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Addressing the heterogeneity of both the outcome of a disease and the treatment response
to an intervention is amandatory pathway for regulatory approval ofmedicines. In randomized
clinical trials (RCTs), confirmatory subgroup analyses focus on the assessment of drugs in
predefined subgroups, while exploratory ones allow a posteriori the identification of subsets of
patients who respond differently. Within the latter area, subgroup discovery (SD) data mining
approach is widely used—particularly in precision medicine—to evaluate treatment effect
across different groups of patients from various data sources (be it from clinical trials or real-
world data). However, both the limited consideration by standard SD algorithms of
recommended criteria to define credible subgroups and the lack of statistical power of
the findings after correcting for multiple testing hinder the generation of hypothesis and their
acceptance by healthcare authorities and practitioners. In this paper, we present theQ-Finder
algorithm that aims to generate statistically credible subgroups to answer clinical questions,
such as finding drivers of natural disease progression or treatment response. It combines an
exhaustive search with a cascade of filters based on metrics assessing key credibility criteria,
including relative risk reduction assessment, adjustment on confounding factors, individual
feature’s contribution to the subgroup’s effect, interaction tests for assessing between-
subgroup treatment effect interactions and tests adjustment (multiple testing). This allows
Q-Finder to directly target and assess subgroups on recommended credibility criteria. The
top-k credible subgroups are then selected, while accounting for subgroups’ diversity and,
possibly, clinical relevance. Those subgroups are tested on independent data to assess their
consistency across databases, while preserving statistical power by limiting the number of
tests. To illustrate this algorithm, we applied it on the database of the International Diabetes
Management Practice Study (IDMPS) to better understand the drivers of improved glycemic
control and rate of episodes of hypoglycemia in type 2 diabetics patients. We compared
Q-Finder with state-of-the-art approaches from both Subgroup Identification and Knowledge
Discovery in Databases literature. The results demonstrate its ability to identify and support a
short list of highly credible and diverse data-driven subgroups for both prognostic and
predictive tasks.
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1. INTRODUCTION

Searching for subgroups of items with properties that differentiate
them from others is a very general task in data analysis. There are a
large number of methods for finding these subgroups that have
been developed in different areas of research. Depending on the
field of application, the algorithms considered differ in particular
on the metrics used to qualify the groups of interest. The field of
medicine is one of those where the search for subgroups has had
the most applications. Indeed, the considerable heterogeneity in
disease manifestation and response to treatment remains a major
challenge in medicine. Understanding what drives such
differences is critical to adjust treatment strategies, guide drug
development, and gain insights into disease progression.

Targeting certain patient populations that would benefit from
a particular treatment is becoming an important goal of precision
medicine (Loh et al., 2019; Korepanova, 2018). Subgroup analysis
(SA) can be used to identify the drivers of this heterogeneity.
While confirmatory analyses focus on the assessment of
predefined subgroups, exploratory analyses rely on identifying
the most promising ones. Exploratory SA is itself divided into two
types of approaches, depending on whether it is hypothesis-based
or data-driven. In the latter, the analysis is called subgroup
discovery (SD). It is widely used to evaluate treatment effect
across different groups of patients from various data sources—be
it from clinical trials, or real world data. Demonstrating a
response to an intervention is a mandatory pathway for
regulatory approval of medicines. However, both the limited
consideration by standard algorithms of recommended criteria
to assess subgroups credibility, or the findings’ lack of statistical
power after correcting for multiple testing, hinder the hypothesis
generation process and the acceptance of such analyses by
healthcare authorities and practitioners (Mayer et al., 2015). In
this paper we present Q-Finder, which draws from two families of
approaches: the first is Subgroup Identification (SI) and the
second is Knowledge Discovery in Databases (KDD).

In the sequel of this section, we first place SD in the context of SA
used in clinical studies.We then detail the different SA tasks in clinical
research. More specifically, we propose a new classification of SD
tasks in a wider context including both SI and KDD which supports
presenting a state-of-the-art of SD approaches. We conclude this
section by presenting the limits of SD algorithms in the context of
clinical research. In Section 2, we describe the Q-Finder algorithm
that was designed to address the main limitations of state-of-the-art
SD algorithms. In Section 3, we describe the International Diabetes
Management Practices Study (IDMPS) database and perform
experiments to compare four different algorithms, namely, SIDES
(Lipkovich andDmitrienko, 2014), Virtual Twins (Foster et al., 2011),
CN2-SD (Lavrač, 2004), and APRIORI-SD (Kavsek and Lavrac,
2006) on either predictive or prognostic tasks. In Section 4, we
discuss the results and the differences betweenQ-Finder and state-of-
the-art algorithms. The last section is dedicated to the conclusion and
perspectives.

1.1. Subgroup Analysis in Clinical Research
Randomized Clinical Trials (RCTs) aim to test predefined
hypotheses and answer specific questions in the context of
clinical drug development. Essentially designed to demonstrate
treatment efficacy and safety in a given indication using a limited
number of patients with homogeneous characteristics, RCTs are
performed in heavily controlled experimental conditions in order
to maximize chances to obtain results with sufficient statistical
power throughout successive trials. RCTs are the gold standard
for evaluating treatment outcomes, although real-life studies can
reveal mismatches between efficacy and effectiveness (Saturni
et al., 2014). Conversely, Real-World (RW) Data (electronic
medical records, claims data, and registries) are mainly
generated for administrative purposes, going beyond what is
normally collected in clinical trial programs, and represents
important sources of information for healthcare decision makers.

In both RCT and RW studies, SA are used to test local effects,
for instance, to account for the heterogeneity in the response to
treatment. In particular in RCT, SA “has become a fundamental
step in the assessment of evidence from confirmatory (Phase III)
clinical trials, where conclusions for the overall study population
might not hold” (Tanniou et al., 2016). SA include both
confirmatory analyses, whose purpose is to confirm predefined
hypotheses, and exploratory ones, which aim to generate new
knowledge and are exploratory in nature (Lipkovich et al., 2016).
When considering a set of patients included in a database, a
subgroup of patients is any subset characterized by its extension
(all the patients in the subset, e.g., Patient’s ID in {“12345”,
“45678”}) and its intension (a description that characterizes the
patients in the subset: e.g., “All the adult women”). In SA, a typical
type of subgroups of interest are those whose extension
corresponds to patients who respond differently to a new
treatment (Zhang et al., 2018). A formal definition of
subgroups can be found in Lipkovich et al. (2016).

1.2. The Different Subgroup Analysis Tasks
in Clinical Research
A key issue in SA in general is to assess and report its results
(Rothwell, 2005). In clinical trials, this assessment is critical and
depends on the precise purpose of the study. There are different
ways to distinguish the purpose of using SA in clinical research. A
first distinction relates to the general purpose of the analysis that
can be either aimed at studying treatment efficacy or safety, on
either a priori defined groups or a posteriori groups. This
dichotomous classification is depicted in Figure 1. In the
literature, pre-hoc analysis is most-often called confirmatory
analysis, whereas post-hoc analysis is called exploratory
analysis (Lipkovich et al., 2016).

More recently, Lipkovich et al. (2016) have refined this
classification into four different tasks:

(A) Confirmatory subgroup analysis: refers to statistical
analysis mainly aimed at testing a medical hypothesis
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under optimal setting in the absence of confounding factors
while strongly controlling the type 1 error rate (using the
Family-Wise Error Rate) in Phase III clinical trials with a
small number of prespecified subgroups.

(B) Exploratory subgroup evaluation: This refers to statistical
analysis aimed at weakly controlling the type 1 error rate
(using the False Discovery Rate) of a relatively small
number of prespecified subgroups that focuses mostly on
“treatment-by-covariate interactions and consistency
assessments”.

(C) Post-hoc subgroup evaluation: refers to non-data-driven
statistical post-hoc assessments of the treatment effect across
small sets of subgroups that include responses to regulatory
inquiries, analysis of safety issues, post-marketing activities

in Phase IV trials, and assessment of heterogeneity in multi-
regional studies.

(D) Subgroup discovery: refers to statistical methods aimed at
selecting most promising subgroups with enhanced efficacy
or desirable safety from a large pool of candidate subgroups.
These post-hoc methods employ data mining/machine
learning algorithms to help inform the design of future trials.

We propose a decision tree to represent this second
classification where the criteria to distinguish Pre-hoc analysis
is the strength of type 1 error control (strong or weak
respectively), while for Post-hoc analysis, the explicit use of
the collected data (hypothesis-driven or data-driven) is
considered (see Figure 2).

FIGURE 1 | A classification of SA tasks distinguishing the confirmatory analyses (left) from the exploratory ones (right).

FIGURE 2 | Hierarchical tree representing the two layers classification of SA tasks and criteria used.
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The sequel of this paper is concerned with exploratory analysis
that are based on Data Mining approaches and known as SD. SD
has been used in a large number of applications in the medical field
and data analysis of randomized clinical trials (Sun et al., 2014).

1.3. Subgroup Discovery: Two Cultures
Two cultures related to subgroup discovery can be distinguished
in the literature. The first one is deeply rooted in medical data
analysis, biostatistics, and more specifically in the context of drug
discovery where both treatments arms and the outcome are key to
the analysis. In this domain-specific context (Lipkovich et al.,
2016; Lipkovich et al., 2018), that includes either or both
candidate covariates and treatment-by-covariate interactions,
SD algorithms search either for:

• a global modeling across the entire covariate space (e.g.,
Virtual Twins (Foster et al., 2011), penalized logistic
regression, FindIt (Imai et al., 2013), and Interaction
Trees (Su et al., 2009) which extends CART to include
treatment-by-covariate interactions);

• a local modeling that focuses on identifying specific regions
with desirable characteristic (e.g., SIDES (Lipkovich and
Dmitrienko 2014), PRIM (Polonik and Wang, 2010), and
TSDT (Battioui et al., 2014)).

The second culture of SD is rooted in the Data Mining and
KDD community and applies to any kind of data. The related
fields include association rules, set mining, contrast sets, and
emerging patterns all relating to the notion of descriptive
induction (Fürnkranz et al., 2012).

Although both cultures share common requirements and issues,
their vocabulary differs and are practically mutually exclusive in the
SD literature. We propose a hierarchical tree representing both
cultures and their main associated algorithms (see Figure 3). Since
the Q-Finder approach we propose in this paper inherits from both
cultures, it is worthwhile giving an account of both of them.

In the first culture, where SD is also often referred to as SI
(Ballarini et al., 2018; Chen et al., 2017; Dimitrienko and
Lipkovitch 2014; Huling and Yu, 2018; Lipkovich et al., 2017;
Xu et al., 2015; Zhang et al., 2018), there is a key distinction
between prognostic factors (supporting identification of patients
with a good or poor outcome, regardless of the treatment
assignment) and predictive factors (supporting identification of
patients’ response to the treatment) (Adolfsson and Steineck,
2000).

In this culture, SD algorithms1 can be distinguished depending
on whether they search for prognostic and/or predictive factors:
the ones that can only look for predictive factors (Quint
(Dusseldorp et al., 2016), SIDES, Virtual Twins, and
Interaction trees), the ones that only look for prognostic
factors (PRIM) and CART (Hapfelmeier et al., 2018)), and the
ones that can look for both prognostic and predictive factors
(STIMA (Dusseldorp, et al., 2010), and MOB (Zeileis et al.,
2008)). The key measures to assess the quality of the SD
results in this culture are p-value, type 1 errors, False-
Discovery Rate (Lipkovich et al., 2016; Lipkovich et al., 2018).

In the second culture, SD is not associated with a specific
sector such as clinical research. On the contrary, SD is defined as
“given a population of individuals and a property of those
individuals that we are interested in, [the finding of]
population subgroups that are statistically the ‘most
interesting’, for example, are as large as possible and have the
most unusual statistical (distributional) characteristics with
respect to the property of interest” (Fürnkranz et al., 2012).
More generally, SD “is a type of data mining technique that
supports the identification of interesting and comprehensible

FIGURE 3 | Hierarchical tree representing the SD approaches in both biomedical data analysis and data mining cultures. The references under the boxes
correspond to representative algorithms of each kind.

1We focus here on subgroup discovery algorithms which, unlike classification
algorithms, meet the objective of discovering interesting population subgroups
rather than maximizing the accuracy of the classification of the induced set of rules
(Lavrač et al., 2004).
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associations in databases, confirming hypotheses and exploring
new ones” (Atzmueller, 2015). These associations are in the form
of a set of rules represented as Subgroup → Target, where Target
is the property of interest (e.g., Hypoglycemia � Yes) and
Subgroup is a conjunction of attribute-selector-value triplets
(e.g., Age> 18 and Sex � F). SD belongs to the wider domain
of Association Rule mining—this explains why many algorithms
bear a name formed from an association rule algorithm and an SD
extension —and differs from classical supervised learning as the
goal is not to find rules that best predict the target value of
unknown observations but rather best support describing groups
of observations that when satisfying the condition of a rule also
satisfy the target (Fürnkranz et al., 2012).

