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Coronavirus disease 2019 (COVID-19) has developed into a global pandemic, affecting
every nation and territory in the world. Machine learning-based approaches are useful
when trying to understand the complexity behind the spread of the disease and how to
contain its spread effectively. The unsupervised learning method could be useful to
evaluate the shortcomings of health facilities in areas of increased infection as well as
what strategies are necessary to prevent disease spread within or outside of the country.
To contribute toward the well-being of society, this paper focusses on the implementation
of machine learning techniques for identifying common prevailing public health care
facilities and concerns related to COVID-19 as well as attitudes to infection prevention
strategies held by people from different countries concerning the current pandemic
situation. Regression tree, random forest, cluster analysis and principal component
machine learning techniques are used to analyze the global COVID-19 data of 133
countries obtained from the Worldometer website as of April 17, 2020. The analysis
revealed that there are four major clusters among the countries. Eight countries having the
highest cumulative infected cases and deaths, forming the first cluster. Seven countries,
United States, Spain, Italy, France, Germany, United Kingdom, and Iran, play a vital role in
explaining the 60% variation of the total variations by us of the first component
characterized by all variables except for the rate variables. The remaining countries
explain only 20% of the variation of the total variation by use of the second
component characterized by only rate variables. Most strikingly, the analysis found that
the variable number of tests by the country did not play a vital role in the prediction of the
cumulative number of confirmed cases.
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1. INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that first
emerged in December 2019 in Wuhan, the capital of China’s Hubei province (Roosa et al., 2020). It
has spread to nearly 213 countries and territories and has infected more than 2.3 million people as of
April 17, 2020, has killing approximately 155,000 people worldwide (Max Roser and Ortiz-Ospina,
2020) (also see Figure 3). As of April 17, 2020, the highest crude fatality rate was observed in Belgium
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(nearly 485 per million), followed by Spain (nearly 435 per
million), and Italy (nearly 390 per million) (Max Roser and
Ortiz-Ospina, 2020). However, the highest number of deaths
took place in United States (over 38,000), followed by Italy,
Spain, and France. The countries most affected have conducted
a large number of tests. As of April 17, 2020, the United States has
conducted more than 3.7 million tests, followed by Russia (over 1.8
million), Germany (over 1.6 million), and Italy (approximately 1.3
million). The number of active cases is growing as the number of
cases is growing. As of April 17, 2020, globally, nearly 67% of the
total cases are active cases, and hence 23% are recovered (Max
Roser and Ortiz-Ospina, 2020).

Most of the affected countries have been maintaining social
distancing, closing educational institutes, offices, and markets to
reduce the rate of spread; these methods have not had universal
reach, however, and there are many countries where people are
commuting in crowded public transport or even living in close
quarters in urban slums (Hui et al., 2020). Also, in many countries,
the public healthcare systems are insufficient and overburdened,
and this poses a potentially dangerous threat to public health
(Khan and Hossain, 2020b). According to World Bank data
(World Bank, 2020), in 2015, Bangaldesh had 0.8 hospital beds
per 1,000 people, India had 0.7 (2011), Pakistan had 0.6 (2012), and
the United States had 2.9 (2012), whereas China had 4.2 (2012)
beds per 1,000 people. It is recommended that intensive care unit
(ICU) practitioners, hospital administrators, governments, and
policymakers must prepare for a substantial increase in critical
care bed capacity, with a focus not just on infrastructure and
supplies but also on staff management (Phua et al., 2020).

