
Application of Seq2Seq Models on
Code Correction
Shan Huang1*, Xiao Zhou2 and Sang Chin2,3,4

1Department of Physics, Boston University, Boston, MA, United States, 2Department of Computer Science, Boston University,
Boston, MA, United States, 3Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Boston, MA,
United States, 4Center of Mathematical Sciences and Applications, Harvard University, Boston, MA, United States

We apply various seq2seq models on programming language correction tasks on Juliet
Test Suite for C/C++ and Java of Software Assurance Reference Datasets and achieve
75% (for C/C++) and 56% (for Java) repair rates on these tasks. We introduce pyramid
encoder in these seq2seq models, which significantly increases the computational
efficiency and memory efficiency, while achieving similar repair rate to their nonpyramid
counterparts. We successfully carry out error type classification task on ITC benchmark
examples (with only 685 code instances) using transfer learning with models pretrained on
Juliet Test Suite, pointing out a novel way of processing small programming language
datasets.

Keywords: programming language correction, seq2seq architecture, pyramid encoder, attention mechanism,
transfer learning

1 INTRODUCTION

Programming language correction (PLC), which can provide suggestions for people to debug code,
identify potential flaws in a program, and help programmers to improve their coding skills, has been
an important topic in the Natural Language Processing (NLP) area. Generally, code errors consist of
two categories: one is explicit, syntax errors, and the other is implicit, logic errors that could cause
failure during program execution, for example, memory allocation errors, redundant code, etc. The
syntax error problem is relatively well studied; most compilers are able to catch syntax errors, and
correcting syntax errors manually is not difficult even for beginner programmers. The latter problem,
however, is much more challenging due to several reasons. First, the error space is vast. For example,
Error-Prone, a rule-based Java code error detector developed by google, identifies 499 bug patterns.
Second, recognizing and correcting these bugs requires a higher level of understanding of the code,
including identifying the relationship between objects, making connections between blocks, and
matching data types. These errors could be seen in even experienced programmers and can be time
consuming to correct manually. Therefore, this study will focus on automatic correction of these
logic errors in code body that pass compiling stage.

At present, most work in this field used rule-based methods [JetBrains (2016); Synopsys (2016);
Google (2016a); Google (2016b); Singh et al., (2013)], using static analyzers, code transformations, or
control flow to identify bug patterns and make corrections. These methods are quite mature, and
some are even commercialized, like Resharper. Machine learning methods, however, have been a
minority and are relatively new. There is also no canonical solution; people have used methods
varying from reinforcement learning to recurrent neural network.

Given the good performance and wide usage of rule-based PLC methods, there is a major
drawback: these methods are often case specific. The developer had to design specific correction
strategy for each bug pattern. For example, the core code body of Error-Prone contains 499 java

Edited by:
Bhavya Kailkhura,

United States Department of Energy
(DOE), United States

Reviewed by:
Caiwen Ding,

University of Connecticut,
United States

Aline Paes,
Fluminense Federal University, Brazil

*Correspondence:
Shan Huang

sh2015@bu.edu

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 31 July 2020
Accepted: 08 January 2021
Published: 19 March 2021

Citation:
Huang S, Zhou X and Chin S (2021)
Application of Seq2Seq Models on

Code Correction.
Front. Artif. Intell. 4:590215.

doi: 10.3389/frai.2021.590215

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 5902151

ORIGINAL RESEARCH
published: 19 March 2021

doi: 10.3389/frai.2021.590215

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.590215&domain=pdf&date_stamp=2021-03-19
https://www.frontiersin.org/articles/10.3389/frai.2021.590215/full
https://www.frontiersin.org/articles/10.3389/frai.2021.590215/full
http://creativecommons.org/licenses/by/4.0/
mailto:sh2015@bu.edu
https://doi.org/10.3389/frai.2021.590215
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.590215

script, each corresponds to a type of error. Therefore, rule-based
PLC often requires large human labor to build. It also suffers from
incompleteness and incapability of dealing with exceptions. In the
long run, one could consider rule-based PLC vs. machine learning
PLC as rule-based translation vs. statistical machine translation.
Machine learning methods have the following advantages: first,
they are self-sufficient; they teach themselves, requiring
minimum amount of human development. Second, they can
do self-improvement and self-prediction by grabbing data
from users. Third, after sufficient training, one can expect
them to perform better with coding style and fluency, like
machine translations. One main obstacle that prevents
machine code correction being as successful as machine
translation is a general lack of data, which will be elaborated
in a latter paragraph. This further leads to another drawback:
insufficient training. However, machine code correction has an
unlimited potential if more studies are carried out and more
datasets are produced. This article aims to provide a successful
example that might inspire further researches on machine code
correction.

Despite good intentions of replacing hand-designed rule-
based PLC method with machine-learning-based PLC method
and its merits discussed above, some may express concerns about
its environmental costs, as such concerns have been raised by
ethical AI researchers (Hao, 2019). Although generally we do not
agree that such concerns should overshadow the value of

liberating human labor and pursuing potentially much better
performances (as one did in machine translation), we leave such
judgment to our readers. Since training a machine learning model
takes mostly electricity and storage space, we provide an
estimated power consumption and the detailed information of
a number of parameters in our models (with chosen hyper
parameters described in Section 3.6) in the Appendix: Section
2. Interested readers could refer to the information accordingly.

