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A method (Ember) for nonstationary spatial modeling with multiple secondary variables by
combining Geostatistics with Random Forests is applied to a three-dimensional Reservoir
Model. It extends the Random Forest method to an interpolation algorithm retaining similar
consistency properties to both Geostatistical algorithms and Random Forests. It allows
embedding of simpler interpolation algorithms into the process, combining them through
the Random Forest training process. The algorithm estimates a conditional distribution at
each target location. The family of such distributions is called the model envelope. An
algorithm to produce stochastic simulations from the envelope is demonstrated. This
algorithm allows the influence of the secondary variables, as well as the variability of the
result to vary by location in the simulation.
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INTRODUCTION

An issue that practitioners of spatial modeling confront is that the ensemble behavior of the modeled
random function might not match observable properties of the dataset in some types of application.
For example, some auxiliary hypotheses of a generative model such as stationarity, needed to allow
inference, may leave an unwelcome trace in the predicted results. The subsurface reality itself is rarely
stationary, and the usual remedy for scientists is to subdivide the domain of interest into regions
which they believe to be approximately stationary (or reducible to stationary by removing a trend)
and to create separate models within each region. While this generally works well in practice, it does
suffer from a couple of potential downsides. Sometimes the number of regions required can be quite
large, necessitating a labor-intensive and quite error-prone procedure. Secondly, a region which is
modeled as stationary may, in fact, have some subtle but distinct sub-regions which, if identified,
would affect some desired applications of the model (for example, fluid flow strongly depends on
vertical spatial divisions).

A compounding factor is that when predicting a target variable at a location, there often are a
number of secondary variables known at that location which are covariate with the target variable of
interest, e.g., Wackernagel (2003). An example from the oil industry is the prediction of porosity
away from well locations, where the porosity value is known to a reasonably high degree. At target
locations, we may have observed one or more seismic and/or geological attributes, which are
covariate with porosity. These are known as secondary variables in Geostatistics. An observable
spatial trend when seen in the data is often modeled as a polynomial. In many generative models,
such as Gaussian cosimulation, a simplified relationship between the covariates and the target
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variable is assumed. For example, stationarity of the correlation
between secondary variables and the target variable is an auxiliary
hypothesis that is unlikely to be fully satisfied in practice.

In this article, a simple alternative procedure is proposed
which is aimed at reducing these effects. Influenced by the
idea of Conditional Random Fields (CRFs) and the classic
Geostatistical wariness of very highly parametric models, the
idea is to directly estimate an envelope of conditional
distributions based on the secondary data and on prior
speculative spatial models. The envelope of distributions can
be thought of as a generalization of a trend model. They can
be quite nonstationary, reflecting local heterogeneity patterns.
They provide estimates of the target variable, as well as a locally
adapted estimate of uncertainty. This can be carried out without
invoking a full multivariate distribution. Unfortunately, it is not
possible to extend the workflow to produce realizations of a
random function without such an assumption. In most
traditional formulations, this is made up front. Examples are
Gaussian Random Fields (GFs), Markov Random Fields (MRFs),
Hidden Markov Models (HMMs), and many variants. Since the
prior model is generally made with some hypothesis of
stationarity, the risk of this hypothesis persisting into the
results should be considered.

For the approach considered here, the realizations are made by
a conditional sampling from the distributions that we have
estimated. However, it is only the sampling that needs to be
assumed as stationary. Hence, the fully spatial model is only for
the sampling function, and there is no explicit random function
model of the target variable itself, only an envelope of
distributions which depend on the state of knowledge about
the target. To summarize,

(a) A machine learning/conditional distribution estimation
algorithm is used to get a distribution at each spatial
location. This family of distributions is called the
envelope in this article.

(b) A stationary ergodic random function is used to sample
from the envelope at each location conditionally on the
observed value of the target variable at that location.

As well as being the basis for simulating realizations, the
envelope of conditional distributions can be used to obtain
estimates of the mean, quantiles, robust estimates of
uncertainty, and unbiased estimates of “sweet spots” such as
locations where porosity is expected to be higher than a user set
threshold. The idea of “embedding” prior spatial models in the
estimation of the envelope is what gives rise to the name Ember,
which stands for embedded model estimator. This allows use of
an essentially unlimited number of additional variables to
enhance conditioning of the final model. It turns out to still
be possible to make inference about the type of variogram to use
for the stationary sampling RF depending on the assumptions
about the type of sampling that we wish to use. Amajor advantage
of this method is that the final estimates are now allowed to be
nonstationary. In other words, the predictor may “reweight” the
importance of the variables in different parts of the field to adapt
to local heterogeneity patterns.