In this second culture the SD process consists in three main
phases: candidate subgroup generation, subgroups evaluation and
ranking, and subgroups prunning (e.g., top-k pruning) (Helal,
2016). The key issues being more related to the algorithmic search
for subgroups than their evaluation. This includes the search
strategy (be it beam [SD, CN2-SD, and Double-Beam-SD],
exhaustive [APRIORI-SD and Merge-SD], or genetic [SD-IGA
and SGBA-SD]), stopping criterion (minsup, minconf, maxsteps,
etc.) (Valmarska et al., 2017), pruning technique (constraint,
minimum support or coverage) and quality measures
(confidence, support, usualness [CN2-SD, APRIORI-SD], etc.).

Recent theoretical and empirical analyses have elucidated
different types of methods to select algorithms suitable for
specific domains of application (Helal, 2016). Applying such
algorithms to SA requires considering the outcome as the
variable of interest. Nevertheless, the treatment is not
explicitly considered as a special variable and dozens of
quality measures exist (number of rules, number of variables,
support, confidence, precision, interest, novelty, significance,
false positive, specificity, unusualness (WRAcc), etc.) (Herrera,
2010).

We will refer to Subgroup Discovery in the context of clinical
Subgroup Identification as SI-SD and to Subgroup Discovery in
the context of Knowledge Discovery in Database as KDD-SD and
compare them with the Q-Finder approach. There is an extensive
literature comparing algorithms belonging to each culture
independently (e.g., Doove et al., 2013; Zhang et al., 2018; Loh
et al., 2019), but to our knowledge, they are not compared when
they come from two different cultures.

1.4. Limits of Current Subgroup Discovery
Algorithms for Clinical Research
1.4.1. Lack of Statistical Power and Hypothesis
Generation
As stated by Burke et al. (2015) “the limitations of subgroup
analysis are well established —false positives due to multiple
comparisons, false negatives due to inadequate power, and
limited ability to inform individual treatment decisions
because patients have multiple characteristics that vary
simultaneously”. Controlling such errors is a problem: a
survey on clinical industry practices and challenges in SD
quoted the lack of statistical power to test multiple subgroups
as a major challenge (Mayer et al., 2015). As a consequence, SI-SD

algorithms often fail to detect any “statistically significant”
subgroups.

To control for multiple testing errors SI-SD algorithms often
rely on approaches that drastically restrict the number of
explored candidate subgroups at the expense of hypotheses
generation, usually by using recursive partitioning (Doove
et al., 2013). Recursive partitioning approaches could miss
emerging synergistic effects, defined as subgroups associated to
the outcome, whose individual effects (related to each attribute-
selector-value triplet) are independent from the outcome
(Hanczar et al., 2010). As such, individual effects
combinations would not be selected in tree nodes. Equally,
recursive partitioning may also miss optimal combinations of
attribute-selector-value triplets, as an optimal selector-value for a
given attribute is only defined with relation to previously defined
attribute-selector-value triplets2 (Hanczar et al., 2010). Therefore,
subgroups in output are defined by a combination of variables for
which thresholds are not necessarily the optimal ones (with
respect to the metrics of interest to be optimized).
Furthermore, search space restriction strategies favor the
detection of the strongest signals in the dataset, that are often
already known and/or redundant from each other.

Finally, pure beam search strategies could miss relevant
subgroups as they try to optimize the joint, that is, global,
accuracy of all leaves, that is a tree with the most
heterogeneous leaves. Consequently, when limiting the
complexity (i.e. subgroups length), we can miss interesting
local structures in favor of the global picture3 (see Section 6
in Supplementary Materials that shows an example where beam
search strategy using a decision tree misses relevant subgroups).

On the contrary, KDD-SD approaches support the exploration
of much wider search spaces at the expense of accuracy, as they do
not in general control for type 1 errors (be it strong or weak).

1.4.2. Insufficient Credibility and Acceptance of
Subgroups
The “Achille’s heel” of SD is the question of credibility of its
results. Several meta-analyses have demonstrated that discovered
subgroups rarely lead to expected results and have proposed
criteria to assess the credibility of findings (Rothwell, 2005). Such
credibility metrics are key to support confidence in subgroups
and their acceptance by regulatory agencies and publication
journals. Several credibility metrics have been provided and
recommended (Rothwell 2005; Dijkman et al., 2009; Sun et al.,
2010) such as the type of measures of association (relative risk,
odds ratio), correction for confounders, correction for multiple
testing, as well as treatment-covariate interaction tests.

2Let’s assume that a recursive partitioning algorithm has defined BMI > 25 as the
optimal attribute-selector-value triplet on an objective function to be optimized for
patients with Age> 18 (the latter being the first triplet to be identified by the
algorithm). One can assume that better selector-values could have been obtained
for this combination of attributes, to generate the optimal combination of these
attributes on the objective function (e.g., Age> 21 & BMI > 20).
3Further explanation here: http://www.realkd.org/subgroup-discovery/the-power-
of-saying-i-dont-know-an-introduction-to-subgroup-discovery-and-local-
modeling/
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SI-SD approaches use credibility metrics suited to clinical
analyses. However, most of them only provide and consider in
their exploration a limited number of credibility metrics (e.g.,
hypothesis testing p-value), compared to what is recommended in
the literature. Moreover, such metrics are rarely consensual.
Equally, the subgroups’ generation process (that defines
optimal attribute-selector-value triplets combination) mostly
relies on the optimization of a limited number of criteria, and
is thus not directly driven by all credibility metrics that will be
used for the clinical assessment of the subgroups at the end.

On the other hand, KDD-SD can provide a considerable range
of credibility metrics as there is no consensus about which quality
measures to use (Herrera, 2010), such as WRAcc, Lift,
Conviction, Mutual information (Hahsler et al., 2011).
However these metrics are seldom used in clinical analyses,
hindering their use in the medical field.

Another issue hindering the adoption of SD approaches lies in
the comprehensibility of the algorithm itself. This often
underestimated issue is an obstacle for convincing clinical
teams and regulatory agencies of the relevance and reliability
of SD approaches.

2. Q-FINDER’S PIPELINE TO INCREASE
CREDIBLE FINDINGS GENERATION

In this section we present an approach that aims at combining
some of the advantages of both SI-SD and KDD-SD cultures,
while dealing with limitations observed in current SD algorithms
(see Section 1.4). To this end, we introduce Q-Finder, which
relies on a four-steps approach (summarized in Figure 4):
exhaustive subgroup candidates generation, candidate
subgroups assessment on a set of credibility metrics, selection
of a limited number of most promising subgroups that are then
tested during the final step.

For further details, an in-depth discussion of Q-Finder is also
proposed in Section 14 of supplementary materials. This

approach has been applied in several therapeutic areas, with
published examples available (Nabholtz, 2012; Eveno, 2014;
Amrane et al., 2015; Adam et al., 2016; Dumontet et al., 2016;
Gaston-Mathe, 2017; Dumontet et al., 2018; Rollot, 2019; Zhou
et al., 2018; Ibald-Mulli, 2019; Zhou et al., 2019; Alves et al., 2020;
Mornet, 2020).

2.1. Basic Definitions: Patterns, Predictive,
and Prognostic Rules
Numerous formalizations of KDD-SD have been given in the
literature. We will briefly introduce some basic definitions of
database, individuals, basic patterns, complex patterns, subgroup
complexity, and subgroup description related to the ones
introduced by Atzmueller (2015). A database is formally
defined as D � (I,A), a set I of N individuals and a set A of K
attributes. We will only distinguish nominal and numerical
attributes. For nominal attributes, a basic pattern (ai � vi,j) is a
Boolean function that is true if the value of attribute ai ∈ A is
equal to vi,j in the domain of ai for a given individual of I. For a
numerical attribute (be it real or integer) ai, both basic patterns
(ai ≥ vi,j ) and (ai ≤ vi,j) can be defined for each value vi,j in the
domain of ai. The associated Boolean function is defined
similarly. The set of all basic patterns is denoted by Σ.

A conjunctive language is classically considered to describe
subgroups. An association rule (X→Y) is composed of a
complex pattern (also called itemset) X and a basic pattern Y,
where X is called antecedent (or left-hand-side (LHS) or
Subgroup) and Y the consequent (or right-hand-side (RHS) or
Target). A complex pattern CP is described by a set of basic
patterns CP � {BP1, . . . ,BPk, . . .BPC},BPk ∈ Σ. It is logically
interpreted as a conjunction of basic patterns. In other words,
a complex pattern CP represents the body of a rule
BP1∧ . . .∧BPC . In Q-Finder, its length C corresponds to the
complexity of the associated rule. The set of observations
covered by a complex pattern CP is called the extension of the
subgroup, i.e. the individuals for which CP is true {x ∈ I; CP
is true for x}. In this formalism, the set of all possible association

FIGURE 4 | Q-Finder works in 4 main stages: an exhaustive generation of candidate subgroups, a ranking of candidate subgroups via an evaluation of their
empirical credibility, a selection of the best candidates (taking into account the redundancy between subgroups), and then an assessment of subgroups’ credibility on
one or more test datasets.
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rules is included in the powerset of Σ although many subsets are
not considered because their extension is by construction empty
(e.g., ai ≥ vi,j∧ai ≤ vi,k when vi,j > vi,k). Moreover, this set of all
subgroups can be partially ordered in a lattice structure
(Ganascia, 1993). We will not rely on such lattice structure
because the length of subgroups (i.e. their complexity) is
sufficient to partially order the set of generated candidates in
subsets.4

In SI-SD, many databases include information about
treatment distinguishing different individuals grouped in arms.
This notion is critical to distinguish two types of rules. The
prognostic rules are not related to a treatment effect on a given
outcome, unlike the predictive rules.

These two main types of rules can be summarized as follows:
Prognostic rule: “SUBGROUP” → “TARGET”
Predictive rule: “SUBGROUP” where “TREATMENT” →

“TARGET”

2.2. Preprocessing and Candidate
Subgroups Generation in Q-Finder
In Q-Finder, to control the size of the set of basic patterns |Σ|, all
numerical attributes are systematically discretized in bins. A
hyperparameter #Bins sets the maximum number of values vi,j
of any numeric attribute ai (default value: 10). If this number is
above #Bins, the attribute ai is quantized using a discretization
method DiscretizationMethod (see algorithm 1 line 8). Different
methods exist for quantization, the default one being equal-
frequency binning. In the same way, the number of distinct
values for a given nominal attribute might be bounded by the
hyperparameter #Cats (default value5: ∞). If the number of
modalities is above this threshold, then a reduction method
(ReductionMethod) may be used (by default: use the
(#Cats − 1) most frequent values of ai and a create a value
“other” for all the remaining ones). Let us call Kc the number
of nominal attributes and Kb the number of numerical attributes.
After this preprocessing step, the number of basic patterns |Σ| is
bounded and we have the relation: |Σ|≤ 2*Kb*#Bins + Kc*#Cats.

Given a set of basic patterns Σ, we call “candidate generation”
the search procedure that generates the subgroups (i.e. complex
patterns conjunction of basic ones). The number of complex
patterns of complexity C is bounded by the number of

C-combination of Σ (i.e. the binomial coefficient
|Σ|
C
). There is

extensive literature in KDD-SD on the type of exploration of these
complex patterns (Fürnkranz et al., 2012). Experiments have
shown that the exhaustive search based methods perform
better than other methods which prune the search before
evaluation (Helal, 2016). This is particularly true when the
problem size is reasonable (i.e. a few thousand individuals)
which is mostly the case in SD. The Q-Finder Candidate
generation is straightforward; it outputs a subset of all
C-combinations of Σ (with C ∈ [1;Cmax]) as described below in
Algorithm 1.

Algorithm 1: Basic patterns and candidate subgroup
generation of complexity ≤ Cmax

1: Input: D, #Bins, #Cats, Cmax maximum complexity of
generated subgroups, ReductionMethod, DiscretizationMethod

2: Σ � {} # Set of basic patterns
3: For each nominal attribute ai do

4: If #valueof (ai) > #Cats then
5: Reduce the number of values of ai to #Cats using

ReductionMethod
6: For each vi,j do Σ � Σ∪{(ai � vi,j)}

7: For each numerical attribute ai
8: If #valueof (ai) > #Bins then
9: Discretize the values of ai in #Bins using

DiscretizationMethod
10: For each vi,j do Σ � Σ∪{(ai ≥ vi,j), (ai ≤ vi,j)}

11: G � {} # Set of generated subgroups
12: For each combination s of 1 to Cmax elements of Σ do

13: If one attribute ai appears twice or more in s or if
the extension of s is empty by construction then

skip
14: else G � G∪{s}

15: Output: G the set of generated candidate subgroups of
length ≤ Cmax

In practice the Q-Finder algorithm not only supports
constructing left-bounded and right-bounded intervals but also
supports bounded intervals depending on the number of basic
patterns (one or two) associated to a given numerical attribute. If
bounded intervals are considered, step 13 of the algorithm becomes
“If one attribute ai appears twice or more in swith the same selector
or if the extension of s is empty by construction, then skip”.