The machine learning models we choose are seq2seq models.
Seq2seq (abbreviation of sequence to sequence) model is a group
of neural-network-based models. It usually consists of an encoder
and a decoder. The encoder takes a sequence as input and
produces an encoded representation of the input sequence.
The decoder takes this representation and produces an output
sequence. It has been proved to be very successful in neural
machine translation, natural language correction, text generation,
etc. An example of a seq2seq model structure is shown in
Figure 1. Our results show that seq2seq models successfully
repair over 70% of the code instances if the beam search size
is 1 and over 90% if the beam search size is 5.

Instead of just using regular seq2seq model, we introduce
pyramid encoder structure to better suit the code correction task.
The motivation is as follows: for NLC problems, the model works
on a sentence level and the average length of a sentence lies
around dozens of words. However, for PLC problems, the model
works on the whole code instance. The average length of code

FIGURE 1 |Model structure of a 3-layer seq2seq model with attention. The ith layer takes the output of the previous layer (h(i−1)) as its input. a is the context vector,
which can be calculated using different attention mechanisms.

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 5902152

Huang et al. Seq2Seq Models in Code Correction

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

instances in PLC is usually hundreds of syntax words, which
results in enormous computational cost and memory
requirement, especially combined with attention mechanisms.
Pyramid structure aims to reduce these costs by contracting the
data flow and discarding redundant information. Figure 2 shows
a visual representation of the pyramid encoder; it can be
implemented to most of the multilayer seq2seq learning
models. In our model comparison set, pyramid encoder
increases networks’ computational efficiency by 50%–100%
and memory efficiency by up to 600%, while having similar
ability of reparation.

On the other hand, due to the privacy policies, most of the
publicly available datasets are not collected from realistic
program errors and fixes but rather are generated by artificial
tools. The ones that are collected realistically are usually very
small. To handle this issue, we also applied transfer learning to
inherit the knowledge learned from previous datasets to boost the
network’s performance on smaller and noisier datasets. Details of
our project are available on GitHub1.

2 RELATED WORK

Rule-based methods that work on PLC have a long history and
are thus more mature. One of them is proposed by Singh et al.,
(2013), which is a rule-directed translation strategy synthesizing a
correct program from a sketch. Their model is able to provide

feedback for introductory programming problems and has
achieved a correction rate of 64% on incorrect submissions.
Some of these methods are quite mature. For instance, Google
developed Error-Prone (Google, 2016a) and clang-tidy (Google,
2016b) as rule-based tools to help in identifying and correcting
potential mistakes for programmers. Some of them are even
commercialized, like Resharper (JetBrains, 2016), developed by
Synopsys (2016). As a paid feature of Visual Studio, Resharper
provides code analysis, refactoring, and code processing
(including code generation and quick fixes for errors) as extra
features to programmers.

In 2016, Pu et al.’s (2016) study became one of the first
attempts to use machine learning method in PLC tasks. They
used a Long Short Term Memory (LSTM) model on correcting
MOOCs student assignment submissions. However, their dataset
was not publicly available, putting difficulties on reproducing
their work. Later in 2017, Gupta et al., (2017) proposed a seq2seq
model for fixing student submissions (Deepfix), which is also a
private dataset. In a later work, they (Gupta et al., 2018) used
reinforcement learning based on the input code and the error
messages returned by the compiler for the same task, on the same
dataset. Our work, also based on seq2seq models, was carried out
on a public dataset that contains more error categories.

The pyramid encoder played an important role in our
research. It originated from Xie et al., (2016). We proposed its
general form for all seq2seq models and thoroughly studied its
performance in reduction of computational resources. We aimed
to overcome difficulty brought by the extended length of code
instances, compared to natural language sentences. These aspects
of pyramid structure were not studied in Xie’s work. We did the
comparison of pyramid encoder and regular encoder under
different attention mechanisms, showing that pyramid encoder
could drastically reduce memory and computational cost in most
setups that we considered.

3 MODEL

3.1 Overview
Given a code instance, we wish to identify and correct potential flaw
in it, which might lead to a failure in execution after successful
compilation. Each bad code instance contains exactly one flaw.

Formaly speaking, given an input code instance x, we wish to
map it to an output code instance y and we seek to model P(y∣∣∣∣x).
A code is “repaired” if the flaw that x contains is fixed in the
output y. The “repair rate” is defined as the fraction between the
number of code instances fixed and the total number of code
instances that the model was applied on. We use repair rate as the
evaluation metric in our experiments.

For this purpose, we applied two major families of seq2seq
models: GRU and Transformer. We use learnable embedding
layers, which allows the model to recognize the relationship
between different words in the vocabulary. For the encoder, we
applied pyramid encoder, where a pyramid module is added in
between layers of regular multilayer encoders. For the purpose of
testing generality of pyramid encoder, we combined it with different
attention mechanisms.

FIGURE 2 | Visualization of pyramid encoder in multilayer seq2seq
models. Pyramid encoder reduces length of input sequence by half in every
encoding layer. h(i−1) denotes output of (i − 1)th encoder layer and x(i)

denotes the input of ith encoder layer.

1See https://github.com/b19e93n/PLC-Pyramid.

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 5902153

Huang et al. Seq2Seq Models in Code Correction

https://github.com/b19e93n/PLC-Pyramid
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

3.2 Word-Level Reasoning
In language correction, character-level reasoning is a more
commonly applied method, Xie et al., (2016). However, in
code correction, we apply word-level models. A “word” here
is defined as a code syntax (e.g., “void”, “{“, space, “ � “, “int”,
newline, etc.) or a custom variable name. The reason is that the
basic building blocks of a code instance are related to the syntax.
In the field of programming language processing, out-of-
vocabulary (OOV) is less a problem than in natural language
due to a fixed syntax pool.

