the change
that each angle should experience at the next time step and two
variables that control the standard deviation of the selection and
spatial curves. This is an example of a closed feedback system,
where some of the outputs of the system affect the inputs at the
next time step.

The fuzzy variables used in this composition are described
in Table 7 and can take the following values: Very Short
(VSh), Short (Sh), Medium Short (MSh), Medium (M), Medium
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TABLE 8 | Fuzzy rules for Incerta, an acousmatic composition for eight channels.

Inputs Outputs

Rule 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

1 VSh – – – – – – Sl Sl Sl Sl Sl Sl VL VL

2 Sh – – – – – – FC FCC FCC FC FCC FC L L

3 MSh – – – – – – FCC Sl MC Sl MC Sl M M

4 M – – – – – – Sl Sl Sl Sl Sl Sl H H

5 MLa – – – – – – FC FCC FC FCC FC FCC VH VH

6 La – – – – – – FC FCC FC FCC FC FCC M M

7 VLa – – – – – – Sl Sl Sl Sl Sl Sl VL VL

8 – FCC – – – – – FC – – – FC – – –

9 – MCC – – – – – Sl – – – – – – –

10 – Sl – – – – – MC – – – – – – –

11 – MC – – – – – FC – – – – – – –

12 – FC – – – – – FCC – – – FC – – –

13 – – FCC – – – – – FC – – FCC – – –

14 – – MCC – – – – – FC – – – – – –

15 – – Sl – – – – – – – – – – – –

16 – – MC – – – – – FCC – – – – – –

17 – – FC – – – – – FCC – – FCC – – –

18 – – – FCC – – – – – MC – FC – – –

19 – – – MCC – – – – – FC – – – – –

20 – – – Sl – – – – – FCC – – – – –

21 – – – MC – – – – – MCC – – – – –

22 – – – FC – – – – – Sl – – – – –

23 – – – – FCC – – – FCC – MC MCC – – –

24 – – – – MCC – – – – – MC – – – –

25 – – – – Sl – – – – – FCC – – VH VL

26 – – – – MC – – – – – MCC – – – –

27 – – – – FC – – – – – MCC MC – – –

28 – – – – – FCC – – – – – FC – – –

29 – – – – – MCC – – – – – FC – – –

30 – – – – – Sl – – – – – FCC – VL VL

31 – – – – – MC – – – – – FCC – – –

32 – – – – – FC – FCC – – – FCC – – –

33 – – – – – – FCC – – – – – FC – –

34 – – – – – – MCC – – – – – MC – –

35 – – – – – – Sl – – – – – FC VH VH

36 – – – – – – MC – – – – – FCC – –

37 – – – – – – FC – – – – – MCC – –

All rules have the same weight and are connected by AND operators. A “–” indicates that the value of the fuzzy variable can be anything. Variable names are specified in Table 7. The

fuzzy values that the variables can take are: Very Short (VSh), Short (Sh), Medium Short (MSh), Medium (M), Medium Large (MLa), Large (La), Very Large (VLa), Fast counter-clockwise

(FCC), Medium counter-clockwise (MCC), Slow (Sl), Medium clockwise (MC), Fast clockwise (FC), Very Low (VL), Low (L), High (H), and Very High (VH).

Large (MLa), Large (La), and Very Large (VLa) for time, Fast
counter-clockwise (FCC), Medium counter-clockwise (MCC),
Slow (Sl), Medium clockwise (MC), Fast clockwise (FC) for
rotation angles and Very Low (VL), Low (L), High (H), and Very
High (VH) for standard deviations.

The rules for each system were created based on musical
criteria, as shown in Table 8. In this approach to composition,
most of the composer’s work deals with the design and tuning
of the fuzzy inference rules. Once the rules are established, the
piece unfolds in real-time as the composer specified. Rules were

designed in order. First, time dependence is established. Then,
one rule for each possible fuzzy value of each one of the inputs is
provided. This design methodology produces thirty-seven rules
in total. Of course, these rules can be tweaked and fine-tuned
to obtain specific desired behavior, but changing these rules too
much would result perhaps in a different composition.