The ability for testing for COVID-19 varies from country to
country. Testing ability is one of our most important tools for

slowing down and reducing the spread and impact of the virus,
but it is also dependent on a country’s financial capability,
laboratory capacity, and access although it. Low- and middle-
income countries may have to battle their COVID-19 pandemic
with scarcer resources. Tests allow us to identify infected
individuals, guiding the medical treatment that they receive.
They also enable the isolation of those infected and the tracing
and quarantining of anyone they have been in contact with
(Hellewell et al., 2020). As of April 17, 2020, the United States
have administered the highest no. of tests, approximately 3.4
million, which is almost 20% of global test total, followed by
Germany (over 1.7 million), Russia (over 1.6 million), and Italy
(approximately 1.2 million). Figure 1 is a scatter plot of the
cumulative cases and cumulative tests for 132 countries. The
United States was discarded for this graph since the United States
have had an exceptionally high number of tests performed. We
found that the correlation coefficient between these two variables
for 132 countries is 0.71, which indicates a strong positive
correlation; if including United States, the coefficient is 0.88,
which indicates a very high positive correlation.

Artificial intelligence (AI) and machine learning expertise are
needed in order to help experts within public health and
epidemiology. For example, Muzammal et al. (2020) used a
multi-sensor data-fusion-enabled ensemble approach for medical
data. Pirbhulal et al. (2019) used machine learning tools to enable a
security framework for IoT-based healthcare. AI provides a useful
tool that can help in computing risk factors, classification, even drug
analysis, and it can also responding to crises, according to health data
specialists. Because of the increase in COVID-19 patients and the
overall lack of sufficient equipment to receive all patients, difficult
choices must be made. The necessary medical care is thus applied

FIGURE 1 | Scatter plot between cumulative tests and cumulative cases for 132 countries (except United States).
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only to patients that have a higher probability of survival. Calculating
the probability to survive and the effect of each feature, such as
symptoms in our case, on survival probability is done using survival
analysis. In the presence of massive epidemic data, the machine
learning techniques help to identify the epidemic patterns so that
early action can be planned to stop the spread of the virus. AI and big
data can be found in a lot of applications in various fields, e.g., AI in
computer science, AI in banking, AI in agriculture, and AI in
healthcare. These technologies have established roles in these
fields, and they currently play important roles in the global battle
against the COVID-19 pandemic.

There are a number of research works where machine learning
tools have been used for global and local COVID-19 data analysis.
Recently, Chuanyu et al. (2020) used several machine learning
tools, including elastic net, random forest, and bagged flexible
discriminant analysis, for predicting the mortality risk of COVID-
19 patients. This work is completely different from other COVID-
19-related works since we have focused on the classification and
prediction of a cumulative number of confirmed COVID-19 cases.
To our knowledge, there is no work so far that has used such
machine learning techniques to predict confirmed COVID-19
cases. Magdon-Ismail (2020) presented a robust data-driven
machine learning analysis of the COVID-19 pandemic from its
early infection dynamics. McCall (2020) discussed how artificial
intelligence protects healthcare workers and helps curb the spread
of COVID-19. Waiker (2020) discussed possibilities of identifying
and evaluating the virus with technology, AI, and analytics.Waiker
(2020) used deep learningmethods to review and critically appraise
published and preprint reports of prediction models for COVID-
19 patients. In particular, several study works (Afshar et al., 2020;
Asnaoui et al., 2020; Corman et al., 2020; Fomsgaard and
Rosenstierne, 2020; Forbes, 2020; Ghoshal and Tucker, 2020;
Gozes et al., 2020; Hall et al., 2020; Healthitanalytics, 2020; Hu
et al., 2020a; Hu et al., 2020b; IBM, 2020; Loey et al., 2020;Maghdid
et al., 2020; Narin et al., 2020; Pal et al., 2020; Pham et al., 2020; Qi
et al., 2020; Rao and Vazquez, 2020; Satu et al., 2020; Sodhro et al.,
2019; Yan et al., 2020; Zhang et al., 2020; Zheng et al., 2020) have
used machine learning techniques, including big data techniques,
to process COVID-19 data to determine the spread of disease,
predict the risk of disease, and to assess the diagnosis of disease,
number of incidences, and healthcare facilities.