In order to prevent the model suffering from vast variation of
variable names, we performed a certain degree of variable
renaming. We focused on renaming function names in our
dataset while keeping other variables unchanged. This method
reduced vocabulary size to ∼1,000 and was proven to be effective
in improving the performance.

We include our preprocessingmethod to a code instance in the
Appendix.

3.3 Pyramid Encoder
Given a multilayer seq2seq encoder, its input at ith layer at step t is
x(i)t and the output is h(i)t :

h(i)
t � Layer(i)(x(i)t) (1)

In standard seq2seq models, the output of the ith layer h(i) is
directly used as input of the i + 1th layer, x(i+1):

x(i+1)t � h(i)
t (2)

and the time step t � 1, 2, . . . ,T , the layer number i � 1, 2, . . . ,N .
Note that x(0)t is the embedded representation of the input
instance.

For pyramid encoder, we introduce a pyramid module in
between h(i) and x(i+1) as Eq. 3 follows:

x(i+1)t′ � tanh (Wpyr(h(i)
2t , h

(i)
2t+1) + bpyr) (3)

This module reduced the length of the input x(i) by half each time it
is applied. The length of final output of the encoder is T/2N−1. One
could also take a bigger window such as 3, 4, 5. . . depending on
their needs. The hope is that pyramid structure will extract the
important information and reduce the redundant information of
each of the neighboring hidden state, therefore reducing the
training cost while keeping the accuracy of the correction. This
is conceptually similar to a convolution, but without using filters.

For our GRU models, we used multilayer bidirectional GRU
and we implemented pyramid encoder as described first in Xie
et al., (2016):

f (i)t � GRU(f (i)t−1, x
(i)
t) (4)

b(i)t � GRU(b(i)t+1, x
(i)
t) (5)

h(i)t � f (i)t + b(i)t (6)

x(i+1)t′ � tanh(Wpyr(h(i)
2t , h

(i)
2t+1) + bpyr) (7)

where x(i+1)t′ denotes the input to next layer, f (i)t and b(i)t denote
output from a forward and a backward GRU, respectively. GRU

(Gated Recurrent Unit) is a RNN (Recurrent Neural Network)
type model that includes a gating mechanism in the following
equations (Cho et al., 2014):

rt � σ(W irxt + bir +Whr
~ht−1 + bhr (8)

z t � σ(W izxt + biz +Whz
~ht−1 + bhz (9)

nt � tanh(W inxt + bin + rt*Whnh̃t−1 + bhn) (10)

~ht � (1 − z t) * nt + z t * h̃t−1 (11)

where ~ht is the hidden state at step t, which is denoted by f t in Eq.
4 and bt in Eq. 5. rt , zt , and nt are the reset, update, and new gates,
respectively. σ is the sigmoid function.

Transformer is a novel family of seq2seq model that works
very differently than RNN type models. In the original
Transformer (see Figure 3), a Feed Forward layer directly
takes in the output from the Multihead attention layer catt,
accompanied by a residual connection, shown in

c(i)att � MultiHeadAtt(x(i)) + x(i) (12)

x(i+1) � c(i)att + FeedForward(c(i)att) (13)

In our model, we concatenated the neighboring elements in catt
before we feed it into the Feed Forward. As a result, the
dimension of the first Linear layer in the Feed Forward
layer has to change from [dmodel × dff] to [2dmodel × dff].
Here we use the same notation as in Vaswani et al., (2017),
where dmodel is the size of input, output, and attention vectors
and dff is the number of neurons in the Feed Forward layer. The
residual connection also has to be changed accordingly; we tried two
different approaches, simply averaging the neighboring element (Eq.
14) or concatenating the neighboring element and passing it through
another affine transformation to recover its dimensions (Eq. 15). For
simplicity, we denote the former method with subscript “ave” and
the latter with subscript “aff”.

x(i+1)
t′ ,ave

� (c(i)att,2t + c(i)att,2t+1)
2

+ FeedForward[(c(i)att,2t , c
(i)
att,2t+1)] (14)

x(i+1)
t′ ,aff

� tanh[Waff(c(i)att,2t , c
(i)
att,2t+1) + baff]

+ FeedForward[(c(i)att,2t , c
(i)
att,2t+1)] (15)

In our experiments, both methods show close performance.
Therefore when showing the results, unless otherwise specified,
we use the results of “ave” version.

3.4 Decoder and Attention Mechanisms
For our GRU models, we compared a regular multilayer
unidirectional GRU:

h
(i)
t � GRU(h(i)t−1, h

(i−1)
t) (16)

In our experiment, we did a comparison study on Bahdanau
attention (Eq. 17) and different Luong attentions. Bahdanau
attention is described in following set of equations.

utk � (W1h
(M)
t + b1)u(W2h

(N)
k + b2) (17)

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 5902154

Huang et al. Seq2Seq Models in Code Correction

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

αtk � utk∑
j
utj

(18)

at � ∑
j

αtjh
(N)
j (19)

Here, u is the alignment score, h and h denote the hidden state in
encoder and decoder, respectively.M, N are the number of layers
in decoder and encoder, respectively. at is the context vector,
which will be concatenated with the decoder hidden state of last
layer for predicting the next word ŷt .

Luong’s global attentions are generalizations to Bahdanau
attention, but using different alignment score calculation
methods. For simplicity, we omit the superscript (M) and (N).

utk �
⎧⎪⎪⎨⎪⎪⎩

h
u

t hk dot

h
u

t Wahk general
vua tanh(Wa[ht , hk]) concat

(20)

We also tried one example of Luong’s local attention, which is done
by imposing a Gaussian on Eq. 19 at a desired attention center pt :

at � ∑
j

(αtjhj)exp(− (j − pt)2
2σ2

) (21)

pt � S · sigmoid(Wpht) (22)

where S denotes the total length of the hidden state from the last
encoding layer and σ is a parameter chosen manually.