After a more technical introduction to the method, an
application to a synthetic subsurface reservoir model is shown.
Additional technical discussion of the algorithm is held back to
the appendix. Some alternative examples are in Daly, 2020, a
more technically focused paper.

EMBEDDED MODEL DECISION FORESTS

In the classical universal kriging model, the trend is a point
property (i.e., there is one value at each target location) and is
often considered to be an estimate of the mean or of the low-
frequency component of the model. It is not exact, in the sense
that it does not honor the observed values of the target variable.
Typically, it is constructed either as a local polynomial of the
spatial co-ordinates (universal kriging) or using some additional
variable(s) (e.g., external drift). In the Ember model, a conditional
distribution is estimated at each location. In an analogy with the
trend, the conditional distribution is built using the spatial co-
ordinates and additional variables. In addition, the envelope
estimation step will often use the predictions of simpler
models to aid calculation of the conditional distributions at
each location by embedding. In this work, the embedded
model is kriging. The rationale is that the secondary variables,
which might include seismic attributes, stress estimates, distance
to the nearest fault, and height above contact, as well as true
vertical depth, stratigraphic depth, and x,y spatial locations, do
not explicitly contain information about the spatial correlation
which is available in kriging through the variogram. In the
example, we will see that including the additional information
which kriging brings can help constrain the envelope. Depending
on the case, it may be a weak variable, contributing little, or a very
strong variable which comes close to determining the solution.
We note that embedding models will take a little extra work as
models do not behave exactly the same as data in training.

Conditional Random Fields (CRFs) avoid construction of the
multivariate law (Lafferty et al., 2001). The advantage in direct
estimation of each conditional distribution in the envelope
compared to a generative Bayesian model is that no effort is
expended on establishing relations between the numerous
predictor variables. In a full spatial model, these involve
stringent hypothesis such as the stationarity of the property of
interest (perhaps coupled with some simple model of trend) and
the stationarity of the relationship between the target variables
and the explanatory variables (e.g., the hypothesis that the
relationship between porosity and seismic attributes does not
change spatially). The principle impact of stationarity in the
classic model is seen in stochastic realizations which need to
invoke the full multivariate distribution and, therefore, lean
heavily on the hypotheses. This can be greatly reduced in the
current proposal.

The form of CRF that we use here to calculate the envelope
accommodates and embeds existing spatial models using a
Markovian hypothesis. Let Z(x) be a target variable of interest
at the location x, and letY(x) be a vector of secondary or auxiliary
variables observed at x. Let {Zi, Y i} be observations of the target
and secondary variables observed in the field, i.e., Zi denotes the
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value of the target variable Z(xi) at training location xi. Finally, let
M(x) � f ({Zi, Y i}) be a vector of pre-existing estimators of
Z(x). Then, the form of CRF that we require is that the
conditional distribution of Z(x) given all available data
F̂(z|Y(x), {Zi, Y i}) satisfies

F̂(z|Y(x), {Zi, Y i}) � E[1Z(x)< z|Y(x), {Zi, Y i}]
≈ E[1Z(x)< z|Y(x),M(x)] . (1)

This hypothesis states that the conditional distribution of Z(x)
given all the secondary values observed at x and given all the
remote observations of {Zi, Y i} can be reduced to the far simpler
conditional distribution of Z(x) given all the secondary values
observed at x and the vector of model predictions at x. The focus
is now on trying to estimate the right-hand side of Eq. 1 at each
location. Notice that Eq. 1 is not an exact Markov hypothesis.
There is a loss of information. In particular, usingM(x)merely as
an “oracle” that makes predictions at x means that the estimated
conditional distribution does not collapse to a singularity at the
data locations. As already said, the envelope resembles a trend
and conditional simulations will require a conditional sampling
from it.