As time progresses the state of the whole fuzzy system changes,
as it can be seen by comparing Figure 9 with Figure 10, which
corresponds to the same instance of the piece at different times,
0:51 and 3:00, respectively. The position of each of the rotating
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circles is different, resulting in a different sonic output at those
specific times. Another very interesting aspect of this approach
is that the initial point of each input variable determines a
different outcome. Even though there is some time dependence,
the fact that there are closed loops in the system results in fuzzy
outputs that are highly dependent on the initial conditions. As
this composition is based on pre-generated sonic material, this
complex behavior of the fuzzy system does not result in a totally
different piece for different starting points, but there are indeed
noticeable differences from one version to another. In this sense,
this composition does not have a unique final format, but asmany
formats as there are initial conditions, which is infinite in theory.

The fuzzy system used in this piece can produce complex
dynamic behavior, as it can be observed in the accompanying
videos of three different performances or instances of the piece.
The time evolution of each variable is distinct and the overall
behavior of the piece is not the same. This is due to the
thirty-seven inference rules encoded on the system. Videos
of each of the Incerta performances can be found in the
Supplementary Material.

7. DISCUSSION AND CONCLUSIONS

The provided examples show that the power of fuzzy systems lies
in the parallel computation of very simple rules. A mathematical
model is not needed to approximate any system, no matter how
complex it could be. Fuzzy systems are, in general, much simpler
to construct and use than other AI techniques, such as deep
neural networks. They do not require a large amount of training
or extremely large data sets. Rather, a few if-then like fuzzy
inference rules, inspired by expert knowledge or common sense,
are usually enough to develop interesting systems for musical
creation. Fuzzy systems are very suitable tools for the control of
high dimensional parameter spaces, as it could be observed from
the algorithmic composition and parametric control examples,
where five parameters could be successfully addressed with
only two control dimensions. Also, because fuzzy systems can
approximate any non-linear process, it is easy to create complex
behavior, something highly valuable in creative endeavors.

Fuzzy logic is also a powerful way to implement non-
linear mappings and intuitive control of non-intuitive synthesis
parameters. However, one of the weaknesses of a fuzzy logic
approach to parametric composition would be the time required
to appropriately design adequate rules for the inference system.
In engineering control applications, these rules are derived from
expert knowledge or machine learning processes, where the rules
are derived from trained data. In artistic applications, these rules
constitute the heart of the underlying parameter mapping and
it becomes really hard to select appropriate rules for a specific
desired output when the parameter space is highly dimensional,
which is often the case. Rule specification becomes an art form
in itself, and it requires time and the development of expert
knowledge specific to this kind of composition. In creative
applications, when designing the fuzzy variables and rules, it is
not necessary to worry about stability or controllable issues, the
items on which control engineers spend most of their time. On
the contrary, instability could be something very appealing to
a composer.

The FLCTK constitutes a powerful and simple approach to
the compositional control of computer music, as demonstrated
by the examples described in this article. It has been successfully
implemented in a variety of situations: algorithmic composition,
particle-based synthesis, and granular synthesis control, and in
the composition of a whole piece entitled Incerta. Overall, the
FLCTK is a simple way of designing and implementing fuzzy
logic inference systems inside MaxMSP. Its compatibility with
MATLAB’s fuzzy logic toolbox also allows this environment to
be used in the design and test stages of the fuzzy models.

Finally, we would like to encourage the use of fuzzy systems
as an alternative to the current trend of using deep learning
and generative models for musical creation. Both approaches
can complement each other. However, one big difference
between these approaches is knowledge representation. In neural
networks, it is sometimes very hard to understand what the
knowledge captured by the network is. In fuzzy logic, it is very
clear what is being learned and represented as all knowledge
is encoded in the rules of the system, even if the rules were
learned directly from data. This is a major difference between
these approaches, and for some types of music, a fuzzy approach
could be better suited than a purely data-based one.
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