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The exploitation of big volumes of data in Industry 4.0 and the increasing development of
cognitive systems strongly facilitate the realm of predictive maintenance for real-time
decisions and early fault detection in manufacturing and production. Cognitive factories
of Industry 4.0 aim to be flexible, adaptive, and reliable, in order to derive an efficient
production scheme, handle unforeseen conditions, predict failures, and aid the decision
makers. The nature of the data streams available in industrial sites and the lack of
annotated reference data or expert labels create the challenge to design augmented and
combined data analytics solutions. This paper introduces a cognitive analytics, self- and
autonomous-learned system bearing predictive maintenance solutions for Industry 4.0.
A complete methodology for real-time anomaly detection on industrial data and its
application on injection molding machines are presented in this study. Ensemble
prediction models are implemented on the top of supervised and unsupervised
learners and build a compound prediction model of historical data utilizing different
algorithms’ outputs to a common consensus. The generated models are deployed on a
real-time monitoring system, detecting faults in real-time incoming data streams. The key
strength of the proposed system is the cognitive mechanism which encompasses a real-
time self-retraining functionality based on a novel double-oriented evaluation objective, a
data-driven and a model-based one. The presented application aims to support
maintenance activities from injection molding machines’ operators and demonstrate
the advances that can be offered by exploiting artificial intelligence capabilities in
Industry 4.0.
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1 INTRODUCTION

Nowadays, the continuous accelerating pace of data creation and gathering from a wide range of
sources such as sensors, posts to social media sites, transaction records, traffic data, pictures and
videos, health data, mobile devices, and users’ activities led to significant changes in data analytics
solutions by boosting machine learning (ML) and artificial intelligence (AI) methodologies to a wide
range of domains (Salamanis et al., 2016; Vatrapu et al., 2016; Galetsi et al., 2020). Themanufacturing
domain was not an exception. The adoption of state-of-the-art algorithms and cutting-edge
technologies in the years of Industry 4.0 enables the automation of processes and the creation of
novel predictive maintenance solutions based on predictive and prescriptive analytics (Rojko, 2017).
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Nonetheless, the full potential of the fast growing and
changing data in manufacturing domain has not been
unlocked yet. The application of human-like intelligence in the
form of cognitive analytics in manufacturing domain is still in
initial stages. Some initial approaches for cognitive
manufacturing manage to improve analytics services’ quality
and consistency. However, cognitive applications that can get
smarter and more effective over time by learning from their
interaction with data and by evaluating their own performance
indicators in terms of precision, is still an ongoing activity. To this
aim, the work presented in this study introduces a cognitive
framework that exploits the capabilities of retraining mechanisms
by continuous learning. Its application for predictive
maintenance services in injection molding machines of a large
electronics manufacturer’s shop floor demonstrates the
advantages of this cognitive solution in terms of predictions’
accuracy.

An injection molding machine is commonly used in plastic
processing industry and has to work continuously for long hours,
so as to enable a continuous production line. A series of
prediction, prevention, and inspection activities in order to
alert machine problems and failures are vital for the normal
and stable operation of a molding machine. This category of
machines consists of different parts such as hydraulic,
mechanical, and electrical parts that can cause failures.
Usually, a failure is related to abnormal rise of temperature in
an injection molding machine. The problem can be related to
various factors such as problems in cooling system, improper
pressure regulator, and high pressure in hydraulic system
alongside with long period of overheating. Besides the
temperature, the abnormal generated noise can be a real-time
failure indicator if this kind of data is available. Damaged
hydraulic and mechanical components can lead to significant
variations of sound. The detection of substandard products with
lower quality could be the last indicator of an injection molding
machine failure.

The current study introduces a predictive solution based on
the application of cognitive analytics in feature parameters
coming in real time from injection molding machines by using
IDS connectors (Otto et al., 2019; Otto and Jarke, 2019). The
proposed predictive models aim to detect abnormalities out of the
available temperature, pressure, and energy consumption data.
Since both labeled and unlabeled data exist in the aforementioned
machines, supervised and unsupervised learning algorithms have
been deployed based on the availability or not of ground truth in
the data, respectively. Ensemble learning was implemented upon
different learners in order to combine their independent decisions
and boost the fault detection mechanism. In the case that ground
truth is available by the machines, the Adaptive Boosting (Freund
and Schapire, 1995; Nath and Behara, 2003; Schapire and Freund,
2012) ensemble technique was applied to the deployed supervised
learning methodologies in order to increase predictive
performance. Accordingly, the major voting method is
implemented on the top of unsupervised learning. As the
injection molding machine condition monitoring forms a
nonstationary environment, an adaptive and evolving
approach is presented, capable of accommodating changes. So,

the produced predictive models are continuously evaluated
through a double-oriented evaluation objective, a data-driven
and a model-based one. The latter enables a novel real-time self-
retraining functionality for boosting the cognitive capabilities of
the proposed solution.

The paper is structured as follows. Following the Introduction,
a related work review is presented. Section 3 contains a detailed
description of the proposed methodology, while Section 4
demonstrates the experimental results of the study. Finally, the
conclusions of the study are drawn at Section 5.