The above studies mainly focused on the occurrence of
confirmed, recovered, and fatal cases in Wuhan and the rest of
the world to understand the suspected threats and plan for
subsequent containment actions. To better understand and
work to alleviate the COVID-19 pandemic, many papers and
preprints, as outlined above, have been published online in the
last 78 months. Our main purpose is to show the effectiveness of
machine learning approaches to fight against the COVID-19
pandemic and review state-of-the-art solutions using these
technologies. In this paper, however, we use machine learning
approaches to explore whether the global cumulative number of
infected people can be predicted using the data provided by
Worldometer (Max Roser and Ortiz-Ospina, 2020) as of April
17, 2020. We believe that machine learning-based approaches are
useful when trying to understand the complexity behind the spread
of the disease and how to contain the spread of such outbreaks

effectively. As the outbreak of the COVID-19 has become a
worldwide pandemic, a real-time analyses of epidemiological
data is needed to prepare society with better action plans to
combat the disease. We also demonstrate useful approaches
when using unsupervised machine learning techniques to
explore the nature of propagation in different countries.

This analysis is expected to bring useful findings, as countries with
poor health infrastructure, a lack of smart strategies for testing, and a
lack of health care for patients could descend into a rapid spread of
disease and later stages of infection. It is therefore important to use
unsupervised and supervised methods to classify countries in terms
of disease spread and prediction of the global number of cumulative
cases of COVID-19. A number of variables are considered for this
study, including the country, number of new cases, total number of
active cases, total number of deaths, total number of recovered
patients, total number of serious cases, total number of tests, deaths
per million, cases per million, and tests per million. We are also
interested in identifying what the total number of tests that are vital
to predict the total number of infections for countries. We will
further investigate whether the countries are clustered on the basis of
these covariates. Finally, whether the total variations can be explained
with some latent groups which are uncorrelated each other.

2. METHODOLOGY

The data used for the current study have been collected from real-
time COVID-19 data from the Worldometer website (Max Roser
and Ortiz-Ospina, 2020) as reported as of April 17, 2020. The
Worldometer is a data repository and a free reference website that
is trusted by the likes of the United Kingdom Government, Johns
Hopkins CSSE, etc. For the current study, we collated the
information obtained on 133 countries that have crossed the
100 number of confirmed COVID-19 cases.

For each country we collected information on a total of 10
variables: the cumulative confirmed cases, new confirmed cases,
cumulative deaths, cumulative recovered patients, cumulative active
cases, cumulative seriously critical patients, infection rate in million,
death rate in million, cumulative tests conducted, and test rate in
millions. These numbers and rates are provided by the respective
countries and then stored on the Worldometer website (Max Roser
and Ortiz-Ospina, 2020). New confirmed cases are the confirmed
cases reported on April 17, 2020. The definition of recovery and
serious cases vary from country to country. According toMax Roser
and Ortiz-Ospina (2020), the recovered number is not very
accurate, as reports can be missing, incomplete, incorrect, and be
based on different definitions or dates (or a combination of all of
these) for many governments, both at the local and national level,
and there may also be differences between states within the same
country or counties within the same state. We considered the
data that represent the rates of cases, deaths, tests per million,
etc. in our analysis since these are the vital statistics that
represent the proxy of the respective population size. We
found a number of missing values for each variable except
for the cumulative number of infected patients. There are
some countries that did not provide information on the
number of domestic tests performed, such as China, Kuwait,
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Oman, Cameroon, and Afghanistan. Before implementing any
unsupervised machine learning techniques, such as principal
component analysis (PCA), random forest, cluster analysis, and
regression tree using the Classification And Regression Tree
(CART) method Breiman et al. (1984) and the R package caret
Kuhn (2020), we imputed all missing values with the Expected-
Minimization algorithm technique, as suggested in Dray and
Josse (2020). All 10 features were used for both PCA and cluster
analysis. For CART and random forest analysis, however, the
cumulative number of cases was used as a (Y), but all of the 10
variables were used as independent features (X). The

pseudocode of CART and random forest methods are given
below. Methods used for this study are displayed in a flowchart
as displayed in Figure 2.

