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Receiver operating characteristic (ROC) curve is an informative tool in binary classification
and Area Under ROC Curve (AUC) is a popular metric for reporting performance of binary
classifiers. In this paper, first we present a comprehensive review of ROC curve and AUC
metric. Next, we propose a modified version of AUC that takes confidence of the model
into account and at the same time, incorporates AUC into Binary Cross Entropy (BCE) loss
used for training a Convolutional neural Network for classification tasks. We demonstrate
this on three datasets: MNIST, prostate MRI, and brain MRI. Furthermore, we have
published GenuineAI, a new python library, which provides the functions for conventional
AUC and the proposed modified AUC along with metrics including sensitivity, specificity,
recall, precision, and F1 for each point of the ROC curve.
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INTRODUCTION

Classification is an important task in different fields, including Engineering, Social Science, and
Medical Science. To evaluate quality of classification, a metric is needed. Accuracy, precision,
and F1 score are three popular examples. However, there are other metrics that are more
accepted in specific fields. For example, sensitivity and specificity are widely used in Medical
Science.

For binary classification, Receiver Operating Characteristic (ROC) curve incorporates different
evaluation metrics. The Area Under ROC Curve (AUC) is a widespread metric, especially in Medical
Science (Sulam et al., 2017). In engineering, AUC has been used to evaluate the classification models
since the early 1990s (Burke et al., 1992), and AUC research has continued ever since. Kottas et al.
proposed a method to report confidence intervals for AUC (Kottas et al., 2014). Yu et al. proposed a
modified AUC which is customized for gene ranking (Yu et al., 2018). Yu also proposed another
version of AUC for penalizing regression models used for gene selection with high dimensional data
(Yu and Park, 2014). Rosenfeld et al. used AUC as a loss function and demonstrated AUC-based
training lead to better generalization (Rosenfeld et al., 2014). Their research, however, is not in the
context of Neural Networks (NN); instead, they use Support Vector Machines (SVM). Therefore,
their method does not address the challenges we address in this paper, including taking confidence of
the model into account in calculating AUC and thus, making it a better metric for training neural
networks. Zhao et al. proposed an algorithm for AUC maximization in online learning (Zhao et al.,
2011). A stochastic approach for the same task was introduced by Ying et al. (2016). Cortes and
Mohri studied correlation of AUC, as it is optimized, and error rate (Cortes and Mohri, 2004). Their
research showed that minimizing the error rate may not result in maximizing AUC. Ghanbari and
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Scheinberg directly optimized error rate and AUC of the
classifiers; however, their approach only applies to linear
classifiers (Ghanbari and Scheinberg, 2018).

This paper explains in detail the meaning of AUC, how reliable
it is, under which circumstances it should be used, and its
limitations. It also proposes a novel approach to eliminate
these limitations. Our primary focus is on deep learning and
Convolutional Neural Networks (CNNs), which differentiates
our work from the previous work in the literature. We
propose confidence-incorporated AUC (cAUC) as a modified
AUC which directly correlates to Cross-Entropy Loss function
and thus, helps to stop CNN training at a more optimum point in
terms of confidence. This is not possible with conventional AUC,
as not only the minimum of Binary Cross-Entropy loss function
may not correlate with the maximum of AUC, but also AUC does
not take the confidence of the model into account. We have also
published a new library called GeuineAI1, which contains our
modified AUC and conventional AUC with more features in
comparison to the existing standard python libraries.

REVISITING THE CONCEPT OF AUC

In supervised binary classification, each datapoint has a label.
Conformed with standards of Machine Learning, labels are either
0/1 or 01/10 or sometimes +1/-1 and the model’s (classifier’s)
outputs are usually probabilities. In the case of cancer detection,
for example, input data may be CT or MRI images. Cancerous
cases will be images labeled with 1 (positive) and normal
(healthy) images will have 0 (negative) as their labels. The
model returns a probability for each image. In the ideal
scenario, the model’s output will be 1 for cancerous images
and 0 for normal ones.

Four possible outcomes of binary classification are True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). From Table 1, it can be inferred that TX
means Truly predicted as X and FX means Falsely predicted as X.

Defined as the total number of correct predictions out of total
cases, Accuracy is calculated by Equation (1).