2 RELATED WORK

There are several available methodologies, concepts, and
solutions related to predictive maintenance services in
Industry 4.0. The selected related work in this section is
presented by the perspectives of cognition in manufacturing
domain, predictive maintenance for injection molding
machines, and ensemble methods for the enhancement of
predictive services. The three aforementioned categories
constitute the main advances of the current work and the
corresponding bibliography was considered as the most
suitable one to be mentioned in this section.

The advances in nowadays software and hardware
technologies enable computer systems to mimic human brain
activities and acquire cognition capabilities. The alleged
capabilities introduce cognitive computing which is based on
software that learns by itself, without reprogramming, and it is
able to automate cognitive tasks. Industry 4.0 solutions have
adopted various cognitive computing approaches for predictive
maintenance, planning optimization, and performance and
quality improvement. To this direction, the concept of the
Cognitive Factory is supposed to be flexible, adaptable,
reliable, and efficient in various momentary situations (Zaeh
et al., 2009). This type of factory is moving from perception to
action by using continuous learning and cognitive mechanisms.
The advantages, disadvantages, and future challenges in the field
of cognitive manufacturing have been widely studied (Bannat
et al., 2011; Iarovyi et al., 2015). Iarovyi et al. (2015) present a
documentation of different architectures for cognitive
manufacturing systems that can be benefited from Industrial
Internet of Things and cognitive control. Bannat et al. (2011)
investigate methods to realize cognitive control and cognitive
operation of production systems by highlighting self-optimizing
and self-learning procedures. Iarovyi et al. (2015) again propose
an architecture for cognitive manufacturing systems by
combining approaches from PLANTCockpit (2012) and
CogNetCon (Boza et al., 2011), enabling efficient data
integration in manufacturing environments and providing
connectivity between data on shop floor level and data in
MES, ERP, and other systems. A cognition layer in the
architecture contains a cognition engine, a model repository,
and knowledge representation components. By adopting the
aforementioned components, the architecture targets higher-
level decision-making, self-learning, reconfiguration, and self-
optimization in manufacturing domain.
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Comprehensive research has been held toward predictive
maintenance in manufacturing, including the study and
analysis of sensor data and industrial machines for early fault
detection, condition base monitoring, and decision support
systems. Specifically, injection molding machines have been
investigated as a real-world industrial application of predictive
analytics (Gatica et al., 2016; Park et al., 2016; Jankov et al., 2017).
An overview of industrial analytics methods and applications for
predictive maintenance in manufacturing is presented by Gatica
et al. (2016), encompassing an injection molding machines’ use
case. The work of Gatica et al. (2016) classifies the machinery
analytic approaches in offline and online analysis. The offline
analytics contain the “hypothesis-driven” strategy which is based
on the analysis of the machine behavior and the “data-driven”
strategy which focuses on exploration of the information
provided by sensors and machine logs. Online analytics
resolve predictive maintenance through data monitoring and
machine state recognition by employing machine learning
models. Jankov et al. (2017) introduce another real-time
anomaly detection system dealing with injection molding
machines. The presented system performs anomaly detection
using K-means for cluster finding and Markov model for data
training. Jankov et al. (2017) describe a custom-built system and
concentrate on the system’s performance through parallel and
real-time processes. Furthermore, the method proposed by Park
et al. (2016) distinguishes the different maintenance items of an
injection molding and maps each one of these items to selected
parameters in the collected data. Thereafter, a live parameters’
monitoring process takes place and abnormal trends or patterns
are detected based on statistical techniques. The detected
abnormalities for different machine’s parts are available to the
maintenance operators. Last but not least, in the field of predictive
analytics in manufacturing, a study which introduces an
application on industrial ovens is worth mentioning
(Rousopoulou et al., 2019). This study’s methodology could as
well be applied to injection molding machines, as it concerns the
usage of both existing machine sensors with their log data and
deployed sensors and achieves early fault diagnosis in an
industrial machine.

Finally, on the subject of ensemble learning, ensemble
techniques contribute to the performance of supervised and
unsupervised machine learning models and enhance the
predictive maintenance analytics solutions. A recent work
regarding ensemble learning proves the improvement of
individual learning models in terms of accuracy as well as
training time by implementing ensemble learning and creating
an integrated model through majority voting, experimenting on
refrigerator system’s datasets (Zhang et al., 2020). Additionally, in
terms of assessing the ensemble techniques, a thorough
benchmarking evaluation of outlier detection algorithms was
reviewed (Domingues et al., 2018). Unsupervised machine
learning algorithms were tested and compared on multiple
datasets, highlighting their strengths and weaknesses. Within
this context, an application of unsupervised outlier detection
on streaming data containing travel booking information was
implemented (Domingues et al., 2016). The study of Domingues
et al. (2016) performs fraud detection by examining aggregation

functions and interpolation in order to address unsupervised
ensemble learning.

