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Background: T ransformer-based languagemodels have delivered clear improvements in
a wide range of natural language processing (NLP) tasks. However, those models have a
significant limitation; specifically, they cannot infer causality, a prerequisite for deployment
in pharmacovigilance, and health care. Therefore, these transformer-based language
models should be developed to infer causality to address the key question of the
cause of a clinical outcome.

Results: In this study, we propose an innovative causal inference model–InferBERT, by
integrating the A Lite Bidirectional Encoder Representations from Transformers (ALBERT)
and Judea Pearl’s Do-calculus to establish potential causality in pharmacovigilance. Two
FDA Adverse Event Reporting System case studies, including Analgesics-related acute
liver failure and Tramadol-related mortalities, were employed to evaluate the proposed
InferBERTmodel. The InferBERTmodel yielded accuracies of 0.78 and 0.95 for identifying
Analgesics-related acute liver failure and Tramadol-related death cases, respectively.
Meanwhile, the inferred causes of the two clinical outcomes, (i.e. acute liver failure and
death) were highly consistent with clinical knowledge. Furthermore, inferred causes were
organized into a causal tree using the proposed recursive do-calculus algorithm to improve
the model’s understanding of causality. Moreover, the high reproducibility of the proposed
InferBERT model was demonstrated by a robustness assessment.

Conclusion: The empirical results demonstrated that the proposed InferBERT approach
is able to both predict clinical events and to infer their causes. Overall, the proposed
InferBERT model is a promising approach to establish causal effects behind text-based
observational data to enhance our understanding of intrinsic causality.

Availability and implementation: The InferBERTmodel and preprocessed FAERS data
sets are available on GitHub at https://github.com/XingqiaoWang/DeepCausalPV-master.

Keywords: artificial intelligence, natural language processing, language models, causal inference,
pharmacovigilance

Edited by:
Alejandro F. Frangi,

University of Leeds, United Kingdom

Reviewed by:
Yonghui Wu,

University of Florida, United States
Himanshu Arora,

University of Miami, United States

*Correspondence:
Xiaowei Xu

xwxu@ualr.edu
Zhichao Liu

Zhichao.Liu@fda.hhs.gov

Specialty section:
This article was submitted to
Medicine and Public Health,

a section of the journal
Frontiers in Artificial Intelligence

Received: 28 January 2021
Accepted: 06 May 2021
Published: 26 May 2021

Citation:
Wang X, Xu X, Tong W, Roberts R and
Liu Z (2021) InferBERT: A Transformer-
Based Causal Inference Framework for

Enhancing Pharmacovigilance.
Front. Artif. Intell. 4:659622.

doi: 10.3389/frai.2021.659622

Frontiers in Artificial Intelligence | www.frontiersin.org May 2021 | Volume 4 | Article 6596221

ORIGINAL RESEARCH
published: 26 May 2021

doi: 10.3389/frai.2021.659622

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.659622&domain=pdf&date_stamp=2021-05-26
https://www.frontiersin.org/articles/10.3389/frai.2021.659622/full
https://www.frontiersin.org/articles/10.3389/frai.2021.659622/full
https://www.frontiersin.org/articles/10.3389/frai.2021.659622/full
https://github.com/XingqiaoWang/DeepCausalPV-master
http://creativecommons.org/licenses/by/4.0/
mailto:xwxu@ualr.edu
mailto:Zhichao.Liu@fda.hhs.gov
https://doi.org/10.3389/frai.2021.659622
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.659622


INTRODUCTION

The rise of artificial intelligence (AI) has transformed many
aspects of human life, especially in healthcare, personal
transport, law-making, and entertainment (Silver et al., 2017;
Awad et al., 2018; Topol, 2019; Woo, 2019). One of the
breakthroughs in AI is the advent of transformer-based
language models, that can achieve state-of-the-art (SOTA)
performance in a wide range of natural language processing
(NLP) tasks (Devlin et al., 2018; Lan et al., 2019; Brown et al.,
2020; Zaheer et al., 2020). Data set size and the number of
parameters tend to increase exponentially with language model
development in pursuit of improved model performance. For
example, the GPT3model consisted of 175 billion parameters and
was trained with 499 billion tokens (Brown et al., 2020).
Consequently, the achieved high prediction performance came
at the expense of model interpretability (Moraffah et al., 2020).
Another critical limitation of transformer-based language models
is the lack of ability to infer causality. Model interpretability and
lack of causal inference affect the dissemination of AI-powered
models in critical fields, particularly in healthcare and
pharmacovigilance where model interpretability is vital for
deployment (Feder et al., 2020).

The goal of this project is to develop a model that can infer the
causality of clinical outcome from unstructured
pharmacovigilance reports. Causality (also referred to as
causation or cause and effect) is the influence by which one
event, process, or state (a cause) contributes to the production of
another event, process or state (an effect). Causal inference is the
process of identifying the cause and effect based on the conditions
of the occurrence of the event (Pearl, 2010). There is a
fundamental difference between causal inference and
association inference: causal inference analyzes the response of
the effect variable when the cause is changed (Pearl and
Mackenzie, 2018).