2.3. Empirical Credibility of Subgroups
Q-Finder’s candidates generation step may potentially produce a
very large number of subgroups. Because of its exhaustive strategy,
it produces a number of subgroups which grows exponentially
with complexity. Dealing with a massive exploration of database is
the challenge of any KDD-SD algorithm be it exhaustive or
heuristic, as the number of computed statistical tests may
induce a high risk of false positives, that needs to be mitigated.

Q-Finder addresses this challenge by only selecting a subset of
candidate subgroups and testing them on independent data, to
assess the replicability of the results while controlling the number
of tests (and thus the type 1 error). This strategy requires to
address two issues:

• a way of evaluating the empirical credibility of subgroups, in
order to rank them from most to least promising and

• a top-k selection strategy, in order to select a set of
subgroups that seem most credible and will be tested on
an independent dataset.

2.3.1. Credibility Metrics
The notion of credibility often appears in the literature on
subgroup analysis (Dijkman et al., 2009; Sun et al., 2010; Sun

4A methodology to further order the subgroups is introduced in Section 2.3.2
5In this way, no reduction is done by default.
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et al., 2012; Burke et al., 2015; Schnell et al., 2016) described
according to different criteria. In particular, Oxman and Guyatt
(1992) detail seven existing criteria to help clinicians assess the
credibility of putative subgroup effects on a continuum from
“highly plausible” to “extremely unlikely”. Sun et al. (2010)
suggest four additional credibility criteria and re-structure a
checklist of items addressing study design, analysis, and context.
In the present context, credibility is related to a sequence of a priori
ordered statistical metrics that are progressively increasing the
confidence (credibility) of a given subgroup. The seven criteria
described below are aligned with the clinical domain endpoints
(Dijkman et al., 2009; Sun et al., 2010). Using these criteria when
selecting the top-ranked subgroups ought to both promote the
finding of credible subgroups and facilitate their acceptance by
clinicians, agencies, and publication journals.

Drawing from this literature, continuous metrics to measure
subgroups’ credibility are used in Q-Finder (more details on
literature’s recommendations in relation to Q-Finder metrics in
Section 14.4 of supplementary materials). Several credibility
criteria are defined, each composed of both a continuous
metric and a minimum or maximum threshold (which may be
modified by the user):

(1) Coverage criterion: The coverage metric is defined by the
ratio between the subgroup’s size and the dataset’s size. This
allows to only consider the subgroups that correspond to
large enough groups of patients to be clinically relevant. It
can be compared to defining a minimum support of the
antecedent of a rule in the KDD-SD literature. Default
minimum threshold for coverage is 10%.

(2) Effect size criterion: As recommended by both Dijkman
et al. (2009) and Sun et al. (2010), Q-Finder’s exploration
relies by default on relative risk reductions, which differ
according to the probability distribution of the outcome
(ODDS-RATIOS for discrete or negative binomial
distributions, RISK-RATIOS for normal or Poisson
distributions, HAZARD RATIOS for survival analysis).
Those metrics allow to quantify the strength of the
association between the antecedent (the subgroup) and
consequent (the target) of the rule. Relative risk
reductions remain in most situations constant across
varying baseline risks, in comparison to absolute risk
reductions. In the KDD-SD literature, this continuous
metric is usually the CONFIDENCE (i.e. how often the target
is true among the individuals that satisfy the subgroups).
The effect size metric may vary depending on whether one is
looking for predictive or prognostic factors. When searching
for prognostic factors, Q-Finder only considers the effect
size measuring the subgroup’s effect (default minimum
threshold for effect size is 1.2). When searching for
predictive factors, Q-Finder considers simultaneously two
effect sizes: the treatment effect within the subgroup and the
differential treatment effect, defined as the difference in
treatment effect for patients inside the subgroup versus
outside the subgroup (see Supplementary Tables S7 and
S8 for an example with odds-ratios). When generating
predictive factors, one can consider the differential

treatment effect on its own, or in combination with the
treatment effect within the subgroup. The latter case allows to
identify subgroups in which the treatment effect is both
positive and stronger than outside the subgroup (default
thresholds are 1.0 for the treatment effect within the
subgroup and 1.2 for the differential treatment effect).

(3) Effect significance criterion: the association between each
subgroup and the target is assessed using a nullity test from
a generalized linear model. For the identification of
predictive factors, an interaction test is performed to
assess between-subgroup treatment effect interactions as
recommended by Dijkman et al. (2009). A threshold
(typically 5%) is used to define when the p-value related
to each effect size metric is considered significant.

(4) Basic patterns contributions criteria: Basic patterns
contributions to the subgroup’s global effect are
evaluated through two sub-criteria: the absolute
contribution of each basic pattern and the
contributions ratio between basic patterns.
The absolute contributions of a basic pattern is defined
by the improvement in effect when this basic pattern is
present, compared to the subgroup’s effect when this
basic pattern is absent. Each basic pattern contribution
should be above a defined threshold (by default 0.2, 0 and
0.2 respectively for the subgroup’s effect, the treatment
effect within the subgroup and the differential treatment
effect), thus ensuring that each increase in subgroup’s
complexity goes along with some gain in effect and
therefore in interest.
The contributions ratio between basic patterns is the ratio
between the maximum absolute contribution and the
minimum absolute contribution. A maximum
threshold (by default 5 for the subgroup’s effect or the
differential treatment effect) is set for this criterion, thus
ensuring that basic patterns’ contributions to the
subgroup’s effect are not too unbalanced. Indeed, if a
basic pattern bears only a small portion of the global
subgroup’s effect, then the global effect’s increase is not
worth the complexity’s increase due to this pattern’s
addition.

(5) Effect size criterion corrected for confounders: the strength
of the association is assessed through relative risk reductions
(as in criterion 2) while correcting for confounding factors
using a generalized linear model. Added covariates are known
confounding factors of the outcome, which are susceptible to
be unbalanced between patients within and without each
subgroup, as well as between treatment arms for predictive
factors identification tasks (Dijkman et al., 2009; Sun
et al., 2010). As for criterion 2, adjusted relative risks
ought to be above a given threshold (same as for
criterion 2).

(6) Effect significance criterion corrected for confounders: as
for the effect significance criterion (criterion 3) and using
the same model as in criterion 5, a threshold (typically
5%) is used to define when the p-value related to each
effect size metric corrected for confounders is considered
significant.
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(7) Effect adjusted significance criterion corrected for
confounders: the p-value computed in criterion 6 is
adjusted to account for multiple testing, as
recommended by Dijkman et al. (2009). This procedure
relies on a Bonferroni or a Benjamini-Hochberg correction
to control for type 1 errors. As for criterion 6, a threshold is
used to determine whether the p-value remains significant
after multiple testing correction (typically 5%)

These seven credibility metrics are at the core of Q-Finder.
However, they can be further extended by other measures of
interest to better fit each research question.

2.3.2. Aggregation Rules and Subgroups Ranking
Aggregation rules are defined to discriminate subgroups
according to a set of criteria and therefore to help select the
most interesting and/or promising ones for each research
question. This is a key concept of Q-Finder, as the goal is to
select a set of “top” subgroups before testing them on an
independent dataset, whether or not they pass all credibility
criteria. In practice, ranking subgroups into aggregation ranks
is helpful when no subgroup passes all credibility criteria, and we
need to look into lower aggregation ranks to select the most
promising subgroups. This approach contrasts with most SI-SD
algorithms, where outputs are only subgroups passing all
predefined indicators, hindering the generation of hypotheses
if these are difficult to achieve.

To this end, a set of credibility criteria is parameterized by the
user, depending on the desired properties of the searched
subgroups (see Section 2.3.1). Q-Finder computes each metric
for each of the candidate subgroups of complexity C ≤ Cmax and
verifies if the associated thresholds are met. A vector of Boolean
can thus be associated to each subgroup depending on which
thresholds are met, and are used to order the candidate
subgroups, according to prespecified aggregation rules.

By default, Q-Finder prioritizes subgroups that meet the
following credibility criteria: subgroups with a minimal value
of coverage (coverage criterion), defined by basic patterns that
sufficiently contribute to the subgroup’s effect (basic patterns
contribution criteria), with a minimal level of effect size adjusted
for confounding factors6 (effect size criterion corrected for
confounders) and adjusted p-values for multiple testing below
a given level of risk (effect adjusted significance criterion
corrected for confounders). Please note that the above-
mentioned effect could either be the subgroup’s effect size (for
prognostic factors) or the treatment effect within the subgroup

and/or the differential treatment effect (for predictive factors).
Aggregation rules are the following (from least to most stringent):

• Rank 1: subgroups that satisfy the coverage criterion;
• Rank 2: subgroups of rank 1 that also satisfy the effect size

criterion;
• Rank 3: subgroups of rank 2 that also satisfy the basic

patterns contribution criteria;
• Rank 4: subgroups of rank 3 that also satisfy the effect

significance criterion;
• Rank 5: subgroups of rank 3 or 4 that also satisfy the effect

criterion corrected for confounders;
• Rank 6: subgroups of rank 5 that also satisfy the effect

significance criterion corrected for confounders;
• Rank 7: subgroups of rank 6 that also satisfy the effect

adjusted significance criterion corrected for confounders.

These aggregation rules can be visualized through a decision
tree (see Supplementary Figure S8). One can notice that
subgroups with an odds-ratio adjusted for confounders but
not significant (rank 5) are ranked before subgroups with
significant odds-ratios (not adjusted for confounders, rank 4)
for hypotheses generation. This ranking is consistent with
favoring adjusted odds-ratios with a lack of statistical power to
potential biased estimates. As well as the possibility of adjusting
the list of parameters, the order of priority between parameters
can also be changed to take into account different priorities.

In addition, a continuous criterion is chosen to sort subgroups
of the same aggregation rank. Classically, the criterion called
Effect significance criterion corrected for confounders is preferred.
This is consistent with recommendations by Sun et al. (2010)
that state that the smaller the p-value, the more credible the
subgroup becomes. In case of a tie, additional criteria can be
used to determine the final ranking, such as the effect size
criterion corrected for confounders, to favor subgroups with
stronger effect sizes. This ranking procedure is summarized
in algorithm 2.

Algorithm 2: Ranking candidate subgroups

Input: G the list of candidate subgroups of length ≤Cmax ,
mc a continuous credibility metric (e.g., a p-value),
M the list of credibility criteria (e.g., [(p-value <5%)]), AggregrationRules

Gsorted � sort(G, mc ) # Sort G according to mc

Ranks � rep(0, |G|) # Create a vector of |G| zeros to store ranks of each si ∈ G
For si in G do:
cred � [ ] # vector representing the subgroup’s credibility
For mj in M do:
If si passes credibility criteria mj then

cred[j] � 1
Else

cred[j] � 0
⌊Ranks[i]⌋ � AggregationRules(cred) # Integer part of the rank of si is the

aggregation rank given by AggregationRules applied to cred
{Ranks[i]} � index(si ,Gsorted) # Fractional part of the rank of si is the index of si in

Gsorted

Output: Granked � sort(G, Ranks) # The list of subgroups of G sorted according to
Ranks

6Looking for subgroups with a predefined minimal effect size is aligned with recent
recommendations from the American Statistical Association (Wasserstein et al.,
2019): “Thoughtful research includes careful consideration of the definition of a
meaningful effect size. As a researcher you should communicate this up front,
before data are collected and analyzed. Then it is just too late as it is easy to justify
the observed results after the fact and to over-interpret trivial effect sizes as
significant. Many authors in this special issue argue that consideration of the effect
size and its ’scientific meaningfulness’ is essential for reliable inference (e.g., Blume
et al., 2018; Betensky 2019).”