3 METHODOLOGY

The proposed methodology constructs a real-time anomaly
detection solution with cognitive retraining, applied to an
industrial machine. Starting with the training of historical data
by state-of-the-art ML algorithms and meta-learners, prediction
models are created. The models are fed with live incoming data
streams and detect abnormalities in real time. This live
monitoring process is enhanced by an automated retraining
mechanism which inspects the characteristics of the new input
data and the models’ performance in order to update the
prediction models and maintain the high performance of the
fault detection system. The methodology consists of the following
components:

(1) Data Preparation
(2) Online Training
(3) Ensemble Learning
(4) Live Prediction
(5) Cognitive Check

Figure 1 is an illustration of the proposed methodology. The
process starts with historical data that are inserted for data
preparation. The online training includes the training of
several algorithms which are afterward enhanced by the
ensemble learning step. The above steps examine and
determine the optimum models for live prediction which
performs real-time anomaly detection. New live data are
coming through the predictive models which are constantly
evaluated by a cognitive check and updated by automatic
model retraining. The proposed method aims to form a
regularly updated system which can monitor an injection
molding machine and predict machine or part failures in
order to reduce or even prevent machine downtime and save
time and cost in the production line. The remainder of this
chapter is a detailed description of the proposed solution,
underlining the methods and algorithms combined in a
complete anomaly detection pipeline.

3.1 Data Preparation
The current study’s dataset is composed of measurements from
injection molding machines which carry out the process of
shaping rubber or plastic parts by injecting heated material
into a mold. Specifically, the injection molding process deals
with the fabrication of plastic components for electric shavers.
The available measurements are expressed in time-series format,
including different kinds of measurements, such as temperature,
pressure, energy consumption, and time. Anomalies in time-
series data indicate “bad” shots during injection, which leads to
rejected products.

Six different injection molding machines are available in the
dataset; four of them contain labeled data and the other two
contain unlabeled data. Table 1 shows the features that each
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machine contains. The labeled datasets include a quality indicator
feature (label). The zero label suggests a normal instance, while a
nonzero label indicates an abnormality in machine’s
performance. The values of the quality indicator feature
correspond to a specific error, but since this aspect goes

beyond the context of the current research, the label is
converted to binary, with zero meaning normal and one
meaning abnormal instance.

In order to transform raw data into refined information assets,
first cleansing of the data takes place. The constant, empty, and
duplicated columns are removed from the dataset. The columns
with insignificant variance measure, namely, lower than 0.01, are
removed as well. In order to resolve the real-world data
inconsistency or incompleteness, the following preprocessing
and cleansing methods are implemented for the data
preparation step:

• Interpolation for estimating missing values between known
data points is used.

• Zero variables are eliminated by zero removal process,
as well.

• Normalization is used in order to scale and translate each
feature individually in the range between zero and one.

After the preprocessing phase the features of each dataset are
reduced as shown in Table 2. The dataset is split into 70% of
samples for training and 30% for testing.

3.2 Online Training
A set of supervised and unsupervised learners is applied to the
machine data, depending on the needs of each injection molding
machine. The nature of the data led us to address the anomaly

FIGURE 1 | Overview of the cognitive system’s methodology architecture.

TABLE 1 | The available datasets from injection molding machines.

Feature description Injection
molding machine #

Timestamp 1, 2, 3, 4, 5, 6
Part counter 1, 2
Bad part counter indicator 1, 2
Last value of cycle time 1, 2, 3, 4, 5, 6
Peak of hold pressure 1, 2, 3, 4, 5, 6
Injection pressure 1, 2
Peak of injection pressure 1, 2, 5, 6
Flow number 1, 2, 3, 4, 5, 6
Melt cushion 1, 2, 3, 4, 5, 6
Hydraulic pressure 1, 2
Peak of injection pressure 1, 2, 3, 4, 5, 6
Value of switchover position 1, 2
Corrected position of plasticizing 1, 2, 3, 4, 5, 6
Clamp force 1, 2, 3, 4, 5, 6
Value of mold protection time 1, 2, 5, 6
Oil temperature 1, 2, 3, 4
Temperature of zone X 1, 2, 3, 4, 5, 6
Number of cavities 3, 4
Cooling time 3, 4, 5, 6
Screw position 3, 4, 5, 6
Injection time 3
Switchover pressure 3, 4, 5, 6
Shot counter 3, 4
Bad shot counter 3, 4
Peak of back pressure 3, 4, 5, 6
Plasticizing time 3, 4, 5, 6
Set value of temperature of zone X 3, 4, 5, 6
Heating energy consumption 3, 4, 5, 6
Motor energy consumption 3, 4, 5, 6
Total energy consumption 3, 4, 5, 6
Quality indicator (label) 3, 4, 5, 6

TABLE 2 | The available datasets from injection molding machines.

Dataset Label Initial feature size Final feature size

Injection molding machine 1 Yes 63 48
Injection molding machine 2 Yes 63 47
Injection molding machine 3 Yes 75 42
Injection molding machine 4 Yes 73 47
Injection molding machine 5 No 34 23
Injection molding machine 6 No 34 21
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detection problem through classification and clustering methods.
The algorithms reported at this chapter were selected for the
current research due to the sufficient results that they have
achieved in terms of prediction models’ performance.
However, the solution is extensible enough, so as to
incorporate new methods within the overall architecture.