One of the conventional approaches to prove cause and effect
is a randomized controlled trial. In a randomized controlled trial,
the test subject is randomly assigned to the treatment or control
groups, which are identical in every way other than one group
receives drug (treatment) and one receives placebo (control). If
the clinical outcome is better in one group than the other with
statistical significance, then causality is established. However,
conducting a randomized controlled trial to establish causality
relationships is often time consuming, expensive and can be
impractical in the real world. For example, it would be
impractical to conduct a randomized controlled trial to
demonstrate causality regarding the impact of a vegetarian diet
on life expectancy. Thus, there is a pressing need to develop AI-
powered language models that can identify potential causality
from accumulated real-world data.

Only one attempt has been made so far to perform causal
inference using text as a potential cause of an effect (Veitch et al.,
2020). The study proposed a low-level text representation (called
causally sufficient embeddings) for empirical estimations of
causal effects on observed text documents. Two text corpora
were used to address the following specific causal questions: 1)
Does adding a theorem to a paper affect its chance of acceptance?

2) Does labeling a post with the author’s gender affect post
popularity? However, the approach required external
treatment and outcome information for the text corpus and
could not estimate the causal relationship among the variables
within the text corpus. To date, there remains an absence of any
reports that infer cause and effect relationships between terms or
variables, (e.g. treatment and clinical outcome) within a text.

One of the potential applications of transformer-based
language models for causal inference is pharmacovigilance.
Pharmacovigilance, also known as drug safety, is the
pharmacological science related to collecting, detecting,
assessing, monitoring, and preventing adverse effects with
pharmaceutical products (Edwards, 2012). The FDA Adverse
Event Reporting System (FAERS) is an essential
pharmacovigilance resource containing rich information on
adverse event and medication error reports. The larger
number of FAERS case reports comprising confounders,
treatments, and clinical outcomes could be utilized to
recognize adverse drug reactions (ADRs) and establish a
potential causal relationship between the drug and the adverse
events to further support regulatory decision making.

In this study, we propose a novel transformer-based causal
inference model—InferBERT, by integrating A Lite Bidirectional
Encoder Representations from Transformers (ALBERT) Lan
et al. (2019) and Judea Pearl’s do-calculus Pearl (2010) to infer
causality for pharmacovigilance using FAERS case report data.
We employed two FAERS case report data sets to estimate the
potential causes of Analgesics-related acute liver failure and
Tramadol-related mortalities to prove the concept.
Furthermore, identified causes were visualized by a proposed
causal tree, which was calculated using recursive do-calculus and

FIGURE 1 | Workflow of the study.
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verified with evidence from clinical trial studies and FDA drug
labeling.

MATERIALS AND METHODS

Figure 1 illustrates the workflow of the study:

1. The FDA Adverse Event Reporting System (FAERS) case
reports, including Analgesics-related acute liver failure and
Tramadol-related mortalities, were extracted and
preprocessed.

2. The preprocessed case reports were converted into the
sentence-like descriptions for the subsequent pretrained
language model ALBERT.

3. We fine-tuned the pretrained ALBERT model based on the
transformed sentence-like descriptions to predict Analgesics-
related acute liver failure and Tramadol-related mortalities,
respectively.

4. Do-calculus was implemented into the fine-tuned ALBERT
models for causal inference.

Clinical Knowledge
The two critical aspects of causal relations in pharmacovigilance
are 1) a drug causes the particular adverse drug reaction and 2)
the causal relationship between the adverse drug reaction and
different clinical factors needs to be established. Therefore, we
employed two FAERS datasets, including Analgesics-induced
acute liver failure, and Tramadol-related mortalities, to
investigate the performance of the proposed Deep Causal
Pharmacovigilance (InferBERT) approach.

Analgesics-Induced Acute Liver Failure
Analgesics or painkillers form a group of drugs used to achieve
analgesia and relief from pain. Analgesics include acetaminophen
(APAP), the nonsteroidal anti-inflammatory drugs (NSAIDs)
such as the salicylates, and opioid drugs such as morphine
and oxycodone. Analgesics are one of the most common
causes of drug-induced acute liver failure (Björnsson, 2010).
Among different analgesics, APAP-induced hepatotoxicity
remains a global issue. For example, in the United States, it
accounts for more than 50% of overdose-related acute liver failure
(ALF), and approximately 20% of the liver transplant cases
(Bernal and Wendon, 2013). Furthermore, APAP is also
combined with prescribed—or is formulated with—opioid
analgesics to boost pain relief, which increases the possibility
of overdose or even abuse (Basco et al., 2016). The mortality rate
of ALF is approximately 67–75% before liver transplantation
(Bernal and Wendon, 2013). Also, it was reported that APAP-
induced ALF is more common and more severe in women based
on the Acute Liver Failure Study Group cohort study (Rubin et al.,
2018).