Frontiers in Artificial Intelligence | www.frontiersin.org December 2020 | Volume 3 | Article 5599279

Esnault et al. Q-Finder: Credible Subgroup Discovery Algorithm

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


2.4. Q-Finder Subgroups Diversity and
Top-k Selection
2.4.1. Subgroups Diversity
Q-Finder performs a subgroups top-k selection to be tested on an
independent dataset. One of the known issues in KDD-SD of top-
k mining algorithms is that they are prone to output redundant
subgroups as each subgroup is considered individually. Several
authors including Leeuwen and Knobbe (2012) have argued to
search for subgroups that offer a high diversity: diverse subgroup
set discovery. Therefore, the goal is to take into account the fact
that many subgroups might be redundant either extensionally
(their basic patterns are very similar) or intensionally (the objects
covered by the subgroup are similar). A general approach to
address this issue is to define a redundancy measure. It can for
example consider the number of common attributes between two
subgroups, or the percentage of common examples covered by
two different subgroups. The last requires more computation but
results in a better diversification of subgroups as it considers
possible correlations between variables.

Q-Finder proposes a definition of intensional redundancy
between basic patterns, where two basic patterns (attribute-
selector-value triplets, respectively a1 − s1 − v1 and a2 − s2 − v2)
are considered redundant if:

• a1 � a2
• AND:

• For nominal attributes: v1 � v2
• For numerical attributes:

• s1 � s2
• OR considering s1 as ”≤ ” and s2 as ”≥ ”, v1 ≥ v2

Based on the basic patterns redundancy definition, two subgroups
are called redundant if Cmin basic patterns are redundant between
them; Cmin being the minimum complexity of the two subgroups.

2.4.2. Selection of Top-k Subgroups to Be Tested
Different strategies exist to identify an optimal top-k selection of
non-redundant subgroups (Xiong et al., 2006), based on
subgroups’ intensions, extensions, or both. In addition to those
existing strategies, Q-Finder proposes its own approach based on
subgroups’ intensions (see Algorithm 3) to determine an optimal
set of k non-redundant subgroups Sk from the ranked set of
generated subgroups Granked (output from Algorithm 2).

The best candidate subgroup is iteratively selected using 2
continuous metrics : mc from Algorithm 2 and another continuous
metric. This top-k algorithm was originally designed using a p-value
metric7 formc and an effect size

8 for the secondmetric9. For the sake of
clarity, we will describe this algorithm using those 2 metrics:

• Subgroups should be selected from less complex to most
complex (favoring less complex subgroups);

• When two subgroups of equal complexity are redundant, only
the one associated with the best p-value should be retained.

• When two subgroups of different complexities are redundant

• The most complex subgroup of the two is discarded iff
its chosen effect size metric is lower than the less
complex one;

• The less complex subgroup of the two is discarded iff
both its chosen p-value and effect size metric are
respectively higher and lower than the more
complex one.10

This top-k selection process based on these principles is
detailed in Algorithm 3.

2.5. Possible Addition of Clinical Expertise
Clinical input can be used to overrule algorithm’s preference
during top-k selection, by removing candidate subgroups from
Granked (the set of candidate subgroups cf. Algorithm 3) or force
the addition of a subgroup into Sk (the set of best candidates cf.
Algorithm 3). The result of this step is a set of most promising
non-redundant subgroups, that has a maximum size of k. More
generally, clinical experts can directly select top-k relevant
subgroups among the most credible ones. This stage, that is
sometimes referred to as Interactive Machine Learning
(Holzinger, 2016), is aligned with the American Statistical

Algorithm 3 Q-Finder’s iterative top-k selection based on subgroups’
intensions

Input: k maximum number of selected subgroups,
Granked set of ranked generated subgroups, with complexities ranging fromCmin to

Cmax

δES minimum delta to consider that a subgroup has a higher effect size11

Gsplit � splitByComplexity(Granked) # split Granked by subgroup complexity (Gsplit[1]
corresponds to complexity 1, Gsplit[2] to complexity 2, . . .)
Sk � {} # Initialize Sk , the set of top candidate subgroups
For c � Cmin to Cmax do
For g in Gsplit[c] do # g: candidate subgroup
If p-value(g) > max(p-values(Sk )) and size(Sk) �� k then continue to next c
For s in Sk do # s: subgroup in the top-k

If redundant(g, s) then
If complexity(g) �� complexity(s) then
continue to next g

If complexity(g) > complexity(s) then
If EffectSize(g) ≤ EffectSize(s) + δES then
continue to next g

For s in Sk do
If redundant(g, s) and complexity(g) > complexity(s) and
EffectSize(g) > EffectSize(s) + δES and p-value(g) < p-value(s) then
Sk � Sk\{s}

Sk � Sk∪  {g}
while size(Sk) > k do

Sk � Sk\{subgroup from Sk with the highest p-value}
Output: Sk # top-k best candidate subgroups

7P-value credibility metric can be chosen from metrics 3, 6 or 7 presented in 2.3.1.
8Effect size credibility metric can be chosen from metrics 2 or 5 presented in 2.3.1.
9The user can adapt this algorithm using any relevant continuous metrics’ couple.

10Note that instead of discarding the less complex subgroup of the two, one might
want to keep both. The algorithm will need to be revised accordingly.
11Above that delta value, the increase in effect size is worth enough to justify an
increase in complexity.
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Association recommendations that encourage researchers for
seeking experts judgement in any statistical analysis, including
for evaluating the importance and the strength of empirical
evidence (Wasserstein et al., 2019). By integrating experts into
Q-Finder’s process for subgroups selection, one allows the
consideration of non-measurable properties, such as the
novelty, interest or applicability of the proposed subgroups12.

2.6. Subgroups’ Generalization Credibility
In Q-Finder the final step consists in computing the credibility
metrics of the top-k subgroups on the testing set, in order to assess
their generalization credibility, that is subgroups consistency across
databases (Dijkman et al., 2009; Sun et al., 2010). However, contrary
to the candidate subgroups generation phase previously performed,
the number of tested subgroups in this phase is well-controlled (as
recommended in Dijkman et al., 2009 and Sun et al., 2010), as it is
limited by the parameter k. This allows a better control of the type 1
error that was more difficult to achieve until then. For that purpose,
Q-Finder performs a correction for multiple testing during
computation of the significance metrics, to account for the
number of subgroups tested on independent data (default:
Benjamini-Hochberg procedure). Top-k subgroups satisfying the
credibility criteria on the test dataset are considered highly credible.

3. EXPERIMENTS AND RESULTS

This section is dedicated to compare Q-Finder with representative
algorithms for predictive or prognostic SD. First, the IDMPS
database on which experiments were run is described. Then, the
research questions are stated and both a prognostic and a predictive
task are described. Lastly, four different methods and their results
are given and compared with Q-Finder.

3.1. Introduction of the International
Diabetes Management Practice Study
Database
The International Diabetes Management Practice Study (IDMPS)
database is an ongoing international, observational registry
conducted in waves across multiple international centers in
developing countries since 2005. Each wave consists of a
yearly 2-weeks fact-finding survey, which aims to document in
a standardized manner: practice environments, care processes,
habits, lifestyle and disease control of patients with diabetes under
real world conditions. It has recently led to new findings related to
the suboptimal glycemic control in individuals with type 2
diabetes in developing countries and the need to improve
organization of care (Aschner et al., 2020). Observational
registries for patients suffering such conditions are pivotal in
understanding disease management. In 2017, an estimated 425
million people were afflicted by diabetes worldwide, with Type 2
Diabetes Mellitus (T2DM) accounting for approximately 90% of
cases. By 2030, diabetics should represent 7.7% of the adult

population, or 439 million people; and 629 million people by
2045 (Shaw et al., 2010; Chen et al., 2012; Ogurtsova, 2017). The
two most recent waves to date of IDMPS (wave 6 [2013–2014]
and wave 7 [2016–2017]) were selected for the following
experiments, including data from 24 countries from Africa,
Middle East, India, Pakistan, Russia and Ukraine. Only data
from patients having T2DM and taking either a Basal insulin,
a combination of Basal and Prandial insulin or a Premixed insulin
were included.

3.2. Research Questions
3.2.1. Prognostic Factors Identification
One of the main goals of the IDMPS initiative is to evaluate
patient’s disease management. To do so, a key outcome in
diabetes is the blood level of glycated hemoglobin (HbA1c).
High HbA1c is a risk factor for micro- and macrovascular
complications of diabetes (Wijngaarden et al., 2017). Patients
with T2DM who reduce their HbA1c level of 1% are 19% less
likely to suffer cataracts, 16% less likely to suffer heart failure
and 43% less likely to suffer amputation or death due to
peripheral vascular disease (Dennett et al., 2008; Alomar
et al., 2019).

Given the importance of HbA1c control for diabetics patients,
we deemed interesting to focus our prognostic factors detection
on patients meeting the recommended HbA1c threshold. This
recommended threshold varies depending on several factors,
such as age or history of vascular complications. For most
T2DM patients, this threshold is set at 7%, which is how we
define glycemic control for TD2M patients. Our research
question can then be formulated as follows: “What are the
prognostic factors of glycemic control in TD2M patients?”. We
consider the following variables as confounding factors: Patient’s
age (Ma et al., 2016), Gender (Ma et al., 2016), BMI (Candler
et al., 2018), Level of education (Tshiananga et al., 2012) and
Time since diabetes diagnosis (Juarez et al., 2012). Considering
the geographical heterogeneity in IDMPS, we added the continent
where the data was collected.

This experiment included 1857 patients from IDMPS wave 6
and 2330 patients from IDMPSwave 7, with 63 variables considered
as candidate prognostic factors. In wave 6, 17.7% of patients were
under the 7% HbA1c threshold, versus 18.8% in wave 7.

3.2.2. Predictive Factors Identification
Another key outcome in diabetes management is the occurrence of
hypoglycemia events, which is one of themain complications linked
to diabetes. Hypoglycemia symptoms include dizziness, sweating,
shakiness; but can also lead to unconsciousness or death in severe
cases. Previous studies have shown the impact of insulin treatments
on the incidence of hypoglycemia, including comparing premixed
insulin analogues to basal insulin analogues (with or without
prandial insulin). In some cases, hypoglycemia rates were found
to be slightly higher in patients population treated with premixed
insulin analogues (Petrovski et al., 2018).

We focused our predictive factors detection on
hypoglycemia risk in the past 3 months under premixed
insulin versus basal insulin (alone or in combination with
prandial insulin).

12Wasserstein et al. (2019) argue to be open in study designs and analyses: ”One
might say that subjectivity is not a problem; it is part of the solution.”
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Our research question can then be formulated as follows:
”What are the subgroups in which the treatment effect (premixed
insulin versus basal insulin with or without prandial insulin) on
the risk of hypoglycemia in the past 3 months is both positive and
higher than outside the subgroups?” Illustrative example: ”The
risk ratio in experiencing hypoglycemia under premixed insulin
versus basal insulin (with or without prandial insulin) is greater
on male patients than on female patients”.

This experiment included 2006 patients from IDMPS wave 6
and 2505 patients from IDMPS wave 7, with 62 variables
considered as candidate predictive factors. In wave 6, 32.4% of
patients were taking Premixed insulin with a hypoglycemia rate
of 32.2%, versus 25.6% for basal insulin regimen. In wave 7, 39.0%
of patients were taking Premixed insulin with a hypoglycemia rate
of 33.1%, versus 28.3% for basal insulin regimen.

3.3. Analytical Strategies
An objective of this paper is to compare the Q-Finder algorithm
to state-of-the-art approaches for clinical SD in both SI-SD and
KDD-SD. There are a vast number of approaches in both
domains, we chose two state-of-the-art methods from KDD-
SD to address the prognostic factors research, and two
methods from SI-SD to address the predictive factors research.
Among SI-SDmethods, we chose SIDES (Subgroup Identification
Differential Effect Search method) and Virtual Twins. The first
one is arguably the most well known local recursive methods
while Virtual Twins is a recognized method, representative of
global modelling approaches. In the domain of KDD-SD
methods, we chose APRIORI-SD and CN2-SD which are well-
known representative of respectively exhaustive and heuristic
approaches to SD.

While these four methods do cover the spectrum of SD and
identification methods, both SIDES and Virtual Twins are well
adapted to predictive tasks, APRIORI-SD and CN2-SD can only
address prognostic tasks. Since Q-Finder can address both tasks,
it is compared with the two methods that are adapted to each of
the two tasks described in Section 3.2. For all the analyses,
IDMPS wave 6 were used as the discovery dataset and IDMPS
wave 7 as the test dataset. To allow comparison of results, only the
top-10 subgroups of each algorithm are considered without any
human intervention during the selection. Finally, default
parameters of each algorithm were selected, except shared
parameters which we kept as similar as possible.

3.3.1. Exploring Prognostic Subgroups
For each of the three approaches to identify prognostic subgroups
(CN2-SD, APRIORI-SD, and Q-Finder) we detail the version and
main parameters.