The online training of labeled datasets is addressed by well-
known supervised training methods. The methods classify the
input datasets and are capable of creating prediction models that
detect faults in this input. Specifically, Support Vector Machines
(SVMs) classifier is one of the most convenient and widespread
classification algorithms, able to construct a hyperplane as a
decision boundary as the maximum margin between classified
classes based on kernel functions. In this work, two kernel
functions are applied: Polynomial and Radial Basis Function.
Decision tree learning is a technique for approximating discrete-
valued functions, in which the learned function is represented by
a decision tree (or classification tree or learning tree) (Lee and
Siau, 2001). Random forest is an ensemble of decision trees and
each decision tree is constructed by using a random subset of the
training data, while the output class is the mode of the classes
decided by each decision tree (Breiman, 1999). Finally, Artificial
Neural Networks (ANNs) are used and especially Back
Propagation Network (BPN) which is a feed-forward model
with supervised learning (Rumelhart et al., 1986), and for the
need of this work a fully connected neural network is used with
one hidden layer.

On the other side, for the online training of unlabeled
datasets, unsupervised learning techniques were implemented
aiming to detect anomalies through data clustering. Thus, in
this section we present state-of-the-art unsupervised learning
methodologies that have been used in this work. DBSCAN is
the data clustering algorithm which discovers clusters of
arbitrary shape in spatial dataspaces with noise. Next is the
Local Outlier Factor (LOF), which provides a factor of how
close a data point is to its neighbors in respect to its neighbor
being also close to it. The One-Class Support Vector Machine
(One-Class SVM) algorithm classifies the points that lie
outside some boundaries of the data space as outliers.
Finally, K-means iteratively tries to partition the dataset
into clusters with each data point belonging to only one
cluster.

3.3 Ensemble Learning
On the top of individual learners, ensemble methods are
techniques that utilize multiple models so as to combine them
in order to produce improved results. Ensemble methods are
incorporated into our methodology so as to generate a more
accurate solution comparing with the results of single models.
Our methodology proposes two ensemble algorithms for
supervised and unsupervised learners, Adaptive Boosting and
majority voting, respectively.

Adaptive Boosting (or AdaBoost) technique is a conjunction
of many classification algorithms (also called weak learners),
either from different families or from the same family with
different internal parameters, aiming to improve classification
performance compared to a single and simple classification

algorithm. AdaBoost takes as input the outcome of a weak
learner and iteratively improve it by recalculating its weights
for the incorrectly classified cases in the training set. Adaboost is
adaptive in the sense that subsequent weak learners are tweaked
in favor of those instances misclassified by previous classifiers.
There are many forms of boosting algorithms (Nath and Behara,
2003; Schapire and Freund, 2012), but the most popular is the one
where the weak classifiers are decision trees (Freund and
Schapire, 1995). In this work, we use the AdaBoost
SAMME–Stagewise Additive Modeling using multiclass
exponential loss function, which is an extension of
AdaBoost.M1 algorithm, so as to perform both two-class and
multiclass classification scenarios.

Majority vote (Jung and Lease, 2012) is a simple method for
generating consensus among different algorithms by picking the
label receiving the most votes. The rationale of the method is to
calculate the average label coming from multiple learners and
round according to a decision threshold. The majority vote is
used as an enhancement for the individual learner’s anomaly
detection. It is also used as a replacement for the ground truth in
case of unlabeled datasets, especially on the cognitive check taking
place in the live prediction step of the proposed methodology
(Section 3.5).

The aforementioned ensemble methods are applied
automatically to the trained algorithms. In the case of
supervised learners the AdaBoost methods provide an
enhancement in terms of accuracy of single learners. In the
case of unsupervised learners, the majority voting is used as a
combined learner which performs better than a single learner or
as a substitute of ground truth values in order to facilitate the
cognitive check described in the next sections.

3.4 Live Prediction
When the training phase is over each machine dataset acquires
one prediction model and its metadata (preprocessing models,
statistic measures, and logs). The prediction model with the
highest accuracy metric prevails in case of supervised learning,
whereas the model with the highest silhouette score prevails in
case of unsupervised models. Both supervised and unsupervised
optimal models are specified as the “default” model. These
models perform the outlier prediction on new live incoming
data streams. The machine data are constantly monitored and for
each instance of measurements, the system recognizes normal
behavior or detects anomalies.

The incoming data stream is being edited and brought to the
same format as the training dataset. The preprocessing methods
used in training phase are applied precisely to the input data
stream which will next be imported in the “default” prediction
model. The anomaly detection results are kept in order to be used
for evaluation and cognitive updating. The live monitoring
procedure is constantly operating and updated in the
aforementioned way.

Technically, the injection molding machine live data are
retrieved through a custom IDS connector system that was set
up for the purposes of the presented work. Figure 2 illustrates the
integration of real-timemachine data with the cognitive analytics.
The system is based on two IDS Trusted Connectors. The first
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connector is deployed on the factory site. The machines send data
to the cloud infrastructure that is available to the factory and from
there, the data are provided to IDS connector through an MQTT
Broker. The factory cloud repository is the data provider of IDS
architecture, whereas the cognitive analytics framework is the
data consumer. A second IDS Trusted Connector was set up on
consumer site alongside with a MQTT Broker in order to enable
data exchange with the data provider. The IDS Trusted
Connectors were selected because they offer an open platform
which connects sensors with cloud infrastructures and other
connectors in a secure and trusted way. In particular, the
connectors are based on containers logic and provide apps
isolation. They are isolated from each other and from the
Internet. Furthermore, the connectors offer cross-enterprise
authorization based on identity tokens. Another advantage of
the data exchange between connectors is the ability to control and
document the data usage. In addition to access control, the usage
control allows for controlling data flows between apps and
connectors. Based on the aforementioned advantages of IDS
Trusted Connectors, they were selected as the ideal candidates
to support the major requirement for secure transmission of the
sensitive and private industrial data.