Accuracy � TP + TN

TP + FP + TN + FN
(1)

As it can be seen, accuracy is only concerned about correct
versus wrong predictions. In many situations, especially in
Medical Science, this is not enough. The consequences of
misclassifying a normal case as cancerous and considering a
cancerous case as normal are way different. The first one is
referred to FP, also known as Type I error, whereas the second
one is a FN or Type II error. True Positive Rate (TPR) and False
Positive Rate (FPR) are two criterions which distinguish the error
types.

TPR � TP

TP + FN
(2)

FPR � FP

FP + TN
(3)

TPR is also known as sensitivity and refers to the ratio of
correct predictions to total within actual positives. FPR is the
ratio of wrong predictions within actual negatives. FPR is
related to specificity by Eq. 4, which is used frequently in
Medical Science.

FPR � 1 − specificity (4)

As mentioned before, predicted value should be binary, but
output of the model is probability. Thresholding is how
probabilities are converted to predicted values. As an
example, if the output is 0.6 and the threshold is 0.5,
predicted value is 1.

y � { 0 if p≤ t
1, otherwise

(5)

y in Eq. 5 is the predicted value, p is the output of the model,
which is a probability, and t is the threshold. Depending on t, TPR
and FPR will be different. ROC is the curve formed by plotting
TPR versus FPR for all possible thresholds and AUC is the area
under that curve.

In the following, we take an example-based approach to
highlight the fundamentals of AUC.

Example 1: Table 2 contains the simplest possible example. It
should be followed from left to right. yd refers to the desired value
which is the same as the label (ground truth).

It can be seen from Table 2 that actual positives and actual
negatives are necessary to draw an ROC curve. Although it may
seem trivial, lack of one category in one batch leads to NaN in
training of Machine Learning (ML) models. Furthermore, if the
batch size is equal to one, the batch AUC is always NaN.
Consequently, for any NN to be directly trained with a
modified AUC, or for any code where AUC is calculated
within each batch, batch size of one cannot be used.
Furthermore, the sampler should be customized in a way to
return samples from both classes in each batch.
Example 2: Table 3 contains an example of classifying one
positive and one negative cases and Figure 1 shows the

TABLE 1 | Possible outcomes of binary classification.

Actual value Predicted value

TN 0 0

FP 0 1

FN 1 0

TP 1 1

TABLE 2 | Example 1.

yd � 1 t < 0.5 y � 1 TP � 1 TPR � TP
TP+FN � 1

1+0 � 1
TN � 0

p � 0.5 FP � 0 FPR � FP
FP+TN � 0

0+0 � NaN
FN � 01https://pypi.org/project/GenuineAI/
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corresponding ROC curve. There are important points in this
example. ROC curves always start from (0,0) and always end at
(1,1). The reason is that if threshold is 0, all predicted values are 1.
They will be either TP or FP. Therefore, both TPR and FPR are 1.
On the other hand, if threshold is 1, everything is predicted as
negative. In this case, predictions are all TN or FN. Consequently,
TPR and FPR will be both zero. Two things must be taken into
account when writing aML code: t � 0, and t � 1 should be treated
separately and t should be iterated backward if going from (0, 0)
to (1, 1) is desired. Backward iteration necessity comes from the
fact that the highest t corresponds to the lowest TPR and FPR.
Exceptions of t � 0 and t � 1 are needed for rare cases when the
output of the model is exactly 0 or 1.

Example 3: Our third example is complement of Example 2. As
it is indicated in Table 4, output probability for the positive case
(yd

1 ) is higher. Under these conditions, AUC is equal to 1, as
depicted in Figure 2. In other words, ideal situation for

classification of one positive and one negative example in
terms of AUC is when output probability of the positive case
is higher.