CN2-SD13: A beam search algorithm adapted from
association rule learning CN2 to SD. It introduces a weighted
covering method, where examples covered by a subgroup are not
removed from the training set but their weights are decreased.
This allows examples to appear in several subgroups and cover
groups with more diversity. The version used is the one found in

Orange 3.23.1. The default parameters are: WRAcc as the
optimisation metric, beam width � 20 (the bigger the beam,
the more combinations are tested), max rule length � 3
(parameter representing the maximum complexity of a
subgroup14) and min covered examples � 10% (minimum
coverage of a subgroup15).

APRIORI-SD16: An exhaustive search algorithm adapted
from association rule learning APRIORI to SD. Compared to
APRIORI it only considers subgroups that contain the target
variable in the right-hand side. Like CN2-SD, it also uses the
weighted covering method. The Python package pysubgroup
version 0.6.1 (Lemmerich and Becker, 2018) is used, with the
following parameters: WRAcc as the optimisation metric,
maxdepth � 314 and result set size coverage � 10%15.

Q-Finder prognostic mode: The version used is 5.4 with
Cmax � 3, #Bins � 10 and #Cats �∞ (see Section 2.2). Only left-
bounded and right-bounded intervals are considered. The
thresholds for credibility criteria are the default values
presented in Section 2.3.1 : minimum coverage � 10%,
minimum basic pattern absolute contribution � 0.2,
maximum basic pattern contribution ratio � 5, minimum
effect size � 1.2 (with or without correction for confounders),
and maximum effectś significance threshold � 0.05 (with or
without correction for confounders). Multiple testing
correction is addressed using Bonferroni correction in the
discovery dataset and Benjamini-Hochberg procedure in the
test dataset. For the ranking steps, aggregation rules are the
ones presented in Section 2.3.2, mc being the p-value for
subgroup’s effect when corrected for confounders. The
default top-k selection is performed with the odds-ratio
corrected for confounders as the second metric and δES � 0.2
(see Section 2.4.2).

3.3.2. Exploring Predictive Subgroups
For each of the three approaches to identify predictive subgroups
(Virtual Twins, SIDES and Q-Finder) we detail the version and
main parameters.

Virtual Twins17: Following the vignette’s recommendation
from the R package aVirtualTwins version 1.0.1, missing values
were a priori imputed on the discovery dataset using rfImpute()
from the randomForest package version 4.6.14. For this step and
each of the following, the seed was set to 42. After the imputation,
Virtual Twin’s first step consisted in using randomForest() from
the randomForest package (version 4.6.14) with ntree � 500 and
threshold � 0.5 (threshold above which the treatment effect is
considered significant for a patient). The second step consisted in
performing a classification tree with maxdepth � 3 (maximum
depth of the classification tree14). Only the leaves for which the
predicted outcome was the target were considered as outputted
subgroups.

13https://pypi.org/project/Orange3/

14This corresponds to Q-Finder’s maximum complexity parameter.
15This corresponds to Q-Finder’s minimum threshold for the coverage criterion.
16https://github.com/flemmerich/pysubgroup
17https://cran.r-project.org/web/packages/aVirtualTwins/vignettes/full-example.
html
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SIDES18: The version considered is 1.14 from the SIDES R
package. The parameters considered are: M � 5 (maximum
number of best promising subgroups selected at each step of
the algorithm), alpha � 0.05 (overall type 1 error rate, which is
compared with p-values corrected for multiple testing using a
resampling-based method to protect the overall type 1 error rate),
S � 200 (minimum subgroup size desired, set at 10% of the
discovery dataset15), L � 3 (maximum depth of the tree14), D �
0 (minimum difference between the treatment and the control
arm), gamma � 1 (relative improvement parameter), num crit �
1 (splitting criterion used: maximizing the differential effect
between the two child subgroups), H � 1 (i.e. no random split
of the discovery dataset), ord.bin � 10 (number of classes
continuous covariates are discretized into19). As SIDES is a
non-deterministic algorithm, the seed was set to 42.

Q-Finder predictive mode: The version used is 5.4 with
Cmax � 3, #Bins � 10 and #Cats � ∞ (see Section 2.2). Only
left-bounded and right-bounded intervals are considered. The
thresholds20, for credibility criteria are the default values
presented in Section 2.3.1 : minimum coverage � 10%,
minimum basic pattern absolute contribution � (0, 0.2),
maximum basic pattern contribution ratio � (∞, 5), minimum
effect size � (1, 1.2) (with or without correction for confounders),
and maximum effectś significance threshold � (0.05, 0.05) (with or
without correction for confounders). Multiple testing correction is
addressed using Bonferroni correction in the discovery dataset and
Benjamini-Hochberg procedure in the test dataset. For the ranking
steps, aggregation rules are the ones presented in Section 2.3.2, mc

being the p-value for differential treatment effect when corrected for
confounders. Nevertheless, they are additional intermediate ranks
to account for criteria with 2 thresholds (one for treatment effect
within the subgroup, the other for differential treatment effect):

• Rank i: threshold met for treatment effect within the
subgroup only;

• Rank i+1: threshold met for differential treatment
effect only;

• Rank i+2: threshold met for both treatment effect within the
subgroup and differential treatment effect.

The default top-k selection is performed with the odds-ratio
for differential treatment effect corrected for confounders as the
second metric and δES � 0.2 (see Section 2.4.2).

3.4. Results
3.4.1. Prognostic Factors Identification
Q-Finder results on the prognostic task: Q-Finder generated
203 subgroups satisfying all the credibility criteria. Among the top-10
subgroups selected while accounting for diversity, 2 are of complexity
1, none are of complexity 2 and 8 are of complexity 3. The results are

presented below in Table 1 along with the main metrics of interest
computed on both the discovery and the test datasets (see
Supplementary Table S14 for the additional metrics computed
and outputted from Q-Finder). The two first-ranked subgroups S1
and S2 are both of complexity 1 and state that patients whose last
postprandial glucose (PPG) level was below 172.0mg/dl (resp. whose
last fasting blood glucose (FBG) level was below 129.6 mg/dl) do have
a better glycemic control than the others. Both subgroups are very
close to the glycemic control targets established by the American
Diabetes Association (resp. 180mg/dl for PPG and 130mg/dl for
FBG, (American Diabetes Association, 2017)). The coverage (or
support) of the first subgroup S1 is 30% of the discovery dataset,
its adjusted odds-ratio is 4.8 ([3.5; 6.5]) and its p-value is 1.81E − 23
on the discovery dataset. All selected subgroups were successfully
reapplied on the test dataset, with odds-ratios corrected for
confounders above 1.81 and p-values below 0.05 when adjusted
for multiple testing by Benjamini-Hochberg procedure. It is worth
noticing that all the subgroups were significant using the more
conservative Bonferroni correction in the discovery dataset.

Results for CN2-SD and APRIORI-SD:
Results for both CN2-SD and APRIORI-SD are given below.

For CN2-SD, no subgroups were outputted using the default
parameters, described in 3.3.1. An analysis of the sensitivity is
presented in the discussion of the results (see Section 4.2). For
APRIORI-SD, 186 subgroups were outputted. Among the top-10
subgroups based on theWRAccmeasure, 1 is of complexity 1, 2 are of
complexity 2 and 7 are of complexity 3. The complexity 1 subgroup
(S4 in Table 2) is defined by a last postprandial glucose measurement
below144mg/dl (WRAcc on discovery dataset: 0.0329). All complexity
2 and 3 subgroups, except S10, are also defined by this basic pattern,
combined with other patterns such as ReceivesGLP − 1analogues �
No or Self −monitoring testing performed at bedtime � No. The
results are presented below in Table 2 with the WRAcc measure,
both on the discovery and the test datasets.

3.4.2. Predictive Factors Identification
Q-Finder results on the predictive task: Q-Finder generated
2775 subgroups in the discovery dataset that pass all the criteria of
credibility on the predictive task. Among the top-10 subgroups
selected while accounting for diversity, all are of complexity 3
except one. The results are presented below in Table 3 with main
criteria of interest computed on both the discovery and the test
datasets (see Supplementary Tables S15 and S16 for the
additional metrics computed and outputted from Q-Finder).

Subgroup S2 states that patients who use a disposable pen, don’t
smoke and are not heavily treated for diabetes, have a higher risk than
the others in experiencing hypoglycemia under Premixed insulin than
under Basal insulin (coverage � 25%, adjusted odds-ratio for
differential treatment effect � 3.31 [2.0 ; 5.6], p-value � 7.13E-6).

The seven first selected subgroups were successfully reapplied on
the test dataset, with adjusted odds-ratios related to differential
treatment effect above 1.86. Indeed, these subgroups have a p-value
below 0.05 adjusted for multiple testing using Benjamini-Hochberg
procedure, despite the fact that no subgroups were ”statistically
significant” after Bonferroni correction in the discovery dataset. It is
worth noticing that all subgroups have adjusted odds-ratios above
1.0 in the test dataset.

18https://cran.r-project.org/web/packages/SIDES/index.html
19This corresponds to Q-Finder’s #Bins parameter.
20In predictive mode the user indicates 2 thresholds instead of 1 for some criteria,
with relation to the treatment effect within the subgroup (first value) and the
differential treatment effect (second value).
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TABLE 1 | Q-Finder results on the detection of prognostic factors describing patients with better glycemic control.

Subgroup
Rankinga

Subgroup description Coverage
Discovery/

Test

Adjusted odds-
ratios (IC95%)
Discoveryb

p-value
Discovery

Adjusted
p-value

Discoveryc

Adjusted odds-
ratios (IC95%)

Testb

p-value
Test

Adjusted
p-value Testc

S1 Last postprandial glucose
measurement (mg/dL) ≤
172.0

30%/27% 4.78 [3.5; 6.5] 1.81E-23 1.15E-18 4.28 [3.2; 5.7] 2.09E-24 1.04E-23

S2 Last fasting blood glucose
measurement (mg/dL) ≤
129.6

38%/36% 3.60 [2.8; 4.7] 9.86E-21 6.28E-16 5.06 [4.0; 6.5] 9.82E-37 9.82E-36

S3 Follow healthy diet and
exercise plan � Yes AND
Device used for insulin: Vials
and syringes � No AND
Cumulated # of individual
therapies taken by the patient
≤ 3

14%/16% 2.57 [1.9; 3.5] 7.08E-9 4.50E-4 2.50 [1.9; 3.3] 1.78E-11 3.84E-11

S4 Follow healthy diet and
exercise plan � Yes AND
Device used for insulin: Vials
and syringes � No AND # of
different cardiovascular
treatments ≤ 2

22%/17% 2.26 [1.7; 3.0] 9.96E-9 6.34E-4 2.36 [1.8; 3.0] 5.24E-11 7.48E-11

S5 Follow healthy diet and
exercise plan � Yes AND # of
OGLD ≤ 1 AND Type of
health insurance � Public

16%/24% 2.47 [1.8; 3.4] 1.05E-8 6.69E-4 2.44 [1.9; 3.1] 2.20E-13 7.33E-13

S6 Follow healthy diet and
exercise plan � Yes AND
Covered by a health
insurance � Yes AND # of
different cardiovascular
treatments ≤ 2

17%/11% 2.34 [1.7; 3.1] 1.28E-8 8.15E-4 1.81 [1.3; 2.5] 1.42E-4 1.58E-4

S7 Follow healthy diet and
exercise plan � Yes AND
Covered by a health
insurance � Yes AND
Cumulated # of individual
therapies taken by the patient
≤ 4

17%/16% 2.33 [1.7; 3.1] 1.30E-8 8.27E-4 2.44 [1.9; 3.2] 1.92E-11 3.84E-11

S8 Follow healthy diet and
exercise plan � Yes AND
Times seen by a diabetologist
in the past 3 months � 0 AND
Cumulated # of individual
therapies taken by the patient
≤ 4

16%/17% 2.43 [1.8; 3.3] 1.85E-8 1.18E-3 2.25 [1.7; 3.0] 5.46E-9 6.82E-9

S9 Follow healthy diet and
exercise plan � Yes AND
Covered by a health
insurance � Yes AND Treated
for other form of dyslipidemia
� Yes

22%/19% 2.33 [1.7; 3.2] 1.94E-7 1.24E-2 2.64 [2.0; 3.5] 4.87E-11 7.48E-11

S10 Follow healthy diet and
exercise plan � Yes AND
Covered by a health
insurance � Yes AND
Received biguanides � No

12%/8% 2.40 [1.7; 3.3] 2.66E-7 1.70E-2 1.86 [1.3; 2.6] 3.07E-4 3.07E-4

aSubgroup ranking is based on p-values on discovery dataset.
bOdds-ratios are adjusted for confounding factors through multiple regression model.
cAdjusted p-values for multiple testing are based on a Bonferroni correction (resp. Benjamini-Hochberg procedure) on the discovery dataset (resp. on the test dataset).
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Results for SIDES and Virtual Twins on the predictive task:
Results for both SIDES and Virtual Twins are given below. For
SIDES, no subgroups were outputted using the default
parameters, described in Section 3.3.2. An analysis of the
sensitivity is presented in the discussion of the results
Section 4.2. For Virtual Twins, only three subgroups were
obtained, 1 of complexity 2 and 2 of complexity 3. The results
are presented below inTable 4with themetrics that are outputted
from the algorithm, both on the discovery and the test datasets.
All subgroups are defined by a same attribute, the ”number of
different lipid-lowering agents for dyslipidemia”.