3. ANALYSIS

Figure 3 displays of most of the COVID-19 cases and deaths are
from the United States and European countries. We found that
the United States and European countries, such as Germany,
Russia, Italy, Spain, the United Kingdom, and France,
administered a very high number of tests. The average number
of tests among 133 countries is found to be nearly 156,500. The
United States performed the highest at 3,398,140 and San Mario
the lowest at 846 tests as of April 17, 2020.

All variables except for the country are correlated in this study.
We standardized the data and imputed the missing value use of the
Expectation-Maximization (EM) algorithm, according to (Dray and
Josse, 2020), prior to performing the principal component analysis.
We found the principal components through orthogonal
transformation by converting the 10 correlated variables of the
133 countries into a set of values that are linearly uncorrelated
variables. This exploratory data analysis is useful for making
predictive models. This unsupervized machine learning
technique will give the patterns of similarity in the countries and
those orthogonal variables found. Figure 4 shows such pattern
where the first two principal components are displayed. We found
that most of the variance (80%) is explained by the first two
principal components.

Algorithm 1 | CART algorithm

Procedure CART
1. Start at the root node
2. For each ordered value of X, convert it to an unordered variable ~X by grouping its values in the node into a small number of intervals,
if X is unordeered, then return ~X � X
3. Perform a chi-squared test of independence for each ~X variable vs. Y on the data in the node and compute its significance probability
4. Choose the variable X * associated with the ~X that has the smallest significance probability
5. Find the split set {X * ∈ S*} that minimizes the sum of gini indexes and use it to split the node into two child nodes
6. if a stopping criteria is reached, then return exit

Otherwise, apply steps 2–5 to each child node
7. Prune the tree with the CART method

Algorithm 2 | Random forest algorithm

Procedure RF
1. Randomly select M features from the feature set.
2. For each X in M,
a. Calculate the information gain

Gain(t,X) � E(t) − E(t,X)
E(t) � ∑c

i�1
−Pi log2 Pi

E(t,X) � ∑
c ∈ X

P(c)E(c),

Where E(t) is the entropy of the two classes, and E(t,X) is the entropy of feature X
b. Select the node d that has the highest information gain
c. Split the node into sub-nodes
d. Repeat steps a, b, and c to construct the tree until the minimum number of samples required to split is reached
3. Repeat steps 1 and 2 for N times to build forest of N trees

FIGURE 2 | Flowchart of the methods used for COVID-19 data of 133
countries.
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The main results are reflected in the graph of the scores in
Figure 4, where we show the countries in the axes formed by the
first two principal components. The cloud of individual points is
centered at the origin to facilitate the data analysis. The first
principal component is characterized by the variables: cumulative

infected cases, cumulative deaths, active cases, cumulative
recovered cases, cumulative serious cases, new cases, and
cumulative tests. The countries that are vital to explaining the
60% variation of total variations by the first component include
the United States, Spain, Italy, France, Germany, the United

FIGURE 3 | Global infected cases and deaths of COVID-19 for 133 countries (upper panel) and without the United States (lower panel) as of April 17, 2020.
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Kingdom, and Iran. The second principal component is
characterized by the remaining variables: rate of deaths, rate of
infected cases, and rate of tests per million. A country’s

population size is the proxy of these rates, playing a vital role
in the second principal component, which explains 20% of the
total variations.

We used the cluster analysis technique for the imputed and
standardized data, as used in the principal component analysis.
The heatmap of the hierarchical cluster analysis, as shown in
Figure 5, reveals that there are two clusters among the variables
and four clusters among the countries. Three rate variables
together–tests, cases, and deaths per million form one cluster
while the remaining seven variables together form the second
cluster. It is mentioned that the rate variables under the first
cluster together address the population number. Population is a
significant factor when assessing a country’s COVID-19 response.
However, we observed four major clusters among the countries.