It should be noted that if the two probabilities were slightly
different, e.g., p1 � 0.501 and p2 � 0.499, AUC would be 1. The
separation of probabilities does not have to be at 0.5. p1 � 0.0002
and p2 � 0.0001 would still result in AUC � 1. This leads to an
important issue which is confidence. It turns out AUC does not
take into account the confidence of the model.
Example 4: In the fourth example (Table 5), the output
probabilities are the same for the two samples. This leads to
AUC of 0.50. This example shows that whenever all output
probabilities are equal, AUC is 0.50 and ROC is a straight line
from (0, 0) to (1, 1) (Figure 3). This is true for all different values
of N where N is batch size or number of samples.
Example 5: In example 5, N is equal to 3 and there are 4 points in
the ROC curve (Figures 4, 5). The reason for this phenomenon is

TABLE 3 | Example 2.

yd1 � 1 t <0.4 y1 � 1 TP � 1 TPR � 1
1+0 � 1

yd2 � 0 y2 � 1 TN � 0
FP � 1 FPR � 1

1+0 � 1
FN � 0

p1 � 0.4 0.4≤ t < 0.6 y1 � 0 TP � 0 TPR � 0
0+1 � 0

p2 � 0.6 y2 � 1 TN � 0

FP � 1 FPR � 1
1+0 � 1

FN � 1

0.6≤ t y1 � 0 TP � 0 TPR � 0
0+1 � 0

TN � 1
y2 � 0 FP � 0 TPR � 0

0+1 � 0
FN � 1

FIGURE 1 | ROC of Example 2.

TABLE 4 | Example 3.

yd1 � 1 t <0.4 y1 � 1 TP � 1 TPR � 1
1+0 � 1

yd2 � 0 y2 � 1 TN � 0
FP � 1 FPR � 1

1+0 � 1
FN � 0

p1 � 0.4 0.4≤ t < 0.6 y1 � 0 TP � 1 TPR � 1
1+0 � 1

p2 � 0.6 y2 � 1 TN � 1

FP � 0 FPR � 0
0+1 � 0

FN � 0

0.6≤ t y1 � 0 TP � 0 TPR � 0
0+1 � 0

TN � 1
y2 � 0 FP � 0 FPR � 0

0+1 � 0
FN � 1

FIGURE 2 | ROC of Example 3.
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effective threshold boundaries. As it can be seen inTable 6, up to t
� 0.4, no value of t changes the model’s predictions. It turns out
that those effective boundaries are defined by predicted

probabilities. It should now be highlighted, in Examples 2 and
3, N was 2 and there were 3 points on the ROC curve. In the
general form, for N predictions, there will be N+1 points on the
ROC curve. For each pair of predictions with equal probabilities,
one point is omitted. The extreme case is when all output
probabilities are equal. In this case, there will be two points on
the ROC curve and AUC is 0.5 (Example 4).

METHODS

Inspired by the previous examples, we will now investigate some
characteristics of ROC and AUC. We will demonstrate how
misclassification of a single data point can decrease AUC, and
what extreme scenarios of misclassification look like.We will then
provide an example to show a higher AUC does not necessarily
correspond to better classification. The section is concluded with
introducing cAUC, our proposed modified AUC, and
mathematical support for its correlation to Binary Cross
Entropy (BCE).

A result of having N+1 points on the ROC curve is that N+1
different effective values can be assigned to threshold t. In
other words, while infinite values for t can be selected, selecting
more than N+1 values for t would not help to achieve more
accurate AUC or “smoother” ROC curve. Even if calculations
are precise, the efficiency will be degraded because if t values
are not selected from different effective intervals, they will
result in the same point on ROC. In Example 3, t � 0, 0.1, 0.2,
0.3, or any other value below 0.4 will result in (1, 1) on ROC.
Furthermore, because continuous variables have to be
discretized, selecting fixed step size to increase t may result
in inaccuracy. It happens almost certainly if two probabilities
are highly close to each other and the fixed step is not small
enough to land between them. Usually high values of N create

TABLE 5 | Example 4.

yd1 � 1 t < p y1 � 1 TP � 1 TPR � 1
1+0 � 1

yd2 � 0 y2 � 1 TN � 0
FP � 1 FPR � 1

1+0 � 1
FN � 0

p1 � p2 � p p≤ t y1 � 0 TP � 0 TPR � 0
0+1 � 0

y2 � 0 TN � 1

FP � 0 FPR � 1
1+0 � 1

FN � 1

FIGURE 3 | ROC of Example 4.