3.5 Beam Search
We use beam search in test and validation where text generation is
involved. For each time step, we rank candidates based on their total
negative logarithmic probability to current decoding time step tdec:

score � −∑tdec
t

log(P(ŷ)) (23)

The search stops when there are five completed candidates.

FIGURE 3 | The implementation of pyramid structure in Transformer’s encoder.

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 5902155

Huang et al. Seq2Seq Models in Code Correction

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

3.6 Model Parameters
In all our experiments, we used a learnable embedding layer which
embeds each “word” into a vector of length 400.

In our GRU models, we used a 3-layer bidirectional encoder;
the size of the hidden states are 400 in all three layers. We used a
3-layer unidirectional decoder; the size of the hidden states are
also 400.

In our Transformer models, following the original study, we used
dmodel � 512 and dff � 2048. We used 3-layer encoder and 3-layer
decoder.

We did a coarse parameter space search to find these
parameters chosen to be roughly optimal. But we did not fine-
tune these parameters, because (1) we show that the overall
performance of seq2seq model on PLC problem is satisfying
and (2) we are more concerned about comparison between
different attention mechanisms and between pyramid encoder
and regular encoder.

4 DATASETS

We perform our experiments mainly on the Juliet Test Suite for
C/C++ (v1.2) (created by NSA Center for Assured Software
(2013)). This dataset contains 61,387 test cases, each test case
contains one flawed code instance and one to several repaired
code instance. These test cases contain more than 100 Common
Weakness Enumerations (CWEs); each of them contains
hundreds of example code instances. We note that the
instances contain significant amount of dead code. To make
the code more realistic, we remove the dead code. We also found
that many of the code instances contain “if conditions”, that, in
the flawed code instance, executes one branch, while, in the
repaired instance, executes the other. These instances are
unrealistic; therefore, we removed them. We also performed
function renaming. After the preprocessing, we obtained
31,082 pairs of good-bad code instances.

To test model’s generality, for some of the models, we also tested
their performance on Juliet Test Suite for Java (v1.3) (released by NSA
Center for Assured Software (2018)). After similar preprocessing
described above, we obtain 23,015 pairs of instances.

We did 4-fold cross-validation in all of our experiments to
achieve statistically accurate results. An estimation of time and
power consumption when running our experiments is provided
in the Supplementary Material in a table, along with hardware
requirements.

5 RESULTS

5.1 Repair Rate
We train our models on a GeForce GTX 1080 Ti graphic card.
The metric we use for evaluation is the repair rate, which is the
fraction of instances that are repaired after the model’s edit. Since
we performed beam search with beam width 5, each time a
correction is being performed, we generate five correction
candidates. Here we have two metrics in measuring the
performance: one-candidate repair rate and five-candidate

repair rate. The former corresponds to the scenario of code
autocorrection, where there is no human judgment involved.
The latter corresponds to correction suggesting, where the
machine will identify an error and provide suggestions for the
programmer for further judgment. The comparisons of the repair
rates for considered models and their counterparts with pyramid
encoder are listed in Table 1 and Table 2. For comparison, we
have attempted to test other machine-learning-based PLC tools
that have been made. Gupta et al., (2018) take error messages
while compiling as input, but our dataset focuses on logic flaws in
programs that do not have syntax errors; therefore, this tool is not
applicable. Pu et al., (2016) do not provide an open source
repository, nor any documentations of their code. We have
successfully trained Gupta et al., (2017) on our C/C++ dataset
and included it in our work for comparison. Unfortunately, a
tokenizer is required for preprocessing the data into a certain
format, and they only provided that for C/C++, but not java.

From these results we see that pyramid encoder has close
performance to regular encoder in most of the models we applied
to, except for Luong’s local attention. The reason is that the
encoder output in pyramid encoder is very “coarse-grained”; each
output position now represents information from 2(N−1) words.
This results in two drawbacks specifically to local attention: one, a
much more “blurry” attention center and two, a much broader
attention window. As a result, the attention is much less targeted,
which damages the performance. Therefore, in the rest of the
article, we will exclude this attention mechanism from our
discussion.

5.2 Converging Speed
Since pyramid encoder reduces the sequence lengths in higher layers,
one can expect a smaller training cost per batch in both GRU and
Transformer models. To quantify this effect, for each of the regular
encoder-pyramid encoder model pairs in Table 1, we set the same
batch size and compare the average training speed in words per
second, as shown in Table 3. Here the batch size is chosen so that it
optimizes the training speed on the given GPU for each model. In
the model, we also included number of epochs for the model to
converge.

Apparently it takes similar number of epochs to converge for the
same type of model with pyramid encoder and regular encoder.
However, pyramid encoders largely increase the training speed,
between 50 and 130%. Therefore it could easily shorten the
training time by two to four folds while the same performance is
achieved. As an example, Figure 4 shows the learning curve for GRU
model with general Luong’s attention, comparing the regular encoder
and pyramid encoder.

5.3 Memory Cost
The last thing we compared is the memory cost of the pyramid
encoder and the regular encoder. This measure is crucial in some
scenarios, where your input instances are very long; therefore, the
memory of GPU is only capable of holding a very small batch. In code
correction, this is often the case.