Table 1 shows the full list of the clusters. The first cluster
contains all the countries that contributed to the first principal
component’s variation in the PCA analysis along with China. The
PCA also suggests that we validate this clustering because the
heatmap in Figure 5 reveals that these countries are clustered
based on the maximum variation directed by the all seven
variables. It is observed, from the data collected, that these
nine countries were the most affected countries. Additionally,
the economic conditions and medical facilities of these countries
are among the best in the world. The second cluster contains 43
countries which are clustered according to all variables except for

the test and case rates per million. Most of the 43 countries are
middle income countries and have moderated health facilities.
The third cluster consists of 14 countries that are clustered based

FIGURE 4 | Principal component analysis results for global COVID-19
data of 133 countries.

FIGURE 5 | Cluster analysis results for global COVID-19 data of 133 countries.
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on all variables other than death rate per million. These countries
have much fewer deaths. These 14 countries are rich and may
have well-developed health facilities available. The final cluster
consists of the highest number, 68 countries, and these are
clustered mainly based on the test and case rates variable,
though other variables were also used in this study. Most of
these 68 countries are poor, and they may thus have very poor
conditions for treatment and healthcare facilities.

We implemented the regression tree using CART to predict
the cumulative number of infected people. The main purpose of
implementing the regression tree is to see whether the global
cumulative number of infected people can be predicted accurately
using the 10 variables in this study. Results are presented in
Table 2, which shows the weights, including their percentage of
importance, for all 10 variables. It revealed from the results that
country and cumulative active cases appeared to be the most
important variables to predict the cumulative number of infected
people, and these were followed by the cumulative deaths,
cumulative recovered cases, new case, and cumulative serious
cases. Most strikingly, however, we found that the cumulative
tests appeared as one of the most unimportant variables to predict
the cumulative number of infections.

We also implemented the random forest to predict the
cumulative number of infected people. The random forest is a
model made up of many decision trees that are then transformed
into a single ensemble model. This model uses two key
concepts–random sampling of training data points when
building trees and random subsets of features considered when

splitting nodes. The decision tree is prone to overfitting when we
do not limit the maximum depth, and this is due to its unlimited
flexibility. As an alternative to limiting the depth of the tree, which
reduces variance and increases bias is the random forest. Results
are presented in Table 2, which shows the weights, including their
percentage of importance, of all 10 variables. The weight is the
total decrease in node impurities, measured by the Gini Index
from splitting the variable, averaged over all trees. We found very
similar results for the regression tree using CART. That is, country
and cumulative active cases appeared to be the most important
variables with which to predict the cumulative number of infected
people. And the cumulative tests appeared to be one of the
unimportant variables with which to predict the cumulative
number of infections. This is a striking finding obtained by
using both the CART and random forest methods. We have
not found any other studies that have obtained a similar result.

The prediction accuracy for both methods, regression tree and
random forest, has been measured with the root mean square log
error (RMSLE). The RMSLE is calculated as

RMSLE (ŷi, yi) �
�������������������������
1
n
∑n
i�1
[log(ŷi + 1) − log(yi + 1)]2√

where n is the total number of observations, ŷi is the predicted
value, and yi is the actual value for the ith cases. Here, log(yi) is
the natural logarithm of yi. Table 2 shows that the random forest
method can predict more efficiently than the regression tree
method. This suggests that random forest, as expected, is
better when predicting the global cumulative cases of COVID-19.

4. DISCUSSIONS AND CONCLUSIONS

In this paper, we demonstrated how to implement the basic
machine learning techniques–principal component, cluster
analysis, and regression tree to analyze global COVID-19 data
that was extracted from theWorldometer website (Max Roser and
Ortiz-Ospina, 2020) as of April 17, 2020. We considered 10
variables for each of the 133 countries. Through use of PCA
analysis found that there are two latent variables that are
characterized by the 10 variables we considered. The first
principal component explains the 60% variation of the total
variations, and this is characterized mainly by seven variables.
These are the total infected cases, deaths, active cases, recovered

TABLE 1 | Cluster-wize country lists for 133 countries.