TABLE 6 | Example 5.

yd1 � 1 t <0.4 y1 � 1 TP � 1 TPR � 1
1+0 � 1

yd2 � 0 y2 � 1 TN � 0

yd3 � 1 y3 � 1 FP � 2 FPR � 2
2+0 � 1

FN � 0
0.4≤ t <0.45 y1 � 0 TP � 0 TPR � 1

1+0 � 1

y2 � 1 TN � 0

y3 � 1 FP � 1 FPR � 1
1+1 � 0.5

FN � 1

p1 � 0.4 0.45≤ t <0.55 y1 � 0 TP � 0 TPR � 0
0+1 � 0

p2 � 0.55 y2 � 1 TN � 1
p2 � 0.55 y3 � 0 FP � 1 FPR � 1

1+1 � 0.5
FN � 1

0.55≤ t y1 � 0 TP � 0 TPR � 0
0+1 � 0

y2 � 0 TN � 2

y3 � 0 FP � 0 FPR � 0
0+2 � 0

FN � 1

FIGURE 4 | ROC of Example 5.
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such circumstances. Therefore, having a method for selecting
optimal threshold is crucial. Changing value of t is effective if
and only if it affects predictions. Assuming probabilities are
sorted, any value of t between pi and pi+1 does not change
predictions. Supported by the same rational, the optimal values
of t we suggest is given by (6). An optimum set, based on the
rule of having N+1 points in ROC, has to have N+1 members.
However, our proposed set has N+2 elements. If Eq. 5 is
conformed, 1 can be removed from the set. Nevertheless,
adding 0 and 1 to the set is a safe approach for avoiding
programming errors.

t ∈ {0, pi , 1} , i � 1, 2, . . . , N (6)

Figure 5 depicts all possible outcomes (except special cases of
equal probabilities). It seems ROC is always staircase looking,
except for the situations where a pair of predicted probabilities are
equal. Thus, using trapezoid integration is the best and most
accurate technique to calculate AUC. Furthermore, Figure 5
demonstrates order of predicted probabilities plays a key role
in amount of AUC. If there is at least one threshold t where the
probabilities of all actual positives and negatives are above and

below it, respectively, then the AUC is equal to 1. Although the
mathematical proof needs more fundamentals, there is one key
support: selecting t at the boundary of positive and negative data
points results in a perfect classification corresponding to (0, 1) on ROC.

AUC � 1 if ∃ t
∣∣∣∣∣ {∀pi, y

d
i ∈ AP t<pi and ∀pj, y

d
i ∈ AN pj ≤ t}

(7)

Where AP and AN are actual positives and actual negatives,
respectively.

To be able to separate positive and negative datapoints in a
way that probabilities of positive cases are higher, we
introduce ε. In Table 7, ε is a positive real number which

FIGURE 5 | ROC curves for N � 3, two actual negative and an actual positive.

TABLE 7 | A group of realizations with N � 3, AN � 2, and AP � 1.

— t

Sorted Actual Values 0 0 1

Predicted Probabilities p-ε p-ε p

— TN TN TP
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is less than or equal to p. This ensures p-ε is zero or positive
and implies that p-ε is less than p. For example, if p is 0.8, ε can
be in the range of 0–0.8. It also explains why (7) is true. For
any t ∈[p − ε, p), conditions of (7) are met and the AUC is
equal to 1. In this case, (0,0), (0,1), and (1,1) are points
of ROC.

In Table 7, probabilities of all actual negatives are equal
(p-ε). To be able to sort probabilities within each class of
datapoints, δ is introduced. Table 8 extends Table 7 scenario
to more general cases where probabilities are not necessarily
equal. In this case, δ can be considered as a random noise
which is a non-negative real number. It helps to simulate
predicted probabilities better. With δ, the predicted
probabilities do not follow a distinct pattern of having a
fixed distance.

Table 9 shows the other extreme. When there is threshold t
such that probabilities of all actual positives and negatives are
below and above it, respectively, then the AUC is zero.