In this work, we choose to base the algorithm for calculation of
the envelope on a highly successful nonparametric paradigm, the
Decision Forest, e. g., Breiman (2001), Breiman (2004), Breiman
(1996), Meinshausen (2006), Athey et al. (2019), Ho (1998), Lin
and Jeon (2006), Mentch and Zhou (2019), and Scornet (2015).
An introduction to the method can be found in the
Supplementary Material. A decision forest is a set of decision
trees, see Breiman, Friedman et al. (1984) and Györfi et al. (2002).
For the training stage, each tree starts with a single node
containing all the training data. For now, let us ignore the role
of the embedded models. The training data are, therefore, vectors
(Zi,Y i). Each node is split reclusively using a threshold on one of
the variables Yk, for some k, in a way that helps to improve the fit
until the terminal nodes contain (typically) a single sample. To
predict at a location, Z(x), with secondary vectorY(x) � y for the
single tree, the value of y is “dropped” down the tree, and the
prediction of Z(x) is the value of Zi found in the terminal node
where y ends up. Each tree in the forest is generated with some
random parameters meaning that the predicted result can change
from one tree to the next. The final estimator of the conditional
distribution is of the form

F̂(z|Y(x), {Zi, Y i}) � ∑n
i�1

ωi(y)1{Zi < z}, (2)

where the weights ωi(y) count how frequently the value of Zi is
used as a predictor. Under certain conditions, it can be proved
that F̂(z|Y � y)→ F(z∣∣∣∣Y � y) as n→∞ (Supplementary
Material).

Embedded models are treated slightly differently to secondary
data. They are embedded (Supplementary Material) by training
our decision forest on cross-validated estimates. Thus, our
training dataset for each tree is {Zi; Y i,M−i}, where
M−i ≡ M(xi) are model estimates at training location xi which
do not use the information available at xi (they are cross
validated). With an estimate of the conditional distribution

now available at every target location, it is a simple matter to
read off estimates of the mean of this distribution, which we call
the Ember estimate. When kriging is the strongest variable, the
Ember estimate is usually close to the kriging estimate but will
typically be better than kriging if the secondary variables are the
strongest. It must be noted that the Ember estimate, unlike
kriging, but in analogy with trend modeling, is not exact. It is
also possible to quickly read off quantiles, measures of
uncertainty such as spread, and P90-P10, as well as interval
probabilities of the form P(a≤Z(x)≤ b) .

A number of methods have been proposed to do this, for
example using Projection Pursuit, Barnett et al. (2014). The idea
here, influenced by the idea of the Cloud Transform, e.g.,
Kolbjørnsen and Abrahamsen (2004), is to model Z (x) by
taking a conditional sample from the envelope of distributions
F(Z(x)|Y(x) � y) using a uniform stationary, ergodic random
field U(x), such that the result is conditioned at the hard data
locations. If we use a transformed Gaussian random field for
U(x) � G(X(x)), for a multi-Gaussian random field X(x), then
this can be achieved by a Truncated Gaussian simulation Freulon
(1992). Moreover, in this case, we can obtain a relationship
between the experimental variogram for our target variable
Z(x) and that of the sampling random function, allowing
appropriate model fitting. An approximate version of this
relationship when Z itself is close to Gaussian is

ρ(x1 − x2) � E[(Z(x1) − μ̂(x1∣∣∣∣y)
σx1

)(Z(x2) − μ̂(x2∣∣∣∣y)
σx2

)], (3)

where ρ(h) is the covariance function of the Gaussian RF, X(x), to
be simulated, μ̂(x∣∣∣∣y) is the Ember estimate, and σx is the standard
deviation of the residual Z(x) − μ̂(x∣∣∣∣y) which can be read from
the estimate of the conditional distribution at x. The proof is
sketched in the supplementary material and in a bit more detail
in Daly, 2020.

APPLICATION

A synthetic reservoir was constructed to allow for exploration of
some of the issues raised in realistic surroundings. For a real case
study, see Daly et al., 2020. The model alternates between marine-
dominated stacked shoreface sands in which the porosity varies
quite smoothly, prograding in the distal direction which is to the
southwest and fluvial systems which vary in terms of their net to
gross. Figure 1 shows the “true” porosity in the reservoir and a
Relative Acoustic Impedance (RAI) image. The true porosity is
unknown and is the target variable to be estimated. We will
consider two cases, one with few training data and the other with
more data. These are 8 and 36 wells, respectively, and their
positions are shown in Figure 1.