Tramadol-Related Mortalities
Tramadol is an opioid-related medicine used to treat severe pain.
In the United States, there is a Boxed Warning to Tramadol

labeling to ensure appropriate inclusion of the serious adverse
reactions such as addiction, abuse, and misuse, life-threatening
respiratory depression, accidental ingestion, and interaction with
drugs affecting cytochrome P450 isoenzymes. In particular, the
statement “Do not prescribe tramadol for patients who are
suicidal or addiction-prone. Consideration should be given to
the use of non-narcotic analgesics in patients who are suicidal or
depressed” is highlighted in the Drug Abuse and Dependence
section of the US FDA label (http://dailymed.nlm.nih.gov/
dailymed/downloadpdffile.cfm?setId�5bee381f-b14a-e62b-e053-
2991aa0a3c2b). Furthermore, post-marketing adverse events
such as QT prolongation and Torsade de Pointes have been
reported with tramadol use, which is included in the Adverse
Reaction section.

Preprocessing of FAERS Case Reports
The FAERS case reports curated in the PharmaPendium database
(https://www.pharmapendium.com/login/email) were used in
this study. Specifically, we used the search query “Effects:
(Acute liver fibrosis and cirrhosis, OR Acute liver failure and
associated disorders, OR Cholestasis and jaundice) AND Drugs
by AND-groups: [Analgesics (Any Role)]” to extract 45,773
FAERS case reports for Analgesics-induced acute liver failure.
We employed the search query “Drugs: (Tramadol
Hydrochloride) AND Drugs Reported Role: (Drug’s Reported
Role: Primary Suspect Drug OR Secondary Suspect Drug)” and
obtained 39,930 FAERS case reports for Tramadol-related
mortalities.

The FAERS data in the PharmaPendium database has been
preprocessed, including removing duplicating records,
normalizing drug names, and standardizing adverse events
terminology. However, some hurdles still exist for
consolidating the information to carry out causal inference.
Therefore, we implemented the following data cleaning
procedure to further process the datasets:

1) We normalized the terms such as “UNK,” “UNKNOWN,”
“()” and considered them as missing values.

2) Considering the different doses used in FAERS case reports,
we unified the dose unit into milligram (mg). We categorized
the dose into two classes: large than 100 mg and less than
100 mg.

3) We categorized the patient age into four groups: less than
18 years old, 18–39 years old, 40–64 years old, and older than
65 years.

4) For the tramadol-related mortalities dataset, we excluded the
case reports without clinical outcome information since we
used the clinical outcome as the prediction endpoint. As a
result, we obtained a total of 36,661 and 27,245 case reports for
Analgesics-induced acute liver failure and Tramadol-related
mortalities, respectively.

Sentence Generation With FAERS Case
Reports
Our proposed model for causal inference, InferBERT, is based
on the transformer model Lan et al. (2019), which is a sequence
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transduction model that requires sequences as the input.
Therefore, we extracted sentences from each of the FAERS
case reports. Specifically, the FAERS case reports are denoted
as D, D � (d1, d2, . . . , dN), di is the ith case report of the dataset,
N is the total number of case reports. Suppose that there are M
clinical features, (e.g. gender, age, primary suspect drug, dose)
for the FAERS case report dataset D. Each clinical feature
consists of a set of terms. For example, the jth feature fj
consists of a set of terms Tj (e.g., feature gender includes
terms male and female) as value, where Tj � (tj1, tj2, . . . ,
tjG), G represents the total number of terms for a particular
clinical feature. For example, clinic feature “Indication” may
take a value such as “Pain” or “Suicide Attempt.” Then, di � (fi1,
fi2, . . . , fiM), where fij is the jth feature of the ith instance, and fij
⊂ Tj. Without losing generality, we set the fm as the end point,
which means themth clinical feature in the dataset D will be the
target of classification and causal inference.

Then, we transformed each case report di into the
corresponding sentence si. For example, in the FAERS dataset,
the clinical features included gender, age, primary suspect drug,
dose, indication, adverse events, and outcomes in each case report
di. The generated sentence followed the template listed below:

Patient (gender and age) takes a primary suspect drug to treat
which disease and cause some adverse events, leading to
outcomes.

Then we generated the sentence set S, S � (s1, s2, . . . , sN).
For the Analgesics-induced acute liver failure data, the term

“acute liver failure” in clinical feature “adverse event” was used
as the endpoint. Of 36,661 FAERS case reports, 15,224 cases
with “acute liver failure” were considered as positives and
remaining 21,437 cases as negatives (positive/negative ratio �
0.71). For Tramadol-related death data, the clinical feature
“outcomes” was used as the endpoint. The case reports with
the term “death” in the clinical feature “outcomes” were
considered as positives and other case reports were used as
negatives. Accordingly, a total of the 27,245 case reports with
9,846 positives and 17,399 negatives were obtained (positive/
negative ratio � 0.57). Next, we employed a stratified splitting
strategy to divide each sentence set S into three sets, including a
training set (for training the model), a development set (for
model selection), and a test set (for model validation) with an
approximate ratio of 0.64: 0.16: 0.20. The detailed information
of the two datasets was listed in Table 1.