AUC � 0 if ∃ t
∣∣∣∣∣ {∀pi, y

d
i ∈ AP pi ≤ t and ∀pj, y

d
j ∈ AN t<pj}

(8)

Table 10 depicts all remaining possible scenarios where AUC
is greater than zero (0 <AUC). Table 10 gives the big picture. For
t ∈[p − ε, p), there will be one FP in predicted values
(Table 10), which means TPR is 1 and FPR is positive. For
t ∈[p, p + δ), there will be one FN in predicted values
(Table 10), which means FPR � 0 and TPR less than one. In
other words, in the ROC curve, (Tables 10(b),(c)) correspond to
points (d1,1) and (0, d2), respectively, where d1 and d2 are
positive real numbers (Figure 6). Obviously, this causes a
reduction in AUC as much as the area of a triangle. (0, d2),
(d1,1), and (0, 1) are vertices of the triangle. FN contributes to
TPR whereas FP is part of FPR. Therefore, d1 is influenced by FP
and d2, is a function of FN. Because they both play a role in the
triangle’s area, it can be concluded that the AUC does not
discriminate between FP and FN. All it does is scaling the

TABLE 8 | A group of realizations with N � 8, AN � 4, AP � 4, and AUC � 1.

— — — t — — —

Sorted Actual Values 0 0 0 0 1 1 1 1

Sorted Probabilities p-ε-3δ p-ε-2δ p-ε-δ p-ε p p+δ p+2δ p+3δ

— TN TN TN TN TP TP TP TP

TABLE 9 | A group of realizations with N � 8, AN � 4, AP � 4, and AUC � 0.

— — — t — — —

Sorted actual values 0 0 0 0 1 1 1 1

Sorted probabilities p-3δ p-2δ p-δ p p-ε p-ε+δ p-ε+2δ p-ε+3δ

— FP FP FP FP FN FN FN FN

TABLE 10 | A group of realizations with N � 8, AN � 4, AP � 4, and 0 < AUC<1.

(a) — — — — t — — —

sorted Actual values 0 0 0 0 1 1 1 1

sorted Probabilities p-ε-2δ p-ε-δ p-ε p p p+δ p+2δ p+3δ

— TN TN TN TP TP TP

(b) — — — t — — — —

sorted Actual values 0 0 0 0 1 1 1 1

sorted Probabilities p-ε-2δ p-ε-δ p-ε p p p+δ p+2δ p+3δ

— TN TN TN FP TP TP TP TP

(c) — — — — — t — —

sorted Actual values 0 0 0 0 1 1 1 1

sorted Probabilities p-ε-2δ p-ε-δ p-ε p p p+δ p+2δ p+3δ

— TN TN TN TN FN TP TP TP

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 5829286

Namdar et al. Modified AUC for Training CNNs

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


importance with respect to degree of imbalance. In other words,
AUC equalizes importance of positive and negative cases as if
the number of APs and ANs were the same. In this perspective,
ROC has a built-in normalizer mechanism. However, in real
world, that may not be desired. In most cancer detection
situations, for example, importance of a positive case
massively outweighs that of a negative case.

The fact that the AUC does not discriminate between FP and
FN implies that what should be used as a criterion when training a
model is ROC curve itself and not the AUC. Hence, in order to
translate probabilities to predictions, one specific t ∈ [0, 1] is
needed.

In medical science (e.g., cancer detection), instead of AUC value,
the clinical value of a classificationmethod is usually studied in terms
of TPR or FPR. For example, for a desired TPR, using the ROC
curve, the point with lowest FPR is selected. From there, the desired
threshold is derived, and the classification is performed. Thus, to
evaluate the performance, confusion matrix is the most informative
way of reporting where a model with a lower AUCmay be preferred
when the specific TPR/FPR are considered. One possible example is
illustrated in Figure 7.

In Figure 7, AUC of the orange line and the blue line are 0.75
and 0.58, respectively. Although the orange line has a higher
AUC, if the acceptable sensitivity is set at 1, the blue line
corresponds to the best model. In other words, to be able to
identify every single positive example, with the orange line we will
misclassify 75% of our negative examples compared with 50% of
misclassification by the blue one.

Proposed AUC With Confidence
We call a model confident if it returns probabilities near 1 for all
positive cases and probabilities near 0 for all negative examples.
In previous section, it was demonstrated that AUC does not
provide the confidence of the classification model under study.