Figure 2 shows the wells on a plan view of the reservoir in
one of the shoreface layers. In the eight-well case, six of the wells
are in the central fault block, with two wells in the block to the
north-east where the best porosity for shoreface sands is
usually to be found. There are no wells in the smaller block to
the south-west. The 36-well case has a better distribution of well
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location. The thick red line on the images represent the location
of the cross section that is used in many of the subsequent figures.
In the eight-well case, there are two wells in quite close proximity
to the section, one at the either end, but the center is not
particularly well controlled by well information.

A synthetic seismic volume was created from a slightly
modified version of the reservoir to ensure that it does not
correspond too neatly to the “real” reservoir. Several attributes
were derived from this volume. The modeling was performed
using 13 data variables and two embedded kriging models giving
a total of 15 secondary variables. A cross section of the reservoir
together with the facies distribution, which is not known for the
study, is shown in Figure 3. The black lines mark the reservoir
zones. The 13 data variables consisted of five seismic variables
and eight geometric variables. Nine of the data variables are
shown in Figure 4.

For simulations, a variogram is required for the Sampling
Random Function. In many real-world reservoir modeling cases,
there is not enough information to calculate reliable variograms,
especially in the horizontal direction. In such cases, the range is

considered an uncertainty. The same is true using the Ember
model, although as we shall see, the uncertainty is often somewhat
mitigated by the estimate of the conditional distribution. In the
case that a meaningful fit for the variogram of the target variable
can be found for classical modeling, then using Eq. 3, it is likely
that there is also a route to find the variogram for the Sampling RF
(see Daly (2020) for an example). Indeed, for the 36-well case, it
was possible to obtain a reasonable estimate for the sampling RF’s
variogram. This was not the case for the eight-well situation, so, as
usual, users will need to consider robustness and uncertainty of
the estimation and simulation with regard to a poorly defined
variogram.

Figure 5, which deals with the model of layer 91 in the case of
having eight wells, has two parts, A and B. The four figures on the
left are part A. It is a layer with quite a low net to gross. The
channels are partly identified by the seismic. In 5A, the truth
(i.e., the target porosity variable we are trying to estimate) and
RAI, as well as estimates of the spread (P90–P10) and the mean of
the estimated conditional distributions, are shown. With only
eight wells, the variability of the mean estimate is low compared

FIGURE 1 | On the left, the true porosity of the reservoir to be modeled is shown. On the right, a synthetic RAI volume created is shown. The locations of the first
eight wells are shown on the left, while the thirty-six-well case is on the right.

FIGURE 2 | Plan view with the 36-well configuration on the right and the eight-well one on the left.
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to the true distribution. Remember that the estimated mean does
not exactly honor wells, though is often fairly close. We call this
the prior mean.

Since Ember simulations condition to wells, we calculate a
posterior mean by averaging many realizations. While it does not
seem to bring much in terms of new information compared to the
priormean, and so probably does not need to be routinely calculated,
the results of the posterior mean for Ember, as well as for Gaussian
simulation (sometimes called the E-type), are shown in Figure 5B.
To show the effect of using an incorrect variogram, the calculation is
carried out twice, once using the exhaustive variogram and again
with a model fitted to the empirical variogram. The variogram in the
second case empirically fits the data quite well but is not a good
match for the (unknown) true variogram (having only about 15% of
the true range). Of the four estimates in 5B, the one using the
Gaussian model with the incorrect variogram is by far the worst
performing due to the distribution of variability in the Gaussian case
being governed directly by the choice of variogram.

The results of stochastic simulation are shown in Figure 6A.
The two figures at the top correspond to a simulation from Ember
and from Gaussian simulation using the near optimal variogram,
and the two below correspond to that using the short variogram
model. Again, the relative homogeneity of the Gaussian short-
range model is noticeable and is a result of the stationary
hypothesis not being compatible with the true distribution,
whereas the Ember result is far more robust. The figure on the
right shows some by-products of the estimation phase of Ember
modeling. These are the three quantiles, P10, P50, and P90, as
well as the estimate of finding sand with high porosity of 20% or
above. The true location of sand above 20% is shown in Figure 7
in red.

These high values lie within the channel belt. The channel belt
is readily identified in the P50 and P90 cases, as well as the
probability map. For context, the color red in the probability map
corresponds to estimated probabilities of 0.5 or above of finding
sand with porosity above 20%. The spread between P10 and P90

FIGURE 3 | Cross section of the reservoir. The facies used for model construction are shown on the right, although these are not used in subsequent modeling
effort.