3.5 Cognitive Check
A cognitive mechanism is implemented at this point toward
automated update of the prediction models. This mechanism
triggers the retraining of the running models in two specific
circumstances:

• the dataset’s characteristics are changed
• the model’s performance starts to downgrade

The new data that are constantly inserted in the prediction
models are reassessed in order to capture possible variations

compared to the historical data. The variance of the features of
the historical datasets is stored and every new incoming data
stream is compared with this value. If the newmeasurements are
not statistically related to the training dataset, then the model
training has to be repeated on the new dataset. In any case, the
cognitive mechanism observes repeated measurements with
variations until it finally triggers the retraining of the dataset,
so as to eliminate accidental discrepancies of the machine
live data.

The retraining is also activated by monitoring of the
prediction model performance. An Initial Prediction Window
(IPW) is determined at the training phase, which is a specific
number of real-time predictions tested against the real ones
when those are available. In case of the machines with labeled
data, the real values are given and compared to the predicted
ones. In case of the machines with unlabeled data, the result of
major voting method substitutes the labels of data instances and
is compared with the predicted results in order to extract the
performance metrics. In both cases, a confusion matrix is
created and the metrics, precision, recall, accuracy, and
f-measure are calculated.

Based on the values of f-measure, the IPW is changed
(increases or decreases) or remains the same. More
specifically, a minimum and maximum value are defined for
the IPW values, along with a threshold for the f-measure value.
Starting from the maximum IPW value, f-measure is calculated
for this window. If f-measure exceeds the defined threshold, the
training model remains as it is, whereas IPW increases by 10 if
f-measure is higher than 90%, decreases by 10 if f-measure is
lower than 80%, and remains as it is if f-measure falls between 80
and 90%. This process is repeated until the IPW equals the
minimum IPW. In case that f-measure falls behind the defined
threshold, the retraining mode is triggered and the IPW value
resets to the maximum value.

FIGURE 2 | Overview of the connection of the injection molding machines factory site with the proposed cognitive analytics.
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4 EXPERIMENTAL RESULTS AND
COMPARISON WITH PRIOR WORK

The methodology described in the previous chapter refers to a
dynamic and automatic system for real-time anomaly
monitoring. The online training functionality is the basis for
the live monitoring and is automatically triggered according to
the cognitive mechanism. Since it is a live system, in order to
evaluate its functionalities and performance, an indicative
instance of training and testing of the prediction models is
presented below. Furthermore, an experiment of the cognitive
mechanism is presented at this chapter, showing the robustness of
the proposed method. Finally, a comparison between our method
and prior related work is performed.

4.1 Evaluation Metrics Overview
In order to assess our supervised models, we use the measures of
precision, recall, accuracy, and f-measure, which are computed
from the contents of the confusion matrix of the classification
predictions. Because of the fact that we do not have binary
classification, all the evaluation metrics are computed
accordingly. From the confusion matrix true positive and false
positive cases are denoted as TP and FP, while true negative and
false negative are denoted as TN and FN, respectively. Precision
is the ratio of predicted true positive cases to the sum of true
positives and false positives and is given by the equation

Precision � TP
TP + FP

.

Recall is the proportion of the true positive cases to the sum of
true positives and false negatives and is given by the equation

Recall � TP
TP + FN

.

Accuracy is the fraction of the total number of predictions that
were correct and is given by the equation

Accuracy � TP + TN
TP + FP + TN + FN

.

Precision or recall alone cannot describe a classifier’s
efficiency. Therefore, f-measure is introduced as a combination
of these two metrics. It is defined as twice the harmonic mean of
precision and recall and is the metric we will be most referring to.
The equation of f-measure is given below:

f −measure � 2 × Precision × Recall
Precision + Recall

.

A value closer to one means better combined precision and
recall of the classifier, whereas lower values imply worst accuracy
or precision or both.

Accordingly, the unsupervised model assessment is performed
by four clustering performance evaluation metrics: Silhouette

Coefficient, Calinski–Harabasz index, Davies–Bouldin index,
and Dunn index. Those are metrics for evaluating clustering
algorithms following an internal evaluation scheme, where the
metric result is based on the clustered data itself. The Silhouette
Coefficient is an example of evaluation using the model itself
(Rousseeuw, 1987). The Silhouette Coefficient for a single sample
is given as

Silhouette � b − a
max(a, b),

where a is the mean distance between a sample and all other
points in the same class and b is the mean distance between a
sample and all other points in the next nearest cluster. The
Silhouette Coefficient for a set of samples is given as the mean
of the Silhouette Coefficient for each sample. Higher Silhouette
Coefficient scores indicate a model with better defined clusters.