The metric we use for comparison is memory cost per
instance, k, which is defined as

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 5902156

Huang et al. Seq2Seq Models in Code Correction

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

k � ΔMemory usage
ΔBatch size (24)

Figure 5 shows the calculation process of k. Define E � 1/k as
memory efficiency. We calculated the k and E value for each of the
models we applied, shown inTable 4.We also included the number of
parameters in eachmodel, fromwhich we see that each pair ofmodels
has roughly the same model size.

The pyramid encoder could increase the memory
efficiency by 20%–600% depending on the attention
mechanisms used, while only increase the memory
occupied by the model itself by around 10%. One should
note that the memory efficiency directly affects the maximum
batch size one is able to use on a single GPU, and therefore
affects the utility of the GPU. For example, for regular GRU
with Bahdanau Attention, the memory of a GeForce GTX
1080 Ti graphic card can only support a batch size of 8, which
does not fully utilize the GPU. With pyramid encoder, it can
support up to 60 instances each batch. In practice, this will

drastically reduce the training time by increasing the GPU
utility, together with the smaller computational cost of
pyramid encoder as addressed in previous section.

6 DISCUSSION

6.1 Length Analyses
Figure 6 shows the repair rate of the models with respect to the
input length. We omitted the result of Transformer, Bahdanau’s
attention, and Luong’s general attention, because they are
qualitatively similar to the result of Luong’s dot attention.
Despite the different attention mechanisms, these seq2seq
models (with pyramid encoder or regular encoder) are
relatively robust to longer input lengths. The performance
drops at around 250 words and above 500 words are likely
resulting from the shortage of samples, which one can easily
observe from Figure 7, the length histogram of source instances
and target instances. The histogram also shows that the majority

TABLE 1 |Repair rate of GRU and Transformer on Juliet Test Suite for C/C++, comparing the regular encoder and pyramid encoder. These results are averaged over a 4-fold
cross-validation. We calculated the improvement of pyramid encoders compared to their nonpyramid pairs. Apparently pyramid encoder does not collaborate well with
Luong’s local attention; therefore, we exclude it from future discussions. It is also not included when calculating the average improvement.

Model 1-Candidate repair rate (%) 5-Candidate repair rate (%)

Regular encoder Pyramid encoder Regular encoder Pyramid encoder

GRU + Bahdanau Att 76.92 76.09 (−0.83) 96.19 95.55 (−0.64)
GRU + Luong Att: Dot 74.38 73.04 (−1.34) 94.27 94.59 (+0.32)
GRU + Luong Att: General 75.79 74.85 (−0.94) 94.83 94.92 (+0.09)
GRU + Luong Att: Concat 50.34 47.26 (−3.08) 86.72 86.14 (−0.58)
GRU + Luong Att: Local 65.70 49.18 (−15.52) 92.46 86.24 (−6.22)
Transformer 75.48 72.39 (−3.09) 97.66 96.78 (−0.88)
Average improvement (%) −1.95 −0.34

TABLE 2 | Repair rate of GRU and Transformer on Juliet Test Suite for Java, comparing the regular encoder and pyramid encoder. We did not include result from DeepFix,
because the provided data tokenizer only support C/C++.

Model 1-Candidate repair rate (%) 5-Candidate repair rate (%)

Regular encoder Pyramid encoder Regular encoder Pyramid encoder

GRU + Bahdanau Att 54.65 56.21 (+1.56) 84.31 83.98 (−0.33)
GRU + Luong Att: Dot 54.30 55.66 (+1.36) 82.73 84.86 (+2.13)
GRU + Luong Att: General 53.15 52.54 (−0.61) 82.81 82.83 (+0.02)
GRU + Luong Att: Concat
Transformer 56.68 57.35 (+0.67) 93.11 93.54 (+0.43)
Average improvement (%) +0.74 +0.75

TABLE 3 | Training speed of GRU and Transformer on Juliet Test Suite for C/C++.

Model Batch size Training speed (words/s) Converge epoch

Regular Pyramid Regular Pyramid

GRU + Bahdanau Att 8 754 1,185 (+57%) 18 18
GRU + Luong Att: General 16 441 853 (+108%) 23 27
GRU + Luong Att: Dot 128 4,646 10,408 (+124%) 36 34
GRU + Luong Att: Concat 6 1,418 2,344 (+65%) 23 29
Transformer 8 1,086 2,181 (+101%) 33 34

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 5902157

Huang et al. Seq2Seq Models in Code Correction

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

FIGURE 4 | Learning curve of GRU with Luong’s general attention, comparing regular encoder to pyramid encoder. Pyramid encoder model shows fast
converging speed.

FIGURE 5 | Memory cost per instance for GRU models with Bahdanau attention, k is calculated by finding the slope of the linear fit (black dashed line). The red
dashed line represents the maximum memory of a GeForce GTX 1080 Ti graphic card.

TABLE 4 | Memory cost for considered models, comparing regular encoder and pyramid encoder: pyramid encoder greatly increased the memory efficiency.

Model k (Mb/instance) E(10 −3) Parameters (107)

Regular Pyramid Regular Pyramid Regular Pyramid

GRU + Bahdanau Att 1,151.71 164.52 0.86 6.08 (+600%) 1.24 1.11
GRU + Luong Att: General 830.71 165.03 1.20 6.05 (+403%) 1.22 1.10
GRU + Luong Att: Dot 65.91 52.42 15.17 19.08 (+26%) 1.20 1.08
GRU + Luong Att: Concat 1,381.6 431.87 0.72 2.31 (+220%) 1.24 1.11
Transformer 414.67 263.33 0.24 0.38 (+57%) 2.35 2.82

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 5902158

Huang et al. Seq2Seq Models in Code Correction

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

of code instances contains several hundred words, while natural
language sentences are typically not longer than 50 words. This
feature of code instances calls for a much higher computational
resource requirement for PLC problems than NLC problems,
which makes pyramid structure especially useful.