FIGURE 4 | Cross section of nine of thirteen data variables used in modeling. From L to R per row: RAI, chaos, flatness: sweetness, amplitude, dist. to Fault:
depositional zones, TVD, and strat. depth.
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values show that while the channel is identifiable, there is still
variability and so high porosity patches are still possible outside
the belt.

Turning attention to the 36-well case to get a feel for how
additional information changes the Ember estimates, Figure 8
shows the same simulations and quantiles shown in Figure 6with
the training using the extra wells. The improvement is quite clear
in the results. The additional information identifies and isolates
the belts themselves quite well but is not quite enough to
determine internal heterogeneity. This is simply a function of
the geology as can be seen in Figure 13 which shows uncertainty
of the Ember model in cross section. It is noticeable in Figure 8
that the distribution of heterogeneity still depends strongly on the
variogram for the classical Gaussian models even with the
increased well count and gives poor results for the short
variogram.

Next, a layer in the shoreface sands is considered. Uncertainty
is lower in the shoreface, and moreover, it reduces more quickly
with increasing data due to the greater simplicity. The porosity

FIGURE 5 | (A, B) Eight-well case. (A) Clockwise, truth, RAI, uncertainty spread (P90-P10), and prior mean; (B) clockwise, posterior Ember mean-good variogram
(G.V), posterior Gaussian mean (G.V), posterior Gaussian mean-poor variogram (P.V), and posterior Ember mean (P.V).

FIGURE 6 | (A, B) Eight-well case. (A) Clockwise, Ember simulation-good variogram (G.V), Gaussian simulation (G.V), Gaussian simulation-poor variogram (P.V),
and Ember simulation (P.V). (B) Clockwise, Ember quantiles: P10, P50, prob (porosity>20%), and P90.

FIGURE 7 | Red are locations when the true porosity is above 20%.
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FIGURE 8 | (A, B) Thirty-six well case. (A) The configuration follows that of Figure 6. (B) Top row is P10 and P50; bottom row is P90 and Prob (porosity>20%).

FIGURE 9 | Upper images are the eight-well case, while the lower ones are the 36-well case. On the left is Ember simulation, while on the right is the associated
uncertainty.

FIGURE 10 | The classic Gaussian simulations referred to in Table 1. They differ by the trend management and the variogram used.
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distribution is not well identified on seismic within the shoreface,
so the Ember estimate is largely depending on geometric variables
and the embedded kriging. Figure 10 focuses on the Ember
estimation. As well at the truth and RAI, it shows the estimated
prior mean for the 8- and 36-well cases, as well as their
uncertainty estimates. Note that the patch of high porosity
sand is not identified in the eight-well case but is in the 36-
well case, as none of the initial eight wells sample it. The overall
trend is acceptable even with eight wells.

Ember and Gaussian simulations are shown in Figure 11. As
mentioned before, it is noticeable that the classic Gaussian model
is less robust to an incorrect choice of variogram.

In the two layers shown so far, the seismic was a large
contributor for the channel case but played little role in the
shoreface case. To show an intermediate situation, another layer
from a channelized formation is shown in Figure 12. For this
layer, we just look at the Ember solution as the Gaussian one
performs similar to the previous case.

In the top left of Figure 12, two channel belts are visible, but
only the easternmost one of them is readily discernible on the
RAI seismic attribute. None of the eight wells traverse the thin
western channel belt, although one well goes through the
overbank. Only one well goes through the thicker eastern
belt. The estimate of the mean for the eight-well case fails
to identify the western belt, particularly to the north, but
thanks to the seismic, it identifies the eastern one. The same
is true for the simulation. The uncertainty is sufficient to allow
some sand to be located in the northern part of the western
channel belt in some realizations, but it is far from systematic
and with the sampling random function (SRF) being Gaussian
(and hence high entropy) is unlikely to form a connected
structure in any case. This simple case shows that, in some
cases, it may be of interest to look at the possibility of using
lower entropy SRF to provide genuinely different Ember
realizations or to use Ember to produce facies probabilities
and continue with standard facies modeling methods.

In the 36-well case, both channels are well identified in the
mean and the simulations tend to respect them. The eastern
channel is still better identified due to the combination of seismic
and embedded kriging, while the western one is less defined as it is
less able to exploit the seismic attribute.

So far, we have focused on plan views of several layers of the
model. For completeness and to see the value of the additional
well information, we return to the cross-sectional view in Figures
13, 14.