ALBERT-Based Classification Model
Bidirectional Encoder Representations from Transformers
(BERT) is a transformer that learns contextual
bidirectional representations from unlabeled text
documents by jointly conditioning on both left and right
contexts (Vaswani et al., 2017; Devlin et al., 2018). BERT
employed two training strategies, including a masked
language model (MLM) and Next Sentence Prediction
(NSP), to learn bidirectional representations. In the
MLM, 15% of words in a sequence are replaced with a
(MASK) token, and the model attempts to predict the
original value of the masked words, based on the context
provided by the other, non-masked, words in the sequence.
In the NSP, the model receives pairs of sentences as input
and learns to predict if the second sentence in the pair is the
subsequent sentence in the original document. The BERT
model has achieved state-of-the-art performance on most
NLP tasks, requiring minimal task-specific architectural
modification.

Increasing the model size of pre-trained language models often
results in an improved model performance for downstream
tasks. However, The GPU/TPU memory limitations, longer
training times, and model overfitting generate obstacles to
further expand the model size. To address these obstacles,
Google AI proposed a Lite BERT (ALBERT) by adopting
three techniques to trim down BERT (Lan et al., 2019).
First, factorized embedding parameterization was used to
break down token embeddings into two small embedding
matrixes. After applying this decomposition, embeddings
parameters can be reduced from (number of tokens ×
hidden layer size) to (number of tokens × token
embedding size + token embedding size × hidden layer
size). The reduction of parameters is significant, especially
when the hidden layer size is much larger than the token
embedding size. Second, cross-layer parameter sharing was
proposed to prevent an increasing number of parameters
with increased depth of the model. ALBERT is configured to
share all parameters which include feed-forward network
and attention parameters across layers. Lastly, a sentence-
order prediction (SOP) loss was developed to model inter-
sentence coherence in ALBERT, enabling the new model to
perform more robustly in multi-sentence encoding tasks.
To summarize, we chose ALBERT over BERT because it

TABLE 1 | Sentence sets of Analgesics-related acute liver failure and Tramadol-related mortalities.

Endpoints Datasets Number of positives Number of negatives Positive versus negative
ratio

Acute liver failure Total 15,224 21,437 0.71
Training set 9,798 13,663 0.71
Develop set 2,399 3,467 0.69
Test set 3,027 4,307 0.70

Tramadol-related death Total 9,846 17,399 0.57
Training set 6,250 11,185 0.56
Develop set 1,588 2,722 0.57
Test set 2,008 3,442 0.58
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achieved an equivalent accuracy, if not better, with a much
smaller model size.

The ALBERTbase classification model was employed to
classify the endpoint term of each instance. We build a
simple SoftMax classifier for the downstream classification
task of the ALBERT model. In the ALBERT model, the
learned representation vector of the (CLS) special token of
the last layer acts as the input of the downstream model,
with no hidden layers. The dimensionality of the output
layer in the classification model is two, where the SoftMax
function is adopted to classify whether the endpoint term
exists or not. The loss function of the classification model is
shown as follows:

CE � −∑
N

i

pi p log(F(si)) (1)

where, F(si) is the output of the classificationmodel for si, which is
a calculated probability of the predicted class of si. pi is the true
probability of the end point of si.

We denote p′i � F(si), as the output of classification model, where
p′i is the positive probability of the end point for instance i. Then, the
output set, (i.e. conditional probability distribution) of the
classification model can be denoted as O, O � ( p′1, p′2, . . . ,
p′N), i ϵ (1, 2, . . . , N).

Causal Inference Using Do-Calculus
Section
Since the transformer is a generative model, the ALBERT based
classification model can be seen as a conditional probability
distribution p (endpoint|clinical features) of the endpoint in
the clinical feature in FAERS case reports. However, this
conditional probability distribution could not provide
convincing evidence of causal effects, similar in the way as
one cannot conclude causal effects from a randomized
clinical trial with only the treatment group. To empirically
estimate the potential clinical features causing the endpoint,
we used the Judea Pearl’s Do-calculus framework (Tucci,
2013; Pearl and Mackenzie, 2018). The Do-calculus aims to
investigate the interventional conditional probability
distribution of p[endpoint|DO(clinical features)] by
counterfactually changing the clinical features. In this
study, we considered the clinical features as the cause of
the endpoint if there is a statistically significant difference
between the interventional conditional probability
distributions of p[endpoint|DO(clinical features)] and p
[endpoint|NOT DO(clinical features)].

Based on the conditional probability distribution O
generated from our developed ALBERTbase classifier, we
performed the Do-calculus procedure to estimate the cause
of the endpoint. The pseudo code of the Do-calculus
procedure is shown below.

Algorithm 1: Do-calculus algorithm.