4. DISCUSSION

4.1. Discussion of the Results
For clarity we discuss the results in relation to Q-Finder for both
the search of prognostic factors and predictive factors.

4.1.1. Q-Finder Generates the Top-k Hypotheses
Q-Finder has proposed 10 prognostic factors and 10 predictive
factors. This is more than the set of subgroups generated by Virtual
Twins and conversely to SIDES and CN2-SD that did not generate
any subgroups with their default parameters This illustrates that with
default parameters Q-Finder systematically gives results whose
credibility are assessed.

As for SIDES, the lack of results may well be explained by the
strategy it uses to generate hypotheses. Indeed, SIDES filtering

strategy, in which subgroups have to pass all predefined criteria in
the learning phase (including the p-value corrected for multiple
testing, a very conservative step), strongly limits hypotheses
generation. The absence of results is therefore not uncommon
with SIDES. On the contrary, the top-k selection strategy of
Q-Finder favors the generation of hypotheses since the k best-
ranked subgroups of the discovery dataset will be considered as
hypotheses to be tested on independent data. This both allows to
assess Q-Finder’s results robustness, while preserving the
statistical power (as only k tests are performed in the test
dataset). Therefore, conversely to SIDES, the correction for
multiple testing that is performed in the discovery dataset
(that both gives more credibility to the results from the
learning phase and increases the subgroups discrimination in
the ranking phase) does not hinder the most promising
subgroups to be tested and possibly validated on an
independent dataset. Q-Finder is thus aligned with the notion
of ”statistical thoughtfulness”21 recently promoted by the
American Statistical Association (Wasserstein et al., 2019).

For CN2-SD, the lack of results may be due to the beam search,
which does not cover the entirety of the search space and may

TABLE 2 | APRIORI-SD results on the detection of prognostic factors describing patients with better glycemic control.

Subgroup Rankinga Subgroup description WRAcc Discovery WRAcc Test

S1 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self-monitoring testing performed at bed time � No

3.30E-2 2.52E-2

S2 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self-monitoring testing performed at bed time �No AND # of sorts
of required hospitalization (macro/microvascular, hypo) � 0

3.30E-2 2.47E-2

S3 Last postprandial glucose measurement (mg/dL) ≤ 144 AND # of
sorts of required hospitalization (macro/microvascular, hypo) � 0

3.29E-2 2.82E-2

S4 Last postprandial glucose measurement (mg/dL) ≤ 144 3.29E-2 2.91E-2

S5 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self-monitoring testing performed at bed time �No AND Receives
GLP-1 analogues � No

3.28E-2 2.38E-2

S6 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Receives amylin agonist � No AND Receives GLP-1 analogues �
No

3.27E-2 2.77E-2

S7 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Receives GLP-1 analogues � No AND # of sorts of required
hospitalization (macro/microvascular, hypo) � 0

3.27E-2 2.68E-2

S8 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Receives GLP-1 analogues � Yes

3.27E-2 2.77E-2

S9 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self-monitoring testing performed at bed time �No AND Receives
amylin agonist � No

3.27E-2 2.46E-2

S10 Follow healthy diet and exercise plan � Yes AND Receives more
than 2 OGLD � No AND Patient living in � Urban area

3.08E-2 3.43E-2

aSubgroup ranking is based on WRAcc measure in discovery dataset.

21Wasserstein et al. (2019) support the view that thoughtful researchers should
“recognize when they are doing exploratory studies and when they are doing more
rigidly pre-planned studies”. They argue that “Most scientific research is
exploratory in nature” and “the design, conduct, and analysis of a study are
necessarily flexible, and must be open to the discovery of unexpected patterns that
prompt new questions and hypotheses”.
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TABLE 3 | Q-Finder results on the detection of predictive factors describing patients with a higher risk than the others in experiencing hypoglycemia under Premixed insulin than under Basal insulin (with or without Prandial
insulin).

Subgroup
Rankinga

Subgroup description Coverage Discovery/
Test

Adjusted odds-
ratios

for differential
treatment effect

(IC95%) Discoveryb

p-value for
differential

treatment effect
Discovery

Adjusted odds-
ratios

for differential
treatment effect
(IC95%) Testb

p-value for
differential

treatment effect
Test

Adjusted p-value for
differential treatment

effect Testc

S1 Statins for dyslipidemia � Yes AND Device used for insulin:
Vials and syringes � No AND Total # of anti-diabetics agents
≤ 1

28%/31% 3.04 [1.9; 5.0] 7.02E-6 2.12 [1.4; 3.2] 2.36E-4 1.18E-3

S2 Device used for insulin: Disposable pen � Yes AND Smoking
habits � Never AND Total # of anti-diabetics agents ≤ 1

25%/26% 3.31 [2.0; 5.6] 7.13E-6 1.93 [1.3; 2.9] 2.04E-3 4.28E-3

S3 Total # of anti-diabetics agents ≤ 1 AND # of different devices
used by the patient ≥ 1

48%/61% 2.71 [1.8; 4.2] 9.55E-6 2.59 [1.7; 4.0] 1.92E-5 1.92E-4

S4 Treated for other form of dyslipidemia � Yes AND Times seen
by a diabetologist in the past 3 months ≤ 1 AND Device used
for insulin: Vials and syringes � No

33%/38% 3.55 [2.0; 6.3] 1.26E-5 1.93 [1.2; 3.0] 5.02E-3 7.17E-3

S5 Receives oral glycaemic lowering drugs � Yes AND Times
seen by a diabetologist in the past 3 months � 0 AND Device
used for insulin: Vials and syringes � No

29%/34% 2.98 [1.8; 4.9] 2.40E-5 1.86 [1.2; 2.8] 2.14E-3 4.28E-3

S6 Statins for dyslipidemia � Yes AND Total # of anti-diabetics
agents ≤ 1 AND Age at diagnosis (year) ≤ 56

30%/33% 2.74 [1.7; 4.4] 2.64E-5 2.04 [1.4; 3.0] 4.08E-4 1.34E-3

S7 Treated for other form of dyslipidemia � Yes AND Times seen
by a diabetologist in the past 3 months ≤ 1 AND # of different
devices used by the patient ≥ 1

33%/44% 3.37 [1.9; 6.0] 2.79E-5 2.05 [1.2; 3.4] 4.58E-3 7.17E-3

S8 Statins for dyslepidemia � Yes AND Device used for insulin:
Vials and syringes � No AND HDL serum cholesterol (mg/dL)
≤ 58.0

27%/30% 3.22 [1.9; 5.6] 2.82E-5 1.05 [0.7; 1.7] 8.21E-1 8.21E-1

S9 Statins for dyslipidemia � Yes AND Visits diabetes websites �
No AND Duration of insulin therapy (year) ≥ 4

34%/32% 2.59 [1.7; 4.1] 3.12E-5 1.14 [0.8; 1.7] 5.09E-1 5.65E-1

S10 Other form of dyslipidemia � Yes AND Visits diabetes
websites � No AND Duration of insulin therapy (year) ≥ 4

40%/37% 2.56 [1.6; 4.0] 3.22E-5 1.25 [0.9; 1.8] 2.48E-1 3.10E-1

aSubgroup ranking is based on p-value for differential treatment effect on discovery dataset
bOdds-ratios are adjusted for confounding factors through multiple regression model
cAdjusted p-values for multiple testing are based on a Benjamini-Hochberg procedure on the test dataset
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thus miss relevant subgroups. Indeed, in a pure beam search
strategy, the search for subgroups of higher complexity is based
on the ones of lower complexity. This can therefore lead to
missing subgroups, notably to favor the overall accuracy at the
expense of local structures22,. Equally, beam search strategies
could miss subgroups with optimal thresholds, as stated in
Section 1.4. Indeed, the ability to perform an exhaustive
search allows Q-Finder to find the optimal selector-values for
each combination of attributes that meet as much as possible the
set of credibility criteria (as defined in Section 2.3. This point is
illustrated in Table 1 with subgroups S3 and S8, where the
attribute-selector pair “Cumulated number of individual
therapies taken by the patient ≤” is associated with the value 3
or 4 depending on the context of the other basic patterns). Finally,
non-exhaustive searches can also miss the detection of emerging
synergistic effects, that have probably also been ruled out by
SIDES, since the null (or very small) individual effects of each
basic pattern would not be selected in a node of a tree.
Nevertheless, one of the major advantages of beam search is
related to its memory consumption. Since the algorithm stores
only a limited number of basic patterns at each level of the search
tree, the size of the memory in the worst case isO(Bm), where B is
the beamwidth, andm is the complexity of the subgroup. It is also
faster as only the B most promising subgroups of complexity m
are considered to explore the subgroups of complexity m + 1.

4.1.2. Credibility of the Generated Subgroups:
Q-Finder Favors the Generation of Credible
Subgroups
By searching for subgroups that meet the recommended and
standard credibility criteria for clinical research, Q-Finder makes
it possible to directly target promising and credible subgroups for
their final clinical evaluation. More precisely, subgroups are
assessed on their coverage and effect sizes adjusted for
confounding factors, on their adjusted p-values for multiple
testing, and the contribution of each basic pattern to the
overall relationship with the outcome. Like most SI-SD
algorithms for the search of predictive factors (e.g.: MOB,
Interaction Trees, STIMA, . . .), SIDES and Virtual Twins only
cover a limited number of these credibility criteria (see
Supplementary Table S10). SIDES and Virtual Twins for
example do not drive the subgroups generation on risk ratios
corrected for known biases (i.e. the “confounding factors”, which
are already known as being associated with the outcome).
Therefore, the results generated by SIDES and Virtual Twins
are possibly biased and have thus a higher risk of being ruled out
afterwards during their clinical assessment. Similarly, SIDES and
Virtual Twins may have ruled out subgroups that could have held
after correcting for confounding factors.

This is evenmore obvious for CN2-SD andAPRIORI-SD, whose
detection of prognostic factors are based on a main criterion: the
WRAcc. This criterion represents a trade-off between coverage and
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22This topicis in particular discussed in http://www.realkd.org/subgroup-
discovery/the-power-of-saying-i-dont-know-an-introduction-to-subgroup-
discovery-and-local-modeling/
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TABLE 5 | Credibility metrics from literature (used in Q-Finder) computed on APRIORI-SD results.

Subgroup
Rankinga

Subgroup description Coverage
Discovery/

Test

Adjusted odds-ratios
(IC95%)

Discoveryb

p-value
Discovery

Adjusted odds-ratios
(IC95%) Testb

p-value
Test

Adjusted p-value
Testc

S1 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self monitoring testing performed at bed time � No

15%/12% 4.73 [3.5; 6.5] 2.17E-22 3.80 [2.8; 5.1] 6.12E-19 1.03E-18

S2 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self monitoring testing performed at bed time � No AND # of
sorts of required hospitalization (macro/microvascular, hypo)
� 0

15%/12% 4.73 [3.5; 6.5] 2.17E-22 3.76 [2.8; 5.1] 2.39E-18 3.42E-18

S3 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
# of sorts of required hospitalization (macro/microvascular,
hypo) � 0

16%/13% 4.65 [3.4; 6.4] 4.82E-22 4.21 [3.1; 5.6] 3.97E-22 1.99E-21

S4 Last postprandial glucose measurement (mg/dL) ≤ 144 16%/13% 4.65 [3.4; 6.4] 4.82E-22 4.31 [3.2; 5.8] 3.24E-23 3.24E-22

S5 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self monitoring testing performed at bed time � No AND
Receives GLP-1 analogues � No

15%/12% 4.81 [3.5; 6.6] 1.78E-22 3.67 [2.7; 5.0] 2.14E-17 2.37E-17

S6 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Receives amylin agonist � No AND Receives GLP-1
analogues � No

15%/13% 4.73 [3.5; 6.5] 4.15E-22 4.19 [3.1; 5.6] 1.14E-21 3.52E-21

S7 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Receives GLP-1 analogues � No AND # of sorts of required
hospitalization (macro/microvascular, hypo) � 0

15%/13% 4.73 [3.5; 6.5] 3.95E-22 4.07 [3.0; 5.5] 1.67E-20 3.34E-20

S8 Follow healthy diet and exercise plan � Yes AND Times seen
by a diabetologist in the past 3 months � 0 AND Cumulated #
of individual therapies taken by the patient ≤ 4

15%/13% 4.73 [3.5; 6.5] 3.95E-22 4.17 [3.1; 5.6] 1.41E-21 3.52E-21

S9 Last postprandial glucose measurement (mg/dL) ≤ 144 AND
Self monitoring testing performed at bed time � No AND
Receives amylin agonist � No

15%/12% 4.7 [3.4; 6.4] 3.86E-22 3.72 [2.8; 5.0] 3.74E-18 4.68E-18

S10 Follow healthy diet and exercise plan � Yes AND Receives
more than 2 OGLD � No AND Patient living in � Urban area

42%/25% 2.6 [2.0; 3.4] 1.01E-12 2.41 [1.9; 3.0] 1.10E-14 1.10E-14

aSubgroup ranking is the same as in Table 2
bOdds-ratios are adjusted for confounding factors through multiple regression model
cAdjusted p-values for multiple testing are based on Benjamini-Hochberg procedure on the test dataset
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effect. Although widely used in the KDD-SD community, it is
neither conform with the standards in clinical research, nor
corrected for confounding factors (see Supplementary Table S9).