Another evaluation metric, in case that the ground truth labels
are not known, is the Davies–Bouldin index (Davies and Bouldin,
1979). The “similarity” between clusters is measured by this
metric by comparing the distance between clusters with the
size of the clusters themselves. The Davies–Bouldin index is
specified as

DB � 1
K

∑
k

i�1
maxi≠ jRij,

where Rij is the similarity measure defined as

Rij � si + sj
dij

for each cluster Ci for i � 1, . . ., k and its most similar one Cj:

• si is the average distance between each point of cluster i and
the centroid of that cluster.

• dij is the distance between the cluster centroids i and j.

The lowest possible score is zero and values closer to zero
suggest a better partition. Next is the Calinski–Harabasz index
also known as the Variance Ratio Criterion (Caliński and
Harabasz, 1974). The index is the ratio of the sum of the
between-clusters dispersion and inter-cluster dispersion for all
of them:

CH � tr(Bk)
tr(Wk) ×

nE − k
k − 1

,

where tr(Bk) is trace of the between-group dispersion matrix and
tr(Wk) is the trace of the within-cluster dispersion matrix defined
by

Wk � ∑
k

q�1
∑

x ∈ Cq

(x − cq)(x − xq)
T

and

Bk � ∑
k

q�1
hq(cq − cE)(cq − cE)

T
,
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where Cq is the set of points in cluster q, cq is the center of cluster
q, cE is the center of E, and nq is the number of points in cluster q.
The higher Calinski–Harabasz score implies a model with better
defined clusters. Last is Dunn index (Dunn, 2008), another metric
that aims to identify the compact sets of clusters and the well-
separated ones. The metric is given by the following equation:

DI �
min

1≤ i≤ j≤m
δ(Ci,Cj)

max
1≤ k≤m

Δk
,

where δ(Ci,Cj) is the distance between clusters Ci and Cj, and Δk
is the intracluster distance within cluster Ck. The higher the Dunn
index value is, the better the model performance is.

4.2 Training Simulation Results
The section of experimental results regarding online training is
divided into three subsections. In the first subsection, the
performance of all tested classifiers is presented, while in the
second subsection the boosted version of the classifier with the
best predictive performance among tested ones is presented. The
third subsection presents results from the unsupervised training.
Out of all experiments conducted in this research in order to test
and evaluate the proposed methodology, some indicative results
are given below in order to show the potential of the system and
the attempt to create a compound solution for the injection
molding machines. The evaluation of the system presented at
this point focuses on both the functionalities of the proposed
solution and the performance of the available algorithms
presented in Section 3.

4.2.1 Nonboosted Version of Classifiers
In order to evaluate the predictive performance of tested
classifiers, a series of 100 Monte-Carlo simulations was
performed, for each parameter schema. The idea behind
Monte-Carlo simulations is the generation of a large number
of synthetic datasets that are similar to experimental data. In the
case of time series the simulation setup of the match for Monte-

Carlo realizations is 100-fold cross-validation. For SVM-POLY,
parameter θ takes the values θ � (start � 30, end � 60, step � 6)
and the polynomial degree p takes the values p � (2, 5, 1). For
SVM-RBF, parameter σ varies the same as θ and the constant C
as C � (1,000, 7,000, 2,000). In Tables 3, 4, we present the
simulation results of SVM-POLY and SVM-RBF classifiers,
percentage averages for 100 Monte-Carlo iterations for
precision, recall, accuracy, and f-measure. The classic BPN
has a single hidden layer and the number of neurons varies
as n � (100, 200, 20). The simple decision tree was tested as is
while the random forest has an ensemble of estimators � (20,
100, 20) decision trees. In Tables 5, 6, we present the simulation
results of BPN and random forest classifiers, percentage
averages for 100 Monte-Carlo iterations for precision, recall,
accuracy, and f-measure. From all the simulation results
presented in Tables 3-6, it is more than clear that random
forest classifier outperforms SVM-POLY, SVM-RBF, and BPN

TABLE 3 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations for SVM-POLY classifier.

p θ Precision (%) Recall (%) Accuracy (%) f-Measure (%)

2 30 75.24 88.92 78.53 81.51
2 36 77.82 85.91 79.24 81.67
2 42 77.54 86.27 79.32 81.67
2 48 78.35 86.98 79.54 82.44
2 56 78.78 86.11 79.23 82.28
3 30 75.39 87.92 79.21 81.17
3 36 76.41 87.69 79.11 81.66
3 42 76.12 87.77 78.92 81.53
3 48 78.01 87.34 78.24 82.41
3 56 78.09 86.92 77.88 82.27
4 30 77.98 85.43 77.87 81.54
4 36 77.15 86.13 77.46 81.39
4 42 77.26 86.24 77.79 81.50
4 48 78.65 86.71 77.92 82.48
4 56 78.92 87.01 78.01 82.77

TABLE 4 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations for SVM-RBF classifier.

C σ Precision (%) Recall (%) Accuracy (%) f-Measure (%)

1,000 30 78.66 83.41 79.58 80.97
1,000 36 77.65 83.45 79.61 80.45
1,000 42 78.24 83.98 79.54 81.01
1,000 48 78.54 84.14 80.13 81.24
1,000 56 78.98 84.35 79.98 81.58
3,000 30 79.13 83.85 79.32 81.42
3,000 36 79.24 83.24 79.45 81.19
3,000 42 79.47 84.25 79.33 81.79
3,000 48 80.13 84.27 80.24 82.15
3,000 56 79.91 82.78 80.76 81.32
5,000 30 73.37 89.86 80.18 80.78
5,000 36 74.27 88.24 80.27 80.65
5,000 42 73.45 88.15 80.13 80.13
5,000 48 73.26 88.97 80.54 80.35
5,000 56 73.15 88.48 79.93 80.09

TABLE 5 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations for BPN classifier.