For all the terms in each clinical feature, we applied the Do-
calculus algorithm to check whether it is the cause of the
endpoint. For a term tjk, if a case report di contains tjk, we say
it is Do tjk, while if fij≠∅ and tjk is not in fij, then it is not do tjk. We
assigned the case di to different sets, L1 and L2. L1 is the set of case
reports do tjk, while L2 consists of those case reports not do tjk. We
used the one tail z-test to evaluate whether instances in L1 have
significant differences to those in L2. For example, if the endpoint
term is fm and we want to see the impact of t11 (the first term of the
first feature), then for each instance di we have the probability of
fm being positive as follows:

p(fm
∣∣∣∣∣f1, f2, . . . , fj, . . . , fM), j≠m. (2)

As shown in Eqs. 3, 4, for those instances do t11, the set is L1,
while those not do the set is L2.

L1 � {p′i
∣∣∣∣∣∣ p′i � p(fm

∣∣∣∣∣t11ϵfi1, fi2, . . . , fij, . . . , fiM), j≠m}, (3)

L2 � {p′i
∣∣∣∣∣∣ p′i � p(fm

∣∣∣∣∣ t11 ∉ fi1, fi2, . . . , fij, . . . , fiM), j≠m} (4)

To establish all the causal terms of the end point, we evaluated
every term in each feature. This generated the term set L, which is
the set of all the terms in each feature that satisfy the statistical
significance test.

Causal Tree Construction
To further explore the causal relationship among the enriched
causal terms, we built a causal tree based on the Do-calculus.
For each term in L, which has significant relationship with the
end point fm, we explored the secondary causal terms. For
example, if t11 is a term in L (i.e., an established cause), and we
wanted to verify whether t21 is a secondary cause for the
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endpoint fm, then we fixed the t11 term and performed a
statistical significance test on the difference between the
instances following distribution shown as Eq. 5 and that
following distribution shown as Eq. 6.

p(fm
∣∣∣∣∣t11ϵf1, t21ϵf2, . . . , fj, . . . , fM), j≠m, (5)

p(fm
∣∣∣∣∣t11ϵf1, t21 ∉ f2, . . . , fj, . . . , fM), j≠m. (6)

By recursively performing the do-calculus algorithm on the
subset of L1, we found the set of secondary terms L′ based on each
term t in the set L. Consequently, the enriched causal factors could
be arranged in a hierarchical tree structure. To provide more
interpretable results, we only focused on the most significant
causal factors by restricting the maximum number of causal
factors that is equal to the tree level. In other words, in tree
levelN, the number of retained causal factors was less or equal toN.

Robustness Evaluation
The proposed InferBERT model is based on the fine-tuned
pretrained ALBERTbase for text classification and causal
inference. Application of pretrained language models to the
supervised downstream task is designed in the BERT model
and its derivatives such as ALBERT. However, this process can
be less than robust: even with the same parameter values, distinct
random seeds can lead to different results (Dodge et al., 2020). To
investigate the reproducibility of our InferBERT model, we
repeated parallel experiments with the same parameters. Two
strategies were applied to compare the enriched causal terms
(terms hereafter) from the do-calculus algorithm. First, a Venn
diagram was used to compare the consistency of the enriched
terms among the different runs. The average percentage of
enriched terms per repeated run was calculated by the
following Eq. 7:

average percentage of enriched terms

� ∑
T

i�1
number of common enriched terms in all runs

number of enriched terms in run i
T ,

(7)

where T is total number of repeated runs.
Second, the percentage of overlapped terms (POT) strategy

was used to investigate the consistency of the order of enriched
terms. Specifically, we ranked the enriched terms based on their
z-score from high to low. We then calculated the POT by the
number of overlapping terms among three repeated runs divided
by the number of enriched terms in each subset of the ranked
enriched term list.

Conventional Causal Inference Methods
To further verify the results yielded by the proposed InferBERT
model, we employed three conventional causal inference methods
including the proportional reporting ratio (PRR) Evans et al.
(2001), the reporting odds ratio (ROR) Van Puijenbroek et al.
(2002), and the empirical Bayes geometric mean (EBGM)
Szarfman et al. (2002) for the causal inference of the two
datasets. Specifically, we calculated the signal scores for the

enriched teams from the proposed InferBERT model using the
three conventional approaches to investigate whether these
clinically verified terms could be identified. The three
conventional methods are widely used for safety signal detection
to prioritize the potential causal factors in FAERS datasets. PRR
and ROR are based on the case frequency and statistical measures,
while EBGM is based on Bayesian estimation. In this study, the
standard cut-off values for enriching the safety signal were used.
For the PRR, a signal is detected if the number of co-occurrences is
three or more and the PRR is two or more with an associated χ2
value of four or more. For the ROR, a signal is detected if the lower
limit of the 95% two-sided confidence interval exceeds one. For the
EBGM, a signal is enriched when the lower one-sided 95%
confidence limit of the EBGM (EB05) equal or more than two.