For all these algorithms, the identified subgroups may thus be
ruled out during their posterior evaluation by the metrics of interest.
Moreover, although the adjusted effect sizes of all APRIORI-SD
subgroups appear high in both discovery and test datasets they are
redundant. In fact, several subgroups sharing the same basic patterns
are associated with the very same extension (as suggested by the
identical results on credibility measures in the discovery dataset),
whichmasks the fact that they are the same subgroups (e.g., S1 and S2
as well S3 and S4 in Table 5). The fact that an increase in complexity
is not always accompanied by an increase in effect is due to the fact
that APRIORI-SD does not include any parameters evaluating the
contribution of basic patterns (such as the Q-Finder basic patterns
contribution criteria), which leads to unnecessarily more complex
subgroups. Finally, one can see that adjusted effect sizes of Virtual
Twins subgroups are mostly smaller than those of the Q-Finder
subgroups, and that none of the three subgroups generated by Virtual
Twins have p-values below 0.05 once confusion biases have been
corrected in the test dataset (Table 6). Based on the credibility criteria
used in clinical research, Virtual Twins has therefore generated less
convincing results than Q-Finder.

Moreover, whether Virtual Twins, APRIORI-SD or CN2-SD,
the robustness of the results is not meant to be evaluated on
independent data. Similarly, they do not seek to control and
assess the risk of false positives, regardless of their presence in the
results. This seriously undermines the credibility of the results.

4.1.3. Better Supporting Subgroups
Q-Finder supports the set of subgroups with standard and
recommended criteria of credibility in clinical research.
Therefore, all metrics used in Q-Finder for generating
hypotheses are given as outputs for transparency. As strongly
recommended by the American Statistical Association
(Wasserstein et al., 2019):

• p-values are reported in continuous. This should allow
experts to better interpret them, and avoid basing any
decision on a p-value threshold that would misrepresent
what ”worthy” and ”unworthy” results are.23

• p-values can be “interpreted in lights of its context of sample
size and meaningful effect size”. This set of metrics is key for
scientific inference of results.

Q-Finder also provides confidence intervals of effect sizes, to
help experts to assess results.

This is to be contrasted with most packages, including the ones
used in this paper to compare Q-Finder. Indeed, Virtual Twins
package only gives information about size and risk ratios (not
adjusted for confounding factors). The SIDES package would
only output continuous p-values below an arbitrary threshold. As
for CN2-SD and APRIORI-SD, we are far from the standards for
the publication of prognostic factors (see Supplementary Tables
S11 and S12 for comparison of output metrics from standard
packages). As a result, using only a subset of the recommended
credibility metrics to both generate and evaluate the subgroups
leads to less well-supported results and a higher risk of a
posteriori discarding them.

4.1.4. Diversity: Q-Finder Favors the Generation of
Various Subgroups and Limits Redundancy
By combining an exhaustive search and an innovative selection
algorithm, Q-Finder has made it possible to promote the
generation of subgroups whose descriptions differ, for both
prognostic and predictive factors (see Table 7 and Table 8
that compare the subgroups diversity level between
algorithms). Overall, diversity on subgroups description is less
present in subgroups from Virtual Twins which only generated 3
subgroups all defined by the ”number of different lipid-lowering
agents for dyslipidemia” attribute. For APRIORI-SD, which
generated a large number of subgroups, 9 out of 10 subgroups
are defined by the same basic pattern (”last postprandial glucose
measurement ≤ 144 mg/dl”). In addition, note that those of the
APRIORI-SD subgroups which are excessively complex (as
indicated in Section 4.1.2) would have been avoided by
Q-Finder’s top-k selection algorithm, for which an increase in
complexity requires an increase in effect.

However, we observe that 8 out of the top-10 Q-Finder
prognostic subgroups share a basic pattern (i.e. ”Follow healthy
diet and exercise plan � Yes”). The results could be further
improved by using other types of diversity algorithms based
on the subgroups’ extensions (see Supplementary Section 14.6
regarding redundancy). The known draw-back of searching for
extensional redundancy is related to its higher computational
cost. One could also note that several basic patterns although not
syntactically redundant do share a similar clinical meaning (e.g.,
“Statins for dyslipidemia � Yes” and “Treated for other form of
dyslipidemia � Yes” are both about taking a dyslipidemia
treatment). This is explained by the fact that several attributes
in the dataset contain related information. Stricter pre-selection
of attributes, based on both correlation analysis and clinical
expertise before performing the analysis, is a classic approach
to reduce this type of redundancy.

4.2. Limits of the Experiments
4.2.1. Algorithms Used for Benchmarking
We only considered two algorithms for the detection of
prognostic factors (CN2-SD and APRIORI-SD) and two
algorithms for the detection of predictive factors (Virtual
Twins and SIDES) for the experiments. These algorithms have
been chosen because they are representative of SI-SD and KDD-
SD algorithms. Although it would be interesting to compare with
other algorithms (such asMOB, STIMA, Interaction Trees, . . .) to

23As mentioned by the American Statistical Association (Wasserstein et al., 2019),
arbitrary p-value thresholds could lead to biased conclusions and published results,
and are only acceptable for ”automated tools” and ”automated decision rule”. In
that respect, Q-Finder does use p-value thresholds for the automatic ranking of
subgroups, but no filter on p-value thresholds is done whether to select the top-k
subgroups (some of them could have p-values above 0.05) or to report their results
on both discovery and test datasets. ”Completeness in reporting” is therefore
allowed in Q-Finder by presenting the k findings obtained ”without regard to
statistical significance or any such criterion.”
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TABLE 6 | Credibility metrics from literature (used in Q-Finder) computed on Virtual Twins results.

Subgroup
Rankinga

Subgroup description Coverage Discovery/
Test

Adjusted odds-
ratios

for differential
treatment effect

(IC95%) Discoveryb

p-value for
differential

treatment effect
Discovery

Adjusted odds-
ratios

for differential
treatment effect
(IC95%) Testb

p-value for
differential
treatment
effect Test

Adjusted p-value
for differential
treatment effect

Testc

S1 # of OGLD ≥2AND # of different lipid-lowering agents for
dyslipidemia ≥ 1

21%/21% 2.00 [1.0; 3.8] 3.27E-2 1.37 [0.8; 2.2] 2.21E-1 3.32E-1

S2 # of OGLD ≤2 AND Duration of insulin therapy (year) ≥3 AND
# of different lipid-lowering agents for dyslipidemia ≥ 1

47%/44% 1.77 [1.2; 2.7] 9.01E-3 1.37 [0.9; 2.0] 8.80E-2 2.64E-1

S3 Receives oral glycaemic lowering drugs � Yes AND Total
serum triglycerides (mg/dL) ≥ 169.7 AND # of different lipid-
lowering agents for dyslipidemia � 0

4%/1% 0.53 [0.2; 1.5] 2.51E-1 0.68 [0.1; 4.5] 7.03E-1 7.03E-1

aSubgroup ranking is the same as in Table 4.
bOdds-ratios are adjusted for confounding factors through multiple regression model
cAdjusted p-values for multiple testing are based on a Benjamini-Hochberg procedure on the test dataset

TABLE 7 | Prognostic subgroup diversity visualization per attribute and selector-value pairs.

Attributes Last post

prendial

glucose

measurement

(mg/dL)

Self-

monitoring

testing

performed

at bed time

Receives

GLP-1

analogues

# of sorts of

required

hospitalization

(macro/

microvascular,

hypo)

Receives

amylin

agonist

Receives

more than

2 OGLD

Patient

living in

Follow

healthy

diet and

exercise

plan

Covered

by a

health

insurance

Device

used for

insulin:

Vials and

syringes

# of different

cardiovascular

treatments

Received

biguanides

Type of

health

insurance

Treated for

other form of

dyslipidemia

Cumulated

# of

individual

therapies

taken by

the patient

Times seen by a

diabetologist in

the past 3 months

# of

OGLD

Last fasting

blood glucose

measurement

(mg/dL)

Last

postprandial

glucose

measurement

(mg/dL)

Algorithm # of

distinct

attributes

Subgroups

Ranking

≤ 144 No No 0 No No Urban

area

Yes Yes No ≤ 2 No Public Yes ≤ 4 ≤ 3 0 1 ≤129.6 ≤ 172

APRIORI-

SD

8 S1 X X

S2 X X X

S3 X X

S4 X

S5 X X X

S6 X X X

S7 X X X

S8 X X

S9 X X X

S10 X X X

Q-Finder

prognostic

mode

12 S1 X

S2 X

S3 X X X

S4 X X X

S5 X X X

S6 X X X

S7 X X X

S8 X X X

S9 X X X

S10 X X X
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strengthen the key messages delivered in this paper, a simple
review of the literature on these algorithms allows to generalize
some of these messages, whether on the ability to target suited
hypotheses or on the ability to support them with recommended
credibility metrics.

Equally, we only used default thresholds of the algorithms,
except when it was relevant in view of the comparison between
algorithms (e.g., we used the same coverage value of 10%). One
can argue that other thresholds could have been tested to improve
the algorithms’ outputs. However, the goal is not here to prove the
deficiencies of other algorithms through these experiments, but to
generate elements of discussion that shows Q-Finder specificity
and the source of its power (e.g., regarding the optimized metrics,
the outputs metrics, etc). Nevertheless, a limited analysis of
parameters sensitivity was performed for both SIDES and
CN2-SD which did not generate any subgroups with the
default set of parameters. For SIDES, we explored an increase
of the threshold of significance to 0.2 and a decreased maximum
number of best promising subgroups selected at each step to 1.
Only the first case produced a single candidate subgroup (see
below, p-value � 0.066 corrected for multiple testing using a
resampling-based method to address the overall type 1 error rate).
This subgroup is “close” to some of the top 10 predictive subgroups
in Q-Finder, which supports the results obtained with Q-Finder:

Receives oral glycaemic lowering drugs � Yes AND
Treated for other form of dyslipidemia � Yes AND
Visits diabetes websites � No
For CN2-SD, we explored a slight increase of the beam

parameter to 50 and a decreased coverage parameter to 5%.
No results were obtained in the first case, and the second case did
generate 2 subgroups of complexity 3 that share two attributes
(see Supplementary Table S13 for the results). More generally,
sensitivity analyses are recommended in any SD tasks, by
marginally modifying algorithms parameters or the outcome
definition (e.g.: HbA1c< 7.5% instead of 7%).

4.2.2. Limits of the International DiabetesManagement
Practice Study Databases: Surveys
As the IDMPS databases are derived from surveys spread over
time, they each reflect an image at a given time. As a result,
treatment initiation may have occurred before data recording. In
this situation, the data studied are not necessarily the baseline of
the study, which gives the results a purely descriptive character.
Indeed, a variable by which a subgroup is defined should not be
affected by treatment response (Dijkman et al., 2009). The most
common use case of SD is rather the retrospective study of
prospective data (e.g., RCT) or real world data, in which
temporal information is collected, in order to only consider
the information before treatment’s intake (i.e. the ”baseline”
period).