6.2 Examples of Correction
In this section we give several examples of successful
corrections from our Pyramid GRU model on Juliet
C/C++ Test Suite for closer examination of model and
datasets. The red striked out texts denote the original
faulted instance, and blue buffed texts are the reparation
done by the model.

Example 1: Memory allocation match

The flawed code creates a char variable whose size does notmatch
its concatenating destination. The model is able to correct it so that
their size matches each other.

FIGURE 6 | Length analyses of Luong’s general attention and Luong’s concat attention. The results from the rest of the models are qualitatively similar to result of
Luong’s general attention and thus are omitted.

FIGURE 7 | Histogram of flawed code (left) and repaired code (right) instances.

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 5902159

Huang et al. Seq2Seq Models in Code Correction

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Example 2: Redundant Code

This is an example that the model deletes repeated code where
a variable is freed twice.

Example 3: Possible Overflow

Here we show a slightly questionable example of correction
provided by the dataset. In order to prevent potential string
overflow emerging from environment variable, the repair
suggestion given by the Juliet Test Suite is to abort the entire part
of concatenating the environment string and replace the variable
with an arbitrary string “*.*”. This “correction” is easy for the model
to learn; however, it has changed the original purpose of the program.

Example 4: Correction Across Functions

In this example, the models demonstrate the ability of making
connections across the whole instance, between different
functions. Here it prevents potential overflow in the sink
function caused by a variable that was passed from the main
function by adding an “if condition”.

6.3 Generalizability to Syntax Error-Oriented
Dataset
In the spirit of comparative study, we attempted to
compare our method to Deepfix (Gupta et al., 2017), the
only machine-learning-based PLC method that made their
code and dataset open to the public, to the best of our
knowledge. Unfortunately, the attempt of applying Deepfix
onto Juliet Test Suite has failed, because Deepfix is aimed
only to correct syntax errors and a compiler is used as the
evaluator, marking any programs that could pass the
compiling stage as “correct”. This apparently contradicts the
spirit of “identify logic errors from syntactically correct
programs”.

The difficulty that we are facing here comes from a
more general problem in the field of Machine Learning
PLC; the field is still disorganized and works in the field
are uncorrelated. Each group might be using their own
dataset and design their systems to match the specific
purpose of that dataset. Comparative work is difficult to
conduct not only because the datasets are hard to
obtain due to private policies, but also because issues raised
in PLC are versatile; each model is designed and optimized
to best address the problem occurring in their particular
dataset.

For the above reasons, we had to back off to a weaker
comparative study, using seq2seq models on the dataset from
Deepfix. Deepfix uses a generated dataset, originated from
students’ submission to an introductory C course in a web-
based tutoring system (Das et al., 2016). For each student
submission, they generate up to five syntax errors in the code
instance, including replacing “}; ” with “; }”, deleting a
semicolon, add an extra “}”, replacing a semicolon with a
period, and replacing a comma with a semicolon. If all of the
syntax errors were fixed, then consider such a program as
successfully repaired.

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 59021510

Huang et al. Seq2Seq Models in Code Correction

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Table 5 shows the comparison of repair rate of our seq2seqmodels
compared to the method applied by Deepfix. We observe that
pyramid encoder performs worse than regular encoder on this
particular dataset. This is expected from how the dataset was
generated. The generated syntax errors are extremely local in
Deepfix’s dataset. The fix usually only involves changing one token
or two neighboring tokens, leaving the rest of the entire code piece
unchanged. Therefore, while a pyramid encoder summarizes the
information from neighboring tokens, it also blurs the local
information.

We also observed that, in Luong’s attention, dot has the best
performance in this dataset and Bahdanau’s attention performs the
worst. After observing the dataset carefully, we came up with the
following hypothesis: in this dataset, the network is only required to
simply copy the original token most part of the instance and locally
fix one or two tokens. This means that in the majority of times, for
each decoder hidden state ht , the normalized attention score
score(ht , ht’) needs to be close to one where t � t’ and close to 0
everywhere else. In Luong’s attention, a dot, which simply do an
inner product of hidden states, could do the job easier, because latent
vectors are mostly orthogonal to each other in the latent space due to
high dimensionality. On the other hand, Bahdanau attention, which
does an affine transformation to every hidden state ht , may
overcomplicate the problem and fail to capture the correct attention.

6.4 Alternative Method for Small Datasets:
Transfer Learning
One main difficulty that researchers often come across when
attempting to apply machine learning methods to PLC
problems is the availability of suitable datasets. Although
there are many datasets and shared tasks available on
Software Assurance Reference Dataset (2006), most of
them include less than 1,000 examples. This makes neural-
network-based methods nearly impossible. To tackle this
problem, we take the idea of transfer learning from Pan
and Yang (2009).

Our idea is to take the encoder part of the model that was
trained on Juliet Test Suite and attach it to a untrained decoder,
which was designed for the specific problem. We aim to take the
advantage that codes written in the same coding language share
the same syntax library and same construction rules.

Since many datasets available only provide the faulted code
and their corresponding fault categories, here we give an example

of fault classification using transfer learning, applying the model
pretrained on Juliet Test Suite for C/C++ on ITC benchmark
(Charles (2015)).

6.4.1 Model Structure
Given a faulted code instance, our goal is to train a classification
model that predicts the type of error of the faulted code from a
given list of error categories.