In other words, whether the predicted probabilities are close to
each other or not does not affect the AUC value. As a result, a
classification model that is able to separate the positive and
negative cases by a small margin (e.g., 5%), has the same AUC as
the one that separates the positive and negative cases by a large
margin (e.g., 25%). Risk assessment in Medical Science and
regression in Statistics are cases where having large margins
may not be the target. However, in the context of classification,
the margin is a key point. The whole idea of Support Vector
Machines (SVM) is formed around large margin classification
(Parikh and Shah, 2016). The ultimate effect of Cross Entropy
(CE) loss function on NNs is imposing separation between
predicted probability of positive and negative examples (Zhang
and Sabuncu, 2018).

To address this issue, we propose a modified AUC (cAUC),
which provides a confidence measure for the classification model.
To do so, we introduce two coefficients, α and β.

α � max(pi) −min(pj) ∣∣∣∣∣ {pi ∈ AP, pj ∈ AN} (9)

β � min(pi) −max(pj) ∣∣∣∣∣ {pi ∈ AP, pj ∈ AN} (10)

cAUC � e(α−1)e(β−1)AUC (11)

The idea behind Eq. 11 is the smaller the range between the
probabilities of the two classes, the lower the AUCwill be and vice
versa. If the range is the maximum possible value (which is 1), the
AUC remains unchanged. Otherwise, it is decreased.

In the following, we show that our cAUC local maximums
correspond to BCE local minimums. Intuitively, BCE is
minimized when the probabilities created by the model are
close to 1 for APs and near 0 for ANs. This translates to the
concept of confidence we discussed above. Mathematically, BCE
is explained through Eq. 12. Using the same separation approach,
we have used so far, BCE can be rewritten for APs and ANs as

FIGURE 6 | ROC of Example of Table 10. FIGURE 7 | ROC curves for two different models with N � 7.
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Eq. 13. From Eq. 13, it can be concluded ideal BCE loss is resulted
under conditions of Eq. 14.

BCE � −1
N

∑N
i�1

yd
i log(pi) + (1 − yd

i )log(1 − pi) (12)

BCE � −1
N

⎡⎢⎢⎣∑N
i�1
{ log(pi)∣∣∣∣ yd

i ∈ AP
0, otherwise

+ ∑N
j�1
{ log(1 − pj)∣∣∣∣∣ yd

j ∈ AN
0, otherwise

⎤⎥⎥⎦ (13)

BCE � 0 if ∀yd
i ∈ AP, pi � 1 and ∀yd

i ∈ AN, pi � 0 (14)

If conditions of Eq. 14 are met, from Eq. 7 it can be inferred
AUC is equal to 1 because for any threshold between 0 and 1, all
datapoints are correctly classified. In this case Eq. 9, 10 result in
α � β � 1. Ultimately, our definition of cAUC, Eq. 11, returns
cAUC � 1. Therefore, the ideal cases of cAUC and BCE
correspond to each other. Through a similar procedure, it can
be proved their worst cases (cAUC � 0 and BCE →∞)
correspond too. In the transition between the two extremes,
BCE and confidence-related part of cAUC (the exponential
coefficients) have a monotonic behavior.

We proved that if AUC is equal to 1, the probability of positive
and negative examples can be close to each other and thus,
leading to high BCE. Therefore, a high AUC does not
necessarily mean low BCE. Thus, instead of AUC, we propose
monitoring cAUC, which in global optimums is guaranteed to
result in ideal BCE and AUC, and in local optimums has higher
potential for stopping the training when the model is confident,
not overfit, and achieves a high AUC.

RESULTS

We will evaluate our confidence-incorporated AUC (cAUC)
on 4 different scenarios: random predictions, a customized
dataset based on MNIST (LeCun and Cortes, 2010), our
proprietary Prostate Cancer (PCa) dataset, and a dataset

based on BraTS19 (Menze et al., 2015; Bakas et al., 2017;
Bakas, 2018). Our PCa dataset of Diffusion-weighted MRI is
described in our previous research (Yoo et al., 2019). The
CNN architectures and the utilized settings are similar to our
shallow models used in other research projects (Hao et al.,
2020). Nonetheless, the details are provided in
Supplementary Appendix A. Given the fact that AUC is
not differentiable, to train the network we used BCE. The
only essential point which should be covered is input
channels of our CNN for MNIST classification. Because
MNIST is a single channel dataset, we revised the network
to be compatible with it.

cAUC vs AUC on Random Data
To test the proposed AUC, in an N � 10 simulation, real values
and predicted probabilities were generated randomly using U
[0, 1] as Table 11. In case of arbitrary classification, expected
value of AUC is 0.5. The goal here is to calculate expected values
of cAUC for such conditions. Another point for the presented
values in Table 11 is to highlight importance of sample size.
With the widespread use of AI in Medical Science, researchers
must care about sample sizes. Our experiment shows AUC �
0.66 is not hard to achieve through chance when N is not high
enough.