Neurons Precision (%) Recall (%) Accuracy (%) f-Measure (%)

100 72.28 90.21 80.52 80.26
120 72.37 89.25 80.24 79.93
140 72.56 89.76 80.52 80.25
160 72.89 89.91 80.59 80.51
180 73.24 90.73 81.11 81.05

TABLE 6 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations for random forest classifier.

Decision trees Precision (%) Recall (%) Accuracy (%) f-Measure (%)

20 92.24 93.47 91.24 92.85
40 92.37 94.13 91.78 93.24
60 93.91 93.71 91.25 93.81
80 93.63 94.61 91.51 94.12
100 93.24 94.28 91.39 93.76
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for about 11–12%. Thus, random forest is the one classifier that
will be promoted to test also in its boosted form.

4.2.2 Random Forest Boosted Version
In order to have a more clear view about the potential of random
forest, we simulate different schemas of estimators and calculate
again precision, recall, accuracy, and f-measure. In this
simulation scenario, denoted hereafter as RF-Boost, five weak
learners (or five random forest classifiers) were used where the
estimator of each one of the weak learners is estimators � [40, 60,
80, 100, 120] decision trees. The simulation results of RF-Boost
scenario are given in Table 7. Comparing Tables 6, 7, one can see
that, with the RF-Boost scenario, the predictive performance is
increased by 3–4% on f-measure, a fact that indicates the
dominance of boosted form compared to any other predictive
approach, tested here.

4.2.3 Unsupervised Learning Results
As mentioned before, two of the available injection molding
machines lack ground truth values. The simulation results of
the unsupervised training applied to these machines are shown in
Table 8. The values of the table refer to both machines trained
with historical data. According to the evaluation metric
description in Section 4.1 it seems that One-Class SVM is the
weaker learner and LOF and DBSCANhave given better results in
machines five and six, respectively. The challenge of the unlabeled
data is to be well evaluated in order to use the corresponding
models as fault detectors. It may be a weaker method compared to
supervised evaluation but the system aims to give a handful
solution in case where ground truth is missing and give accurate
results in cooperation with the ensemble enhancement given by
majority voting and also with the retraining module of the
proposed methodology.

4.3 Cognitive Mechanism Testing
The prediction models generated by the online training (Section
3.2) are used in live prediction phase (Section 3.4) where real-

time data are monitored and anomalies are detected. The
cognitive mechanism operates at the same time as live
prediction and triggers the retraining of a prediction model
when needed. In order to test this feature, the performance of
models was recorded as live prediction and cognitive check are
operating. Specifically, four prediction models are monitored:

decision tree and random forest models for the supervised
learning of labeled data and DBSCAN and K-means models
for the unsupervised learning of unlabeled data. The accuracy
evaluation metric is recorded for the supervised learning and the
silhouette score for the unsupervised. The model performance
was recorded for as long as it takes for the cognitive mechanism to
trigger 200 retraining times of the models.

Figure 3 shows some indicative results of this testing. It
illustrates the diagrams of the evaluation metric throughout
200 retraining times of a single model (accuracy for supervised
and silhouette score for unsupervised learning). The diagrams
indicate that the models’ performance is maintained in high
levels after the model retraining: decision tree classifier’s
accuracy does not fall under 0.997 and random forest under
0.992 and DBSCAN and K-means’ silhouette scores are kept
over 0.2 and 0.14, respectively. The model retraining is triggered
by variations noticed in the real-time data compared with the
historical ones, so it is crucial that it will be accomplished the
time that is being triggered, regardless of the results that it will
induce.

As a follow-up to the above diagrams, the times where the
model was improved after retraining were calculated. Table 9
shows that most of the times the execution of retraining improves
the performance of the model. The aim of the retraining module
is to automatically update the predictive models when their
performance diverges. These indicative results explain the need
of the complete system to be updated occasionally in order to be
able to maintain high quality and accuracy in the anomaly
detection pipeline.

4.4 Comparison with Prior Work
In order to support our proposed methodology, we present a
determinate comparison between our methodology and other
works from literature. The comparison concerns the studies
that deal with injection molding machines as this is the core of
our research and focuses on aspects of each proposed
methodology, since the results of each work are disparate or

TABLE 7 | Averages of precision, recall, accuracy, and f-measure for 100 Monte-
Carlo iterations of AdaBoost on random forest classifier.

Parameters
of weak learners

Precision
(%)

Recall
(%)

Accuracy
(%)

f-Measure
(%)

20, 40, 60, 80, 100 97.63 97.28 95.32 97.45

TABLE 8 | Unsupervised evaluation metrics on injection molding machine 5/6.