We keep the encoder part of the pretrained model and use it
directly as the encoder in the classification problem. The exception is
the embedding layer, because the vocabulary in the new dataset will
contain new variable names that did not occur in pretrained
embedding, although the syntax will be the same. In practice, we
manually expanded the embedding layer to accommodate the new
“words” but keep the embeddings of the old “words” unchanged. In
order to add variation from the original model, we also reinitialized
the weights in the last encoding layer.

For the decoder, instead of generating a sequence, we take the
output of the first time step of the reinitiated decoder and pass it
to a linear layer that projects it to an nclass dimensional vector.
nclass is the number of error classes. Model was trained to
minimize cross-entropy loss with an ADAM optimizer.

6.4.2 Results
We extracted 566 C/C++ code instances from the ITC bench
mark. These instances are organized into 44 error categories, with
the largest category containing around 30 instance and the
smallest only containing two instances. Then the instances are
divided into a training set of 485 instances, a validation set of 42
instances, and test set of 39 instances. For comparison, we also
tried Pyramid GRU and Pyramid Transformer with the same
model structure but no prior knowledge from Juliet Test Suites.
The result is shown in Table 6.

TABLE 5 | Comparison of our models with Deepfix, Gupta et al., (2017) on Deepfix dataset. All results are average of 5-fold cross validation.

Model 1-Candidate repair rate (%) 5-Candidate repair rate (%)

Regular encoder Pyramid encoder Regular encoder Pyramid encoder

Transformer 51.96 43.78 67.16 59.32
GRU + Luong Att: General 51.86 34.80 66.33 48.44
GRU + Luong Att: Dot 58.63 41.09 72.31 54.47
GRU + Bahdanau Att 27.47 15.21 36.19 22.59
Deepfix 56

TABLE 6 | Comparison of the result of transfer learning on error type classification
task. The models without transfer learning demonstrate no predicting power
and no improvement during course of training.

Model Accuracy (%)

Transfer learning: PyrGRU 60.5
Transfer learning: PyrTFM 69.1
Fresh pyramid GRU 16.7
Fresh pyramid transformer 7.1

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 59021511

Huang et al. Seq2Seq Models in Code Correction

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

For the fresh GRU and Transformer models, we observed that
the models have no predicting power as it produces constant
prediction over all inputs. There is even no sufficient gradient on
the loss landscape as the loss did not reduce during the training.
Transfer learning, on the other hand, demonstrates a fair power
of prediction, correctly classifying over 60% of instances, despite
that ITC benchmark is written in very different style than Juliet
Test Suites and that the dataset is 50 times smaller.

This result shows that one is able to use neural-network-based
methods in code correction problems despite the shortage of data,
which is a common problem in this field.

7 CONCLUSION

In our work, we show that seq2seq models, successful in natural
language correction, are also applicable in programming language
correction. Our results shows seq2seq models can be well applied in
providing suggestions to potential errors and have a decent correct
rate (above 70% in C/C++ dataset and above 50% in Java dataset) in
code auto-correction. Although these results are only limited in Juliet
Test Suites, we expect that, given sufficient training data, seq2seq
models can also perform well when applied on other PLC problems.

Based on the commonly used encoder-decoder structure, we
introduce a general pyramid encoder in seq2seq models. Our
results demonstrates that this structure significantly reduces the
memory cost and computational cost. This is helpful because PLC
are generally more computationally expensive than NLC, due to
its longer average instance length.

The publicly available datasets in PLC are mostly small and
noisy. Most datasets we found contain close to or less than 1,000
code instances. This is far less than enough for training seq2seq
and many other machine learning models. Our results on transfer
learning pointed out a way of processing these small dataset using
the pretrained model as an encoder, which boosts the
performance by a large amount.

In future, we will further investigate the influence of different
architectures in neural networks, for instance, parallel encoders/
decoders, Tree2Tree models, etc. On the other hand, instead of code
correction, we will modify and examine ourmodel’s performance on
other tasks such as program generation and code optimizing. We
will also examine the potential difference between artificial datasets
and realistic datasets.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study.
This data can be found here: https://samate.nist.gov/
SARD/around.php#juliet_documents https://samate.nist.
gov/SARD/view.php?tsID�104.

AUTHOR CONTRIBUTIONS

SH came up with the generalized pyramid encoder, processed the
dataset, programmed each of the seq2seq models, conducted
experiments, respectively, and gathered results. He was responsible
for writing parts 3, 4, 5, and 6 of the manuscript. XZ was responsible
for literature reviews; he wrote part 2 of themanuscript independently
and part 1 and 6 jointly with SH. He and SH also contributed together
in finding supplementary datasets. SC was the advisor of the
project; he gave advice on the general direction of the research,
provided facilities to conduct experiments, and supervised the
process of the research. He also provided the access to Juliet Test
Suite, which was the main dataset used in the research. He
helped proofread the manuscript. All three authors shared ideas,
carried out discussions, and came up with solutions together
over the course of research.

FUNDING

The study was funded by the National Science Foundation, DMS
1737897.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at Arxiv (Huang
et al., 2020).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frai.2021.590215/
full#supplementary-material.

REFERENCES

Charles, O. (2015). [Dataset] Itc-benchmarks. Available at: https://samate.nist.gov/
SARD/testsuite.php (Accessed December 28, 2015).

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., et al. (2014). Learning phrase representations using rnn encoder-
decoder for statistical machine translation. Preprint repository name
[Preprint]. Available at: arXiv:1406.1078 (Accessed January 3, 2014).