Simulations with N � 100 and 10,000 trials show expected
value of AUC is 0.50 and expected value of the revised AUC is
0.07. Intuitively, AUC � 0.5 happens when everything is by
chance. We showed one example is when output of the model
is constant. In other words, when variance of the output vector is
zero. In this case, coefficients α and β also are zero in limit
[according to (9) and (10)]. Therefore, cAUC will be
0.5*e(−1)e(−1) which is 0.07.

cAUC vs. AUC on an MNIST-Based Dataset
MNIST is a well-known dataset of handwritten digits,
including 60,000 train and 10,000 test images (LeCun and
Cortes, 2010). It includes single channel, 28 × 28 pixel,
normalized images. The 10 different digits form classes of
data in MNIST, by default. Because our ultimate goal was

TABLE 11 | Comparison of AUC and the proposed AUC for a random case.

Real values Sorted probabilities Parameters

1 0.803258838 α � 0.80325884 − 0.27759354 � 0.5256653

0 0.517853202 β � 0.30374599 − 0.69960646 � −0.39586047
AUC � 0.66666666666666661 0.639592674
cAUC � 0.1027290563696407

1 0.303745995
—

0 0.699606458

0 0.318090495

0 0.277593543

1 0.421482502

1 0.556011119

1 0.548716153
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Medical applications, we marked examples of 7 as positive and
all other digits as negative to create our imbalanced binary
MNIST-based dataset. Our train set included the first 5,000
examples of training cohort of MNIST and our validation set
was 1,500 examples (indices: 45,000–46,500) of it. Our test set
was built from the first 1,000 examples of MNIST test. This was
done to ensure our dataset size is reasonable in comparison to
Medical ones. To make our data noisy, as it is always seen in
Medical datasets, we added uniform random noise to each
pixel. For that end, we first scaled MNIST examples in order to
have each pixel values in the range of [0, 1]. Then we added
5 times of a random image to it and scaled the result back to [0,
1] as stated in Eq. 15

image �
MNIST image

255 + 5 p numpy.random.random((28, 28))
6

(15)

Figure 8 shows results of the classification over 50 epochs of
training. In each epoch, average BCE loss, AUC, and cAUC for
training, validation, and test cohorts are calculated. This
procedure is maintained until the last epoch and then the
monitored values are plotted.

cAUC vs. AUC on a Proprietary PCa Dataset
Figure 9 depicts the results of classification over our
institutional review board approved PCa dataset, which

FIGURE 8 | Classification results on the MINIST-based dataset.

FIGURE 9 | Classification results on the PCa dataset.
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included Diffusion-weighted MRI images of 414 prostate
cancer patients (5,706 2D slices). The dataset was divided
into training (217 patients, 2,955 slices), validation (102
patients, 1,417 slices), and test sets (95 patients, 1,334
slices). Label for each slice was generated based on the
targeted biopsy results where a clinically significant prostate
cancer (Gleason score>6) was considered a positive label. The
golden vertical line is where cAUC guides us to stop and the
grey vertical line is where we would stop if AUC was used.

cAUC vs. AUC on a BraTS-Based Dataset
We used the BraTS19 dataset, with the same setting as our
previous research (Hao et al., 2021). The dataset contains 335
patients of which 259 patients were diagnosed with high-grade
glioma (HGG) and 76 patients had low-grade glioma (LGG). For
each patient, we stacked three MRI sequences, which are T1-
weighted, post–contrast-enhanced T1-weighted (T1C), and T2-
weighted (T2) volumes. With the help of BraTS segmentations,
we randomly extracted 20 slices per patient with the tumor region
in axial plane. Our training dataset contained 203 patients, which
corresponds to 2,927 slices (1,377 LGG and 1,550 HGG
examples). 66 patients were included in the validation set (970
slices, 450 LGG and 520 HGG examples). Another 66 patients
formed our test set (970 slices, 450 LGG and 520 HGG examples).
LGG slices were labeled as 0 and HGGs were assigned to be 1. The
images were resized to 224 × 224 pixels. Figure 10 illustrates the
results of classification over the dataset. cAUC directs the model
to stop at epoch number 4 whereas both AUC and BCE would
lead to the seventh epoch.