Before showing some numerical results, it is worth noting
that the classic Gaussian simulation model was fitted in a few
different ways with separate zones, trends, and covariance
models. Three different results are shown in Figure 15. It
is not claimed that this is the best that can be done with the
classic methods, just that considerably more time was spend on
these than on the Ember solution and they also used information
that would not typically be available in real-world modeling
whereas the Ember model did not.

The best Gaussian model was an MM2 model with an
unpublished modification developed by the author for the
Petrel software suite to account for multiple secondary
variables. An MM2 model really amounts to the estimation
or simulation of the residuals accounting for the trends (Chiles
and Delfiner, 2012). Since the residual variability is quite high
and the distribution uses a stationary random function, this
accounts for the fact seen earlier and again observed in Tables
1,2 that the posterior mean depends strongly on the chosen
variogram so that an incorrect choice of variogram can lead to
a rapid degradation of estimation and simulation quality. The
major advantage of Ember simulation in this case is that it
robustly distributes the errors in the right place, assuming that
there is enough information to capture heterogeneity in the
conditional distributions.

Since the Ember model estimates the conditional distribution
at each location, it can be interesting to view what this envelope
looks like. To do this, we have selected a location for a blind well

FIGURE 11 | Ember results for a blind well, circled in red. Two layers are on the left, one in channel sand and the other in the shoreface. Their depth locations on the
well track are shown with arrows. Tracks are, from left, true porosity of the blind well; prob (poro>15%); the next five tracks are simulations; true porosity (red)
superimposed on envelope; and RAI.
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and estimated the values there. Results of the Ember model are
shown in the eight-well case in Figure 16.

The results show, as expected, that predictions are easier
and have lower uncertainty in the shoreface sands. The first
track is the true porosity at the blind well location. Each thin
black line on the track is a 5% porosity increment. So,
porosity values above 15% cross the 3rd black line. The
second track shows the estimate of that the location has
porosity above 15%. These probabilities are much higher,

reflecting greater confidence in the estimate in the shoreface
sands. So, for example, there is a thin layer of shoreface sand
just above the lower red arrow with porosity just above 15%.
It is predicted with high probability (about 0.75) and appears
in all five of the simulations. In fact, the simulations vary little
within the shoreface and are all very similar to the true
porosity log. This is confirmed in view of the envelope
itself, which is the second log from the right. It shows the
true log in red, overlaying the conditional distribution which

FIGURE 12 | Same result as in Figure 15, with short-range variogram. Ember is shown on the left. Gaussian is shown on the right. Notice that the Gaussian
envelope is almost uninformative compared to Ember.

FIGURE 13 | Shoreface layer. Left column, top truth and bottom RAI; middle column, Ember estimates and eight-well case on the top; right column, Ember
uncertainty and eight-well case on the top.

FIGURE 14 | (A) For eight wells; (B) For 36 wells. Each group is organized as mentioned before, Ember on the left, the Gaussian model on the right, correct
variogram on the top, and short variogram below.
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TABLE 1 | Variance of trror and IQR for three Gaussian models and the Ember
model, as well as for the poor choice of “short” variogram for both types. Eight-
well case: green is the best case, and red is the worst case.

8 Well model Zone Var error IQR error Var sim
err

IQR sim
err

Gaussian 1 Channel 45.20 6.12 71.16 7.28
Shoreface 15.11 3.80 46.22 7.82

Gaussian 2 Channel 38.85 6.98 81.17 7.67
Shoreface 10.02 2.63 26.63 5.33

Gaussian 3 Channel 45.03 6.88 80.93 8.11
Shoreface 25.28 2.52 32.13 3.57

Ember Channel 39.57 8.07 83.76 7.42
Shoreface 8.64 2.75 12.52 2.92

Emb short vario Channel 39.57 8.07 88.61 7.62
Shoreface 8.64 2.75 21.64 3.92

Gau short vario Channel 48.51 8.15 95.54 9.39
Shoreface 20.71 5.66 35.65 7.17

TABLE 2 | Variance of error and IQR for three Gaussian models and the Ember
model, as well as for the poor choice of “short” variogram for both types, 36-
well case.