Cluster Country

Cluster 1 (n � 8) United States, Spain, Italy, France, Germany, United Kingdom, China, Iran
Cluster 2 (n � 43) Afghanistan, Australia, Austria, Belarus, Brazil, Brunei, Burkina Faso, Cameroon, Canada, Congo, Cyprus, Czechia, Denmark, Diamond Princess,

DRC, Estonia, Finland, Guadeloupe, Guinea, Hong Kong, Israel, Ivory coast, Kuwait, Latvia, Lithuania, Madagascar, Mali, Martinique, Netherlands,
New Zealand, Norway, Oman, Portugal, Qatar, Russia, Runion, S. Korea, Senegal, Singapore, Slovenia, Sweden, Turkey, Venezuela

Cluster 3 (n � 14) Andorra, Bahrain, Belgium, Channel Islands, Faeroe Islands, Gibraltar, Iceland, Ireland, Isle of Man, Luxembourg, Malta, San Marino, Switzerland, UAE
Cluster 4 (n � 68) Albania, Algeria, Argentina, Armenia, Azerbaijan, Bangladesh, Bolivia, Bosnia and Herzegovina, Bulgaria, Cambodia, Chile, Colombia, Costa Rica,

Croatia, Cuba, Djibouti, Dominican Republic, Ecuador, Egypt, El Salvador, Georgia, Ghana, Greece, Guatemala, Honduras, Hungary, India,
Indonesia, Iraq, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Lebanon, Malaysia, Mauritius, Mayotte, Mexico, Moldova, Montenegro,
Morocco, Niger, Nigeria, North Macedonia, Pakistan, Palestine, Panama, Paraguay, Peru, Philippines, Poland, Romania, Rwanda, Saudi Arabia,
Serbia, Slovakia, South Africa, Sri Lanka, Taiwan, Thailand, Trinidad and Tobago, Tunisia, Ukraine, Uruguay, Uzbekistan, Vietnam

TABLE 2 | Importance of variables by regression tree and random forest.

Regression tree Random forest

Variable names Percentage of importance (weights)

Country 25 (454.2) 19.1 (31.4)
Total active cases 24 (421.8) 16.1 (26.5)
Total deaths 16 (332.7) 15.7 (25.8)
Total recovered 14 (255.2) 13.2 (21.7)
New cases 10 (174.7) 14.0 (23.0)
Total serious cases 8 (149.0) 13.3 (21.9)
Total tests 1 (17.4) 7.2 (11.9)
Cases per million 1 (17.3) 0.3 (0.5)
Tests per million 0 (1.0) 0.2 (0.4)
Deaths per million 0 (0.0) 0.9 (1.4)
RMSLE 0.339 0.287
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cases, serious cases, new cases, and total tests. The majority of the
total variations is made up of all variables except for the rate
variables. The remaining three variables—case, death, and test
rates (measured in per million)—characterize the second principal
component, which accounts for the 20% variation of the total
variations. The latent factor behind this appears to be the country’s
population size, as all these three variables representing their
population size. None of the populations (nor the population
densities) of the 133 countries are. We believe that country’s
population size or indirectly the associated population density is
responsible for the 20% variation of the total variations.

The cluster analysis found four major clusters among the
countries but two clusters among the 11 variables. The analysis
reveals that the countries are clustered based on the variation
among the variables. We found that the eight countries that have
the highest number of cases form a cluster, while 43 countries
form another cluster based on all the variables except for the
case and test rates. The eight countries are the United States,
Spain, Italy, France, Germany, the United Kingdom, China, and
Iran, and they are all homogeneous in term of cumulative cases,
deaths, active cases, and tests. Most of them were/are the
epicenter of the pandemic. However, we found that 14
countries with very low rates of death form one cluster and
68 countries with higher test and case rates, along with the
significant effect of the other eight variables, form the fourth
cluster. Countries and territories with low death rates include
Bahrain, Belgium, Channel Islands, Faeroe Islands, Gibraltar,
Iceland, Ireland, Isle of Man, Luxembourg, Malta, San Marino,
Switzerland, and the UAE.