Implementation of the InferBERT
To facilitate the application of our model, we developed a standalone
package to simplify the implementation process. The current version
of the InferBERT is based on a lite version of BERT (ALBERT,
https://github.com/google-research/bert) under Python 3.6 and
TensorFlow version 1.15. We evaluated our proposed InferBERT
model on one NVIDIA Tesla V100 GPU. For Analgesics-induced
acute liver failure and Tramadol-related mortalities datasets, the
average runtime was 7.5 and 6 h. We incorporated the causal
function into the ALBERT source code and make it publicly
available through https://github.com/XingqiaoWang/
DeepCausalPV-master.

RESULTS

Construction of Artificial Sentences Based
on FAERS Case Reports
Figure 2 illustrates the sequence length distribution for two
sentence sets, respectively. The average and standard deviation
of sequence lengths were 41.34 ± 11.14 and 56.94 ± 36.40 for the
Analgesics-induced acute liver failure and Tramadol-related
mortalities sentence sets, respectively. Considering the
adverse event feature was designed as the endpoint for
Analgesics-induced acute liver failure, the shorter average
sequence was expected. We further calculated the term
frequency-inverse document frequency (tf-idf), and the top
10 terms with the highest tf-idf values are listed in Table 2.
The most frequent terms for Analgesics-induced acute liver
failure sentence set were acetylcysteine, acinetobacter,
alafenamide, altered, and appendicectomy. Terms including
abacavir, indomethacin, glossodynia, idiopathic, and amnestic
showed the highest tf-idf values in the Tramadol-related
mortalities sentence set.

ALBERT Model Development
ALBERTbasemodel developed on the 16GBOOKCORPUSZhu et al.
(2015) and EnglishWikipedia Devlin et al. (2018) were employed in
this study. The ALBERTbase model consisted of 12 repeating layers,
128 embeddings, 768 hidden, and 12 heads with 11M parameters.
We further fine-tuned the ALBERTbase model with training sets and
determined the optimized models based on text classification results
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in the development sets for the endpoints, (i.e. acute liver failure and
death). We used one NVIDIA V100 (32 GB) GPU for fine-tuning
the model. For the Analgesics-induced acute liver failure dataset, the
maximum sequence length was fixed to 128, and the mini-batch size
was set to 128. A total of 10,000 training steps were implemented
with 2,000-step warmup, and the checkpoint step was set to 500 for
recording the prediction results. For the Tramadol-related
mortalities dataset, we used the same parameter settings except
for a longer maximum sequence length, (i.e. 256). More training
steps, (i.e. 20,000 steps) were selected as well since the Tramadol-
average sequence length was longer than that of the Analgesics-
induced acute liver failure dataset.

Figure 3 depicts the trends of loss and accuracy, along with
training steps based on development sets. The cross-entropy loss
tended to be stable after 4,000 training steps and 5,000 steps for
the Analgesics-induced acute liver failure dataset and Tramadol-
related mortalities dataset, respectively. Furthermore, the

accuracies of the two datasets changed minimally after steps
3,000 and 5,000. Here, we selected the optimized fine-tuned
model based on the steps with the maximum accuracy,
i.e., 5,500 steps and 10,000 steps for the Analgesics-induced
acute liver failure dataset and Tramadol-related mortalities
dataset, respectively.

Causal Inference
To investigate whether the proposed InferBERT approach could
capture the causal factors aligned with clinical knowledge, we
further carried out the do-calculus analysis to decipher the causal
factors for the Analgesics-induced acute liver failure and
Tramadol-related mortalities datasets. There are 42 and 48
clinical terms enriched with an adjusted p value less than 0.05
using a one-tail z-test for the Analgesics-induced acute liver
failure and Tramadol-related mortalities datasets, respectively
(see Supplementary Table S1). The clinical terms were
distributed into different clinical feature categories, including
adverse events, primary suspect drug (psd), age, dose, and
gender. Among the enriched clinical terms, the clinical terms
with the highest z-score in each clinical feature category were
considered as root causes of endpoints (Table 3).

For Analgesics-induced acute liver failure, the enriched root
causal factors (z-score) including primary suspect drug—APAP
(153.92), age—18–39 (36.01), gender—female (17.06), dose—larger
than 100 mg (8.93), and outcome—death (119.33) were enriched,
which is highly consistent with the clinical backgrounds
mentioned above. For Tramadol-related mortalities, the
enriched root causal factors (z-score) consisted of primary
suspect drug—Hydrocodone Bitartrate (23.66), age—40–64
(18.33), gender–male (3.62), dose—drug abuse (38.77), and
adverse events—Completed suicide (252.27), which is aligned
with its clinical background.

FIGURE 2 | The distribution of sequence length: (A) Analgesics-induced acute liver failure; and (B) Tramadol-related mortalities.

TABLE 2 | Top 10most frequent terms in the two sentence sets based on the tf-idf
values.