4.3. Generalization to Other Pathologies or
Research Questions
Q-Finder was applied in the field of diabetes to many other
research questions, such as the detection of patient profiles that
benefit the most of SGLT2i compared to DDP4i in terms of renal
function preservation, using Electronic Health Record data (ZhouT
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et al., 2018; Zhou et al., 2019); the identification of profiles of
patients who better control their blood sugar, using data from
pooled observational studies (Rollot, 2019, “Reali project”); and
the discovery of new predictors of diabetic ketoacidosis (DKA), a
serious complication of type 1 diabetes, using data from a
national diabetes registry (Ibald-Mulli et al., 2019). Q-Finder
was also successfully applied in the context of several other
pathologies such as hypophosphatasia, using SNPs data
(Mornet et al., 2020), dry eye disease using prospective clinical
trials data (Amrane et al., 2015), and cancer using clinical data
from RCTs (Nabholtz, 2012; Dumontet et al., 2016; Dumontet
et al., 2018; Alves et al., 2020) or transcriptomic data from a
research cohort (Adam et al., 2016).

The Q-Finder approach is indeed generic by design and can be
applied to any pathology and research questions, as can many SD
algorithms, provided that the data can be represented in tabular
form. In each case, the aggregation rules and metrics of interest
are defined according to each research question to align with the
needs and generate relevant and useful hypotheses. In this
respect, the Q-Finder’s methodology can be adapted to more
complex situations, where the final assessment by clinicians must
also rely on clinical metrics. For example, in the case of the search
for treatment responders subgroups, the search may be motivated
by other criteria such as “not being associated with a specific
adverse effect”, or “having an equally good treatment effect
regardless of patient age”. Regarding the experiment that was
done in this article, one could have searched for subgroups
predictive of low rate of hypoglycemia (outcome) while
focusing on subgroups of patients with strong glycaemic
control, to identify subgroups of interest associated with both
higher treatment efficacy and better safety than average.

Q-Finder can easily be adapted to any other research
questions, including non-clinical ones, as its parameters can be
set to directly target subgroups of interest in relation to any types
of objective. Extracting the best hypotheses possible from a
dataset, based on multiple criteria, using both statistical and
business metrics is a common need in many sectors. For
example, in the banking and insurance sectors, a common
need is to identify the subgroups of customers most likely to
churn (outcome) with a specific focus on those associated with
high levels of profit (business metrics).

5. CONCLUSION

Subgroup Discovery has become an important task in the field of
Subgroup Analysis. Q-Finder inherits both SI-SD and KDD-SD
culture, borrowing metrics and evaluation from the first one and
hypothesis generation from the second. As such, Q-Finder is a
SD algorithm dedicated to the identification of either prognostic
or predictive factors in clinical research. The generated
subgroups are driven on a set of recommended criteria in
clinical studies to directly target promising and credible
subgroups for their final clinical evaluation. This contrasts
with most standard algorithms that rely only partially on
these credibility metrics, and for which the risk of being

ruled out afterwards by a clinical assessment is greater.
Q-Finder also favors the hypothesis generation thanks to 1)
an exhaustive dataset exploration that allows for emerging
synergistic effects, optimally-defined subgroups and new
insights to come out, and 2) its top-k selection strategy that
selects credible and diverse subgroups to be tested on
independent datasets. The latter step both allows the
assessment of subgroups robustness while preserving the
statistical power by testing a limited number of highly
credible subgroups. Final results are then assessed by
providing 1) a list of standard credibility metrics for both
experts’ adherence and publication purposes, as well as 2) the
criteria used during the exploration for the full transparency of
the algorithm.

In many aspects, Q-Finder thus tends to comply with the
recent recommendations of the American Statistical Association
(Wasserstein et al., 2019) that amongst others encourage
hypothesis generation in exploratory studies, the prior
definition of meaningful effect sizes, reporting continuous
p-values in their context of sample size and effect size. They
also insist that researchers should be open “to the role of Expert
judgement” and involve them at every stage of the inquiry. As a
matter of fact, beyond its fully automatic mode, the Q-Finder
approach also supports selecting subgroups based on clinical
expertise to both increase subgroups relevance to the research
question and reduce false positives.

Applied on the IDMPS database to benchmark it against state-
of-the-art algorithms, Q-Finder results were best in jointly
satisfying the empirical credibility of subgroups (e.g., higher
effect sizes adjusted for confounders and lower p-values
adjusted for multiple testing), and their diversity. These
subgroups are also those that are supported by the largest
number of credibility measures. Q-Finder has already proved
its value on real-life use cases by successfully addressing high-
stake research questions in relation to a specific pathology and/or
drug such as efficacy and safety questions and by dealing with
main limits of standard algorithms (e.g., the lack of results or the
low subgroups credibility). Its high comprehensibility did favor
the acceptance by clinical teams of the identified subgroups.
Finally, Q-Finder could straightforwardly be extended to other
research questions (including non-clinical ones), notably by
tailoring the metrics used in the exploration to directly target
the subgroups of interest in relation to the objective.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following licenses/
restrictions: Qualified researchers may request access to patient
level data and related study documents including the clinical
study report, study protocol with any amendments, blank case
report form, statistical analysis plan, and dataset specifications.
Patient level data will be anonymized and study documents will
be redacted to protect the privacy of trial participants. Requests to
access these datasets should be directed to https://www.
clinicalstudydatarequest.com.

Frontiers in Artificial Intelligence | www.frontiersin.org December 2020 | Volume 3 | Article 55992722

Esnault et al. Q-Finder: Credible Subgroup Discovery Algorithm

https://www.clinicalstudydatarequest.com
https://www.clinicalstudydatarequest.com
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


AUTHOR CONTRIBUTIONS

CE, MG, AT, and JZ conceived the idea for this paper. CE, MG,
MQ and JZ implemented the analysis. CE, MG and JZ wrote
sections of the manuscript. All authors contributed to manuscript
revision, read and approved the submitted version. CE, MG and
JZ equally contributed to this work.

ACKNOWLEDGMENTS

We deeply thank Sanofi medical, Jean-Marc Chantelot and
the IDMPS Steering Committee for their medical expertise,

financial support and proofreading. We also express thanks
to Martin Montmerle, Mélissa Rollot, Margot Blanchon and
Alexandre Civet for their remarks and invaluable feedbacks.
Finally we thank the whole Quinten team for their
dedication to the Q-Finder development during the past
twelve years.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frai.2020.559927/
full#supplementary-material.

REFERENCES

Adam, J., Sourisseau, T., Olaussen, K. A., Robin, A., Zhu, C. Q., Templier, A., et al.
(2016). MMS19 as a potential predictive marker of adjuvant chemotherapy
benefit in resected non-small cell lung cancer, Cancer Biomark. 17, 323–333.
doi:10.3233/CBM-160644

Adolfsson, J., and Steineck, G. (2000). Prognostic and treatment-predictive factors-
is there a difference? Prost. Cancer Prost. Dis. 3, 265–268. doi:10.1038/sj.pcan.
4500490

Alomar, M. J., Al-Ansari, K. R., andHassan, N. A. (2019). Comparison of awareness of
diabetes mellitus type II with treatment’s outcome in term of direct cost in a
hospital in Saudi Arabia.World J. Diabetes 10, 463–472doi:10.4239/wjd.v10.i8.463

Alves, A., Civet, A., Laurent, A., Parc, Y., Penna, Y., Msika, S., et al. (2020). Social
deprivation aggravates post-operative morbidity in carcinologic colorectal
surgery: results of the COINCIDE multicenter study. J. Visceral Surg.
140(3), 278. doi:10.1016/j.jviscsurg.2020.07.007

American Diabetes Association. (2016). 6. Glycemic targets. Diabetes Care 40,
1935–5548. doi:10.2337/dc17-S009

Amrane, M., Civet, A., Templier, A., Kang, D., and Figueiredo, F. C. (2015).
Patients with moderate to severe dry eye disease in routine clinical practice in
the UK—physician and Patient’s assessments. Invest. Ophthal. Visual Sci. 56,
4443.

Aschner, P., Gagliardino, J. J., Ilkova, H., Lavalle, F., Ramachandran, A., Mbanya,
J. C., et al. (2020). Persistent poor glycaemic control in individuals with type 2
diabetes in developing countries: 12 years of real-world evidence of the
International Diabetes Management Practices Study (IDMPS). Diabetologia
63, 711–721. doi:10.1007/s00125-019-05078-3

Atzmueller, M. (2015). Subgroup discovery. Wiley Interdiscipl. Rev. Data Mining
Knowl Disc. 5, 35–49. doi:10.1002/widm.1144

Ballarini, N. M., Rosenkranz, G. K., Jaki, T., König, F., and Posch, M. (2018).
Subgroup identification in clinical trials via the predicted individual treatment
effect. PLoS One 13, e0205971. doi:10.1371/journal.pone.0205971

Battioui, C., Shen, L., and Ruberg, S. J. (2014). A resampling-based ensemble tree
method to identify patient subgroups with enhanced treatment effect. Proc.
Joint Stat. Meet.

Betensky, R. A. (2019). The p-value requires context, not a threshold. Am. Stat. 73,
115–117. doi:10.1080/00031305.2018.1529624

Blume, J. D., McGowan, L. D., Dupont, W. D., and Greevy, R. A. (2018). Second-
generation p-values: improved rigor, reproducibility, & transparency in
statistical analyses. PLoS One 13, 1932–6203. doi:10.1371/journal.pone.0188299

Burke, J. F., Sussman, J. B., Kent, D. M., and Hayward, R. A. (2015). Three simple
rules to ensure reasonably credible subgroup analyses. BMJ 351, h5651. doi:10.
1136/bmj.h5651

Candler, T. P., Mahmoud, O., Lynn, R. M., Majbar, A. A., Barrett, T. G., and Shield,
J. P. H. (2018). Treatment adherence and BMI reduction are key predictors of
HbA1c 1 year after diagnosis of childhood type 2 diabetes in the United
Kingdom. Pediatr. Diabetes 19, 1393–1399. doi:10.1111/pedi.12761

Chen, L., Magliano, D. J., and Zimmet, P. Z. (2012). The worldwide epidemiology
of type 2 diabetes mellitus-present and future perspectives. Nat. Rev.
Endocrinol. 8, 228–236. doi:10.1038/nrendo.2011.183

Chen, S. L., Cai, T., and Yu, M. (2017). A general statistical framework for subgroup
identification and comparative treatment scoring. Biometrics 73(4), 1199–1209.
doi:10.1111/biom.12676

Dennett, S. L., Boye, K. S., and Yurgin, N. R. (2008). The impact of body weight
on patient utilities with or without type 2 diabetes: a review of the medical
literature. Value Health 11(3), 478–486. doi:10.1111/j.1524-4733.2007.
00260.x

Dijkman, B., Kooistra, B., Bhandari, M., and Evidence-Based Surgery Working
Group (2009). How to work with a subgroup analysis. Canad. J. Surg. 52(6),
515–522.

Dimitrienko, A., and Lipkovitch, I. (2014). Exploratory subgroup analysis: post-
hoc subgroup identification in clinical trials. J. Biopharm. Stat. 26(1), 71–98.

Doove, L. L., Dusseldorp, E., Van Deun, K., and Van Mechelen, I. (2013). A
comparison of five recursive partitioning methods to find person subgroups
involved in meaningful treatment–subgroup interactions. Adv. Data Anal.
Classif. 8, 403–425

Dumontet, C., Hulin, C., Dimopoulos, M. A., Belch, A., Dispenzieri, A., Ludwig, H.,
et al. (2016). Develpment of a predictive model to identify patients with
multiple myeloma not eligible for autologous transplant at risk for severe
infections using data from the first trial. Haematologica 101, 14–37.

Dumontet, C., Hulin, C., Dimopoulos, M. A., Belch, A., Dispenzieri, A., Ludwig, H.,
et al. (2018). A predictive model for risk of early grade ≥ 3 infection in patients
with multiple myeloma not eligible for transplant: analysis of the FIRST trial.
Leukemia 32, 1404–1413. doi:10.1038/s41375-018-0133-x

Dusseldorp, E., Conversano, C., and Bart Jan, V. S. (2010). Combining an additive
and tree-based regression model simultaneously: STIMA. J. Comput. Graph.
Stat. 19, 514–530. doi:10.1198/jcgs.2010.06089

Dusseldorp, E., Doove, L., and Iven, V. (2016). Quint: an R package for the
identification of subgroups of clients who differ in which treatment alternative
is best for them. Behav. Res. Methods 48 (2), 650–663. doi:10.3758/s13428-015-
0594-z

Eveno, C. (2014). An abnormal body mass index of is associated with an increased
risk of rectosigmoid cancer risk: interest a short recto-sigmoidoscopy for early
detection. Vienna, Austria: United European Gastroenterology Journal.

Foster, J. C., Taylor, J. M., and Ruberg, S. J. (2011). Subgroup identification from
randomized clinical trial data. Stat. Med. 30, 2867–2880. doi:10.1002/sim.4322
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