DISCUSSION

In this research, we first highlighted several important ROC and
AUCcharacteristics.We demonstrated that to drawROCcurve, both

actual positives and actual negatives are needed. Threshold equal to 1
corresponds to (0,0) in the ROC curve and t � 0 appears as (1,1). If a
function is to calculate TPR, FPR or other metrics, it should iterate
backward on the t values. The AUC is not concerned about
confidence of the model. Regardless of N, if all the predictions
are the same (p1 � p2 � . . . � pN), AUC will be 0.5 and the ROC
curve will be a straight line from (0,0) to (1,1). Selecting more
thresholds does not result in a smoother ROC or more accurate
AUC. Thresholds must be selected from the set of the predicted
probabilities plus 0 and 1. The order of predicted probabilities is
correlated to the ROC shape and has a major impact on AUC. If
there is at least a threshold where the probabilities of all actual
positives and all actual negatives are above and below it,
respectively, then the AUC is equal to 1. Conversely, the
AUC will be 0 for the opposite case. The AUC does not
differentiate FP from FN. All it does is scaling actual positive
and actual negatives in a way that they have equal contributions
to AUC. Therefore, the ROC curve should be used as the
criterion and not AUC, if FP and FN have different weights.
Because the final goal is classification, what is important is the
performance of the model at a specific threshold. Therefore,
there may be cases where a model with a lower AUC performs
better at one threshold. The right approach is finding the
optimum threshold from ROC and reporting the confusion
matrix at that threshold.

The core of our research was the amendment of AUC in terms
of margins. To add confidence to the optimized model, AUC
needs to be refined. Using two coefficients, a revised AUC was
proposed. Through simulations and mathematics, we showed the
revised AUC reflects confidence of the model.

Unlike AUC, through experiments on MNIST, our PCa,
and BraTS dataset, we demonstrated that local maximums in
the proposed modified AUC correspond to local minimums
of cross-entropy loss function. It was shown that selecting the
best model based on cAUC is computationally efficient,

FIGURE 10 | Classification results on our BraTS-based dataset.
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mathematically reasonable, and it results in avoiding
overfitting.

The conventional approach for when to stop training a CNN to
achieve the highest AUC is to monitor the AUC while the model is
being trained with a loss function such as BCE, and save the model
whenever AUC breaks the previous highest score. However, when
BCE is set to be used as the loss function, the hypothesis is that the
best model has the lowest loss and therefore, the minimum loss is
what the model is trained for. Hence, choosing the best model based
on the highest AUC is not well rationalized and may not lead to the
optimum point.

Our proposed metric inherits several limitations of the standard
AUC and ROC but does not add any additional restrictions. Similar
to AUC, cAUC is not differentiable and cannot be directly used as a
loss function for training any NN. Additionally, calculating cAUC
for a batch of data, especially if the batch size is small, will not help
because it will be a measure of ranking in a small sample of the
dataset. Similar to the standard AUC, cAUC does not give more
importance to the positive examples.

CONCLUSION

Our results demonstrate the proposed cAUC is a better metric to
choose the best performing model. On our MNIST-based dataset,
when training a CNN, it results in stopping earlier which is
computationally desirable. Moreover, it has landed in a less
overfitting-prone area. Our results on the prostate MRI dataset
are particularly interesting. With standard AUC we would stop
training the CNN model at a suboptimal point with regards to
BCE. With our proposed cAUC, we are able to stop at an optimal
point where the training model gives the highest AUC. Our BraTS

dataset experiments demonstrate cAUC can indicate optimum
points that neither AUC nor BCE would direct the model
towards them.
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