Analgesics-related acute liver
failure

Tramadol-related mortalities

Terms Tf-idf value Terms Tf-idf value

Acetylcysteine 0.0318 Abacavir 0.0323
Acinetobacter 0.0318 Indomethacin 0.0323
Alafenamide 0.0318 Glossodynia 0.0315
Altered 0.0318 Idiopathic 0.0315
Appendicectomy 0.0318 Amnestic 0.0312
Appetite 0.0318 Assault 0.0312
Assist 0.0318 Axetil 0.0312
Atherosclerosis 0.0318 Bradyarrhythmia 0.0312
Brucellosis 0.0318 Brugada 0.0312
Cabazitaxel 0.0318 Cardiorenal 0.0312
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FIGURE 3 | The relationship between cross-entropy loss and accuracy and training steps in fine-tuned ALBERT models: (A) Analgesics-induced acute liver failure;
and (B) Tramadol-related mortalities. The red and gray colors denote the accuracy and cross-entropy loss, respectively.

TABLE 3 | Enriched causal clinical terms by the proposed InferBERT AI model.

Clinical categories Clinical terms Z-score Average of
do probabilities

Average of
not do

probabilities

Adjusted
p value

Analgesics-induced acute liver failure
primary suspect drug APAP 153.92 0.84 0.33 < 1E-16
Age 18–39 36.01 0.54 0.35 < 1E-16
Gender Female 17.06 0.41 0.35 < 1E-16
Dose Larger than 100 mg 8.93 0.39 0.35 < 1E-16
Outcome Death 119.33 0.68 0.30 < 1E-16

Tramadol-related mortalities
Adversary events Completed suicide 252.27 1.00 0.28 < 1E-16
Age 40–64 18.33 0.44 0.32 < 1E-16
Gender Male 3.62 0.37 0.34 0.0001
Dose Drug abuse 38.77 0.74 0.33 < 1E-16
Primary suspect drug Hydrocodone bitartrate 23.67 0.91 0.36 < 1E-16

FIGURE 4 | Causal trees for (A) Analgesics-induced acute liver failure; and (B) Tramadol-related mortalities. The number attached to each arrow denotes the
z-score.
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To further uncover the interrelationship among causal factors,
we implemented a causal tree analysis using the causal factor with
highest z-score as a start point. Figure 4 illustrates the
constructed causal tree for the endpoints. The link was
established with an adjusted p value less than 0.05 using a
one-tail z-test. For Analgesics-induced acute liver failure, the
causal tree penetrated the root cause of Analgesics-induced acute
liver failure in patients taking APAP. Furthermore, among the
patients taking APAP, the age group 40–64 and women were
more likely to take APAP. Moreover, compared to men, women

with APAP overdose were more likely to have ALI/ALF, or even
death. For Tramadol-related mortalities, the causal tree only
consisted of the root level, suggesting that completed suicide
was the leading cause of Tramadol-related death.

Robustness Analysis
Figure 5 depicts the robustness assessment of the proposed
InferBERT model. Venn diagrams showed an average of 82.4
and 95.8% of enriched terms from all the three repeated runs for
Analgesics-induced acute liver failure and Tramadol-related
mortalities, respectively. Furthermore, the top-ranked enriched
terms were very consistent among the top-ranked lists of different
repeated runs, as shown in the POT curves of Figure 5. The POT
values of the top 10 ranked terms among the three runs were 0.8
and one for Analgesics-induced acute liver failure and Tramadol-
related mortalities, respectively. Altogether, the proposed
InferBERT model yielded highly repeatable results with great
potential for use in further real-world applications. This result
indicates that our proposed InferBERT framework is robust,
which is an important advantage over other machine learning
approaches that are solely based on data without reasoning
causality inference.

Comparison With the Conventional Causal
Inference Methods
We further compared the proposed InferBERT model with three
conventional signal detection methods (i.e., PRR, ROR, and
EBGM) widely applied in pharmacovigilance. Figure 6
illustrated the overlapping terms enriched by the InferBERT
model and three conventional methods. The InferBERT model
identified more causal factors than three conventional
approaches. For Analgesics-induced acute liver failure dataset,
the number of enriched terms were ranked as InferBERT model
(43 terms) > ROR (23 terms) > PRR (2 terms) > EBGM (0 term).

FIGURE 5 | Robustness evaluation of the proposed InferBERTmodel. The
yellow and green colors denote Analgesics-induced acute liver failure and
Tramadol-related mortalities datasets, respectively. The Venn diagram illustrates
the overlapping of the enriched causal terms by three repeated runs. The
percentage of overlapping terms (POPs) shown in the dotted-line curve represent
the consistency among ranked order terms from the three repeated runs.

FIGURE 6 |Comparison between the proposed InferBERTmodel and the three conventional causal inference models including PRR, ROR EBGM: (A) Analgesics-
induced acute liver failure; and (B) Tramadol-related mortalities datasets, respectively.
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Notably, InferBERT discovers all the causal factors that identified
by other conventional methods. On the other hand, all
conventional methods missed some of the causal factors
discovered by InferBERT, which are verified by the clinical
knowledge. Furthermore, the top-ranking terms, (i.e. ranked
terms based on the scores in each method) such as “APAP”
and “death” were enriched among the four methods,
demonstrating the consistency of the proposed method and
conventional approaches (Supplementary Table S2). A similar
observation was also showed in the Tramadol-related mortalities.
The proposed InferBERT model identified the most terms (50),
followed by ROR (43), PRR (13), and EBGM (9). The top
enriched term “completed suicide” was identified by all four
methods. The more enriched terms from the proposed
InferBERT model may benefit from the superior ability to
uncover the hidden relationship between variables by the
transformer model.