36 Well
model

Zone Var error IQR error Var sim
err

IQR sim
err

Gaussian 1 Channel 32.26 3.38 42.46 5.21
Shoreface 5.39 1.31 19.13 4.39

Gaussian 2 Channel 28.28 3.98 53.38 6.59
Shoreface 3.71 0.75 8.93 2.66

Gaussian 3 Channel 31.17 4.11 54.96 5.69
Shoreface 6.11 1.43 7.15 2.12

Ember Channel 26.29 4.35 52.67 4.51
Shoreface 2.56 0.83 3.00 0.96

Emb short vario Channel 26.29 4.35 52.67 4.45
Shoreface 2.56 0.83 7.10 1.50

Gau short vario Channel 43.55 8.21 92.11 8.92
Shoreface 14.41 4.22 30.83 6.37

FIGURE 15 | Top left is truth; bottom left is RAI. For the other three columns, the top is eight wells and the bottom 36 wells. Left to right: mean, uncertainty, and
simulation from Ember algorithm.
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is seen as a gray-scale image “spread horizontally” at each
depth. The lower bound of the “spread” is the P10, and the
upper bound is the P90 of the conditional distribution. The
true porosity lies between the P10 and P90 most of the time.
The darker the color of the distribution at any point on the
track, the higher the probability of having that value (i.e., the
color represents probability density). In the shoreface sands,
we see that distribution is very concentrated, meaning the
conditional distribution has low variability.

In the channel sands, the conditional distribution has got a far
larger spread. Interestingly at some depth values, near the top for
example (e.g., depth � 2280), the distribution starts very dark on
the left, becomes paler in the middle, and returns to dark on the
right-hand side. This tells us that the distribution is bimodal at
that depth. On reflection, this is not surprising. The prediction
knows that it is in a channel interval and within those intervals it
must either be in the channel or not. Hence, it has high porosity
or low porosity, but only rarely a “middle” porosity. As expected,
we see that the true curve switches back and forth between the
extremes of the distribution but does not usually fall in the
middle. The simulations, since they sample from this
conditional distribution, must have the same switching effect;
hence, there will be less “shoulder effects” in channel intervals
than with a continuous Gaussian model.

Finally in Figure 16, we compare the same well section for the
case of the incorrect, short variogram for both the Ember
model and the Gaussian case. Since the estimates of
probability and the quantiles have not changed, the only
difference in the Ember model is the variation in simulations,
which is a bit higher. On the contrary, the Gaussian case
(calculated a posteriori from hundreds of simulations) shows
that the probability estimates are too smooth. The
simulations are too random, and the quantiles are far too
wide, especially in the shoreface zones.

CONCLUSION

There are an increasing number of problems which require
estimation of a sparsely observed spatially distributed target
variable. In the example given in this paper, we considered
estimation of petrophysical variables in a subsurface reservoir.
While the target variable is sparse, in most situations, there are
many other variables which are covariate with the target. These
may be directly observed variables such as those obtained from
seismic or electromagnetic measurements, but may also include
some variables that can be observed by careful consideration of
the environment, including spatial or geological position and

FIGURE 16 | Left is true porosity, while the right-hand side is RAI.
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proximity to important structural features such as faults. The
statistical behavior tends to change locally both per variable and
for interactions between variables.

Mathematical models of the spatial phenomena generally need to
invoke some notion of stationarity to become tractable. For major
studies with significant economic or environmental impact, the user
may spend a considerable time on model construction. For three
dimensional geological applications, an important part of the art of
the practitioner is to segment the model into parts which may be
adequately modeled with existing tools. A major objective of the
current development is to simplify this workload for the user. The
Random Forest algorithm that was used can consume a large
number of correlated secondary variables with little overfitting,
and it is shown that it can make use of simpler embedded
models, provided they have predictive power. Rather than
starting with an unrealistic stationary Random Function as prior
for the target variable, with the risk that the weakness of the data
coupled with the comparative strength of the prior leads to incorrect
predictions, this algorithm opts to initially solve a weaker problem. It
produces an envelope of distributions at the target locations which
depend on the current state of knowledge about the training data and
which can subsequently be sampled from to produce realizations of
the target variable given the current state of knowledge.

Such a procedure will involve risks. Creating the envelope by
resampling means that the model only explores uncertainty

within the limits of the observed data. Embedding loses
information about the multivariate distribution of the target,
so if such information is available, then direct modeling will
likely lead to tighter results. Finally, like many spatial modeling
algorithms, its performance will degrade when used for
extrapolation.
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