Das, R., Ahmed, U. Z., Karkare, A., and Gulwani, S. (2016). Prutor: a system for
tutoring cs1 and collecting student programs for analysis. Preprint
repository name [Preprint]. Available at: arXiv:1608.03828 (Accessed
August 12, 2016).

Google (2016a). Clang-tidy. Available at: http://clang.llvm.org/extra/clang-tidy/
(Accessed April 23, 2016).

Google (2016b). Error-prone. Available at: http://errorprone.info/ (Accessed January 25,
2016).

Gupta, R., Kanade, A., and Shevade, S. (2018). Deep reinforcement learning for
programming language correction. Preprint repository name [Preprint].
Available at: arXiv:1801.10467 (Accessed January 31, 2018).

Gupta, R., Pal, S., Kanade, A., and Shevade, S. (2017). “Deepfix: fixing common c
language errors by deep learning,” in Proceedings of the thirty-first AAAI
conference on artificial intelligence, San Francisco, California, February 4–9,
2017, (AAAI Press) 1345–1351.

Hao, K. (2019). Training a single ai model can emit as much carbon as five cars in
their lifetimes. Available at: https://www.technologyreview.com/s/613630/

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 59021512

Huang et al. Seq2Seq Models in Code Correction

https://samate.nist.gov/SARD/around.php#juliet_documents
https://samate.nist.gov/SARD/around.php#juliet_documents
https://samate.nist.gov/SARD/view.php?tsID=104
https://samate.nist.gov/SARD/view.php?tsID=104
https://samate.nist.gov/SARD/view.php?tsID=104
https://www.frontiersin.org/articles/10.3389/frai.2021.590215/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2021.590215/full#supplementary-material
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
http://arXiv:1406.1078
http://arXiv:1608.03828
http://clang.llvm.org/extra/clang-tidy/
http://errorprone.info/
http://arXiv:1801.10467
https://www.technologyreview.com/s/613630/training-a-single-ai-�model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

training-a-single-ai- model-can-emit-as-much-carbon-as-five-cars-in-their-
lifetimes/ (Accessed September 28, 2019).

Huang, S., Zhou, X., and Chin, S. (2020). A study of pyramid structure for code
correction. Preprint repository name [Preprint]. Available at: arXiv:2001.11367
(Accessed January 28, 2020).

JetBrains (2016). ReSharper. Available at: https://www.jetbrains.com/resharper/
(Accessed September 12, 2016).

NSA Center for Assured Software (2013). [Dataset] Juliet test suite c/c++. Available at:
https://samate.nist.gov/SARD/around.php#juliet_documents (AccessedMay 15, 2013).

NSACenter for Assured Software (2018). [Dataset] Juliet test suite java. Available at: https://
samate.nist.gov/SARD/around.php#juliet_documents (Accessed November 17, 2018).

Pan, S. J., and Yang, Q. (2009). A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22, 1345–1359. doi:10.1109/TKDE.2009.191

Pu, Y., Narasimhan, K., Solar-Lezama, A., and Barzilay, R. (2016). “sk_p: a neural
program corrector for moocs,” in Companion proceedings of the 2016 ACM
SIGPLAN international conference on systems, programming, languages and
applications: software for humanity (SPLASH Companion), 39–40.

Singh, R., Gulwani, S., and Solar-Lezama, A. (2013). “Automated feedback
generation for introductory programming assignments,” in Proceedings of
the 34th ACM SIGPLAN conference on Programming language design and
implementation, Washington, DC, June 06, 2013 (ACM), 15–26.

Software Assurance Reference Dataset (2006). [Dataset] SARD datasets. Available
at: https://samate.nist.gov/SARD/testsuite.php (Accessed January 6, 2006).

Synopsys (2016). Coverity. Available at: http://www.coverity.com// (Accessed July
11, 2016).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” inAdvances in neural information processing
systems. 6000–6010.

Xie, Z., Avati, A., Arivazhagan, N., Jurafsky, D., and Ng, A. Y. (2016). Neural
language correction with character-based attention. Preprint repository name
[Preprint]. Available at: arXiv:1603.09727 (Accessed March 31, 2016).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Huang, Zhou and Chin. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 59021513

Huang et al. Seq2Seq Models in Code Correction

https://www.technologyreview.com/s/613630/training-a-single-ai-�model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/s/613630/training-a-single-ai-�model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/s/613630/training-a-single-ai-�model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
http://arXiv:2001.11367
https://www.jetbrains.com/resharper/
https://samate.nist.gov/SARD/around.php#juliet_documents
https://samate.nist.gov/SARD/around.php#juliet_documents
https://samate.nist.gov/SARD/around.php#juliet_documents
https://doi.org/10.1109/TKDE.2009.191
https://samate.nist.gov/SARD/testsuite.php
http://www.coverity.com//
http://arXiv:1603.09727
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Application of Seq2Seq Models on Code Correction
	1 Introduction
	2 Related Work
	3 Model
	3.1 Overview
	3.2 Word-Level Reasoning
	3.3 Pyramid Encoder
	3.4 Decoder and Attention Mechanisms
	3.5 Beam Search
	3.6 Model Parameters

	4 Datasets
	5 Results
	5.1 Repair Rate
	5.2 Converging Speed
	5.3 Memory Cost

	6 Discussion
	6.1 Length Analyses
	6.2 Examples of Correction
	6.3 Generalizability to Syntax Error-Oriented Dataset
	6.4 Alternative Method for Small Datasets: Transfer Learning
	6.4.1 Model Structure
	6.4.2 Results

	7 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