DISCUSSION

Transformer-based language models have greatly expanded the
potential of NLP applications. However, few attempts have been
made to apply transformer-based language models to address an
unmet need for enhanced model-based reasoning for causality.
To our best knowledge, the current study and description of
InferBERT is the first to succeed in causal inference, aimed at
boosting pharmacovigilance. To investigate the performance of
our proposed InferBERTmodel, we used two FAERS case studies,
Analgesics-induced acute liver failure and Tramadol-related
mortalities, to prove the concept. The root causes of the two
datasets were identified, and the results were consistent with the
causal relationship derived from real-world data. Moreover, the
proposed causal tree seamlessly linked the enriched causal factors
into a hierarchical structure to decipher the interrelationship
among the causal factors. Furthermore, the high reproducibility
of the proposed InferBERT model warrants its potential real-
world application.

The FAERS database is an essential resource for hypothesis
generation to support pharmacovigilance. However, FAERS data
derive from a spontaneous submission by pharmaceutical
companies and physicians. There are many data integrity
issues such as duplicate records, unstandardized terminologies,
missed values, andmissing information. Tremendous efforts have
been made to clean, normalize, and standardize the data and
format, enabling researchers to fully take advantage of the
datasets (Banda et al., 2016). In this study, we have used an
innovative approach to convert FAERS case reports to sentence-
like descriptions as the input for transformer-based language
models. This greatly simplified the data preprocessing and
overcame the need for a process to handle any missing values.
In this study, we employed the preprocessed FARES data curated
by the commercial database PharmaPendium (https://www.
pharmapendium.com/login), where the original FAERS data is
preprocessed for consolidating all relevant data, normalizing
different term usage, de-duplicating records, and mapping to
either RxNorm (for drugs) or any other controlled terminology

(for adverse events), as well as negations. For the further
application of the original FAERS, the positive/negative sample
definition should be more cautious since the negation issue could
deteriorate the quality of positive and negative classification and
further decrease the reliability of the causal inference results.

To demonstrate the performance of the proposed InferBERT
model, we employed synthetic sentences constructed by standard
terminology from the processed FAERS data. The data quality of
data resources is crucial for applying the model for causality
analysis. For example, the complex causal relationship is
embedded in the electronic medical records (EMR), which is
essential to suggest the right clinical decision and improve the
clinical outcome. Initial efforts such as ClinicalBERT have been
proposed to address the clinical questions. A further investigation
to combine the ClinicalBERT Huang et al.(2019) with our
proposed causal inference strategy may be a promising
direction to expand the utility of the current InferBERT model.

There are two limitations in the current version of the
InferBERT model, which needs to further investigation. First,
we developed the InferBERT model based on FAERS data with a
fixed pattern. Further investigation on the different types of free-
text data in the biomedical fields is a “must” to evaluate the
generalization of the proposed model. Second, we only
investigated the model performance with two endpoints
(i.e., Analgesics-related acute liver failure and Tramadol-
related death). The proposed InferBERT model should be
further evaluated with diverse free text-based biomedical
datasets to lay out the pros and cons in real-world applications.

It would be valuable to consider some additional studies to
investigate potential further improvement of the proposed
InferBERT model. Firstly, the proposed InferBERT model was
developed based on the ALBERTbase model. Other transformer-
based language models could be further investigated to improve
causal inference results. A comparative analysis between different
transformer models on the improved performance is strongly
recommended. The comparison could address the impact factor
of model performance such as computational power, computer
time, and improvement of model performance, which could be
very helpful to select the “fit-for-purpose” model to carry out the
causal inference toward real-world application. Secondly, the
language model represents the interrelationship of variables in a
probabilistic graph. Therefore, Bayesian theory could be
considered as a possible route to improve causal inference. The
proposed model needs to predefine the endpoint to carry out the
causal analysis. The combination of the transformer model and
Bayesian approaches may be a promising solution to
comprehensively evaluate the causal relationship among different
variables in the data. Thirdly, in the current study, we focus on the
identification of causal factors of the endpoint. The developed
InferBERT model could be utilized to test the potential influence
of endpoints for any term combination, which may provide further
confidence and establish a causality-based Question and Answering
system. Lastly, the current developed InferBERT model is a
supervised-based causal inference system. Future work for self-
learning of interrelationships among variables directly derived from
the pre-trained language models may provide a more intelligent way
to identify causal factors for any clinical outcome.
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Despite the current attention around AI, most AI-powered
language models focus on predicting outcomes rather than
understanding causality. Here, we explored the potential utility
of transformer-based language models for causal inference in
pharmacovigilance. We hope our study can further trigger
community interest to examine the potential of AI for
understanding the data and to improve the causal
interpretability of AI models in the biomedical field.
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