We found from both the regression tree and random forest
analyses that country, total active cases, total deaths, total
recovered cases, new cases, and total serious cases are very
important variables with which to predict the cumulative
number of cases. The number of tests (including the three
rate variables) is not an important variable. As stated, global
data analysis indicates that the cumulative number of tests is not
significant when predicting cumulative cases, but it is quite
important to consider a specific country in terms of situation
and context. Besides, the policies on testing differ from country
to country, region to region, or even city to city. It mainly
depends on what stage a specific country or community has
reached in terms of the pandemic curve or the level of
preparedness in terms of lab facilities, lab staff, sample
collection strategies, etc. When resources are limited and the
healthcare system is overloaded, widespread testing, such as that
suggested by the World Health Organization (WHO), may not
be implemented. This is a reality for many of the low- and
middle-income countries on our list of 133. The number of tests
is important for many countries to limit the spread in the early
stages (or even in any stage of spread), as this affects the ability
to identify cases and isolate them and their contacts. However,
global COVID-19 data analysis results reveal that cumulative
tests are not at all important determinants with which to predict
the cumulative number of tests for the country.

The world grapples with the containment of the COVID-19
outbreak, and countries are trying to reduce virus spread by
performing tests for detecting and then isolating the infected

people and quarantining the susceptible people. Besides,
continuing the lockdown and social distancing is expected to
help in reducing the spread considerably. However, this paper
found that the countries are clustered with respect to underlying
effects of the covariates, though the countries are fighting
independently against this virus war. Similarly, variables
related to rates form a cluster together while other variables
form another cluster. Most strikingly, we found that the
cumulative tests appeared as an unimportant variable when
predicting the cumulative number of infected people.

This study was conducted to assess how the countries are
clustered in terms of the covariates. Implementation of
unsupervized and supervised methods revealed that the
classification of countries is important, as it might help when
analyzing the spread of disease and predicting the global
cumulative cases of COVID-19. However, the countries in each
cluster might have different strategies and policies with which to
control the epidemic outbreak. They should all depend on data-
dependent strategies, such as tracing and tracking the reproduction
number of COVID-19, when developing methods with which to
control the outbreak. Some early studies with data from Wuhan
revealed the importance of exploring the reproduction number of
COVID-19 (Kenji et al., 2020; Qun et al., 2020). Also, countries
within the cluster need to evaluate several health facilities and their
preparedness. So, the unsupervised learning could be useful when
learning about the shortcomings of health facilities in the groups
where infection is higher and when assessing what strategies are
necessary when trying to prevent the spread of infection within or
outside the country. Besides, classification and grouping based on
the underlying latent feature could be useful to countries when
trying to control the epidemic outbreaks through common remedial
measures.

We used the CART and random forest methods, although
random forest has better predictive power and accuracy than a
single CART model due to the lower variance exhibited by the
random forest. Our main goal was to know whether the
independent features are significantly associated with the
dependent variable “cumulative cases” rather than predictive
accuracy. However, the CART has advantages: the rules are
easily interpretable and it offers automatic handling of variable
selection, missing values, outliers, local effect modeling, variable
interaction, and non-linear relationships. Although the definition
of recovery may vary from country to country, this study has used
the number of recovered people, without knowing the actual
definition of the recovery from COVID-19, for the respective
country. This is a limitation of this study. One of the future
directions could be the comparison of results of regression tree
using CART and random forest methods with other machine
learning counterparts, such as the support vector machine (SVM)
and deep learning methods.
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