Algorithms Injection machine Silhouette Davies–Bouldin Calinski–Harabasz Dunn

LOF Machine 5 0.05 4.57 119.89 0.11
Machine 6 0.11 2.83 400.44 0.03

K-means Machine 5 0.15 3.29 774.63 0.05
Machine 6 0.21 2.16 1,041.22 0.02

DBSCAN Machine 5 0.05 4.80 1,456.17 0.02
Machine 6 0.42 1.51 1,449.55 0.41

One-Class SVM Machine 5 0.05 17.18 134.61 0.01
Machine 6 0.01 18.52 98.59 0.01
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unavailable. The first study includes an injection molding
machine’s use case and explores the available data while the
machine operates (Gatica et al., 2016). The study extracts
normal behavior models and notices deviations from the
expected behavior. The authors use trend analysis functions
to predict already known failures and achieve reduction of
machine downtime.

The second study deals with anomaly detection on streaming
data applied to injection molding machines (Jankov et al., 2017).
A sliding window observes the streaming data and finds clusters
by using K-means algorithm. The clusters are used for training of
a Markov model for the window. New models are trained as the
window slides over new data. Anomalies are detected in the
streaming data by calculating transition probability and
comparing it with a threshold. The advantage of Jankov et al.

(2017) work is the computational capabilities of the system which
is augmented by real-time parallel task distribution.

Park et al. (2016) address the problem of machine condition
monitoring by identifying the injection molding operational
parameters. Statistical analysis is applied to these parameters
in order to distinct the most significant ones. Real-time data series
are monitored by prediction models and the results are evaluated
by Nelson rules. The method detects abnormal patterns of the
parameters and identifies the machine parts where maintenance
actions should aim.

Our proposed method follows a similar approach to the
aforementioned works. The aim is to investigate abnormal
operations in the injection molding process starting with data
analysis and resulting in prediction models that determine
anomalies. In contrast with the studies above, we proposed a
methodology which can handle both labeled and unlabeled data
and also address the challenge of unknown errors in case of
machine abnormal behavior. Additionally, the other works derive
prediction models using one specific analytical method, but the
current study includes multiple classification and clustering
learners for the generation of prediction models. From the set
of trained models, the one with higher performance will be used
for real-time anomaly monitoring. Also, there is the capability of
meta-learning as described in Section 3.3.

The distinguishing feature of the current work though is the
constant updating of the system’s prediction models through

FIGURE 3 |Cognitive mechanism performance monitoring. The horizontal axis of the graphs shows the times of retraining and the vertical axis shows the accuracy
(A,B) and silhouette score (C,D) of the model.

TABLE 9 | The percentage of retraining times that accuracy improvement is
noticed.

Algorithm Machine Retraining improvement
(%)

Decision tree
classifier

Injection molding machine 1 63

Random forest Injection molding machine 2 63
K-means Injection molding machine 5 75
DBSCAN Injection molding machine 6 73
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cognitive retraining. Except Jankov et al. (2017) work which
trains new prediction models as they cross by data streams,
the remaining studies do not focus on the potential changes
that can be noticed in live data or the possible degradation of the
prediction methods. This is the core of the cognition aspect of the
current work which achieves steady performance of the real-time
anomaly detection system.

5 CONCLUSIONS

In this paper a cognitive analytics application is presented,
focusing on predictive maintenance applied to injection
molding machines. A complete solution was described in
detail including different stages of training of historical data,
live prediction on real-time data, and automated retraining which
aims to keep the prediction process up to date. The proposed
solution manages both labeled and unlabeled datasets and applies
ensembles methods to top of individual supervised and
unsupervised learners. The generated prediction models
receive real-time data streams and perform anomaly detection
on the features of the injection molding machine measurements.
A cognitive mechanism was developed and tested, which
monitors the dataset changes, on the one hand, and the model
performance, on the other hand, and constantly updates the
predictive models.

The main findings of our research are summarized below:

• The proposed solution achieves combining different
training methods and detecting faults in different
machines, located in the same factory site.

• Ensemble methods can enhance the prediction models’
performance results.

• Automatic updating of trained models addresses the
problem of possible deviations of new incoming machine
data or potential prediction models’ degradation.

• High model performance is preserved in real-time anomaly
detection and data monitoring through automatic triggering
of model retraining.

As a result of these assets, the presented method can constitute
an assisting tool for the decision support system of factory sites
facilitating injection molding machines, in order to prevail
failures in production and downtime of machines.

Current ongoing work is implementing the creation of user
interfaces for the proposed real-time anomaly detection
methodology. Advanced visualizations are incorporated,
offering an enhanced user experience and a thorough view of
raw data, processed and clean data, model training, evaluation,

and results, as well as real-time monitoring. Two user views are
set up: the data scientist view and the regular end user. The data
scientist can choose parameters and methods for online training
which will operate the live monitoring for the regular end user.
The anomalies are detected and visualized so as the predictive
maintenance manager canmake the necessary decisions in case of
machine abnormalities.

Future work will concentrate on applying the presented
methodology to different machine data of the Industry 4.0
domain and investigate a generic cognitive analytics
framework for predictive maintenance. The development of
more learning techniques is being considered as a next step,
especially regarding the field of ensembled methods. Lastly,
there is definitely a room for improvement in the unsupervised
learning area regarding evaluation and meta-learning
